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EXPANDING THE APPLICABILITY OF A
NEWTON-LAVRENTIEV REGULARIZATION METHOD

FOR ILL-POSED PROBLEMS

IOANNIS K. ARGYROS and SANTHOSH GEORGE

Abstract. We present a semilocal convergence analysis for a simplified Newton-
Lavrentiev regularization method for solving ill-posed problems in a Hilbert space
setting. We use a center-Lipschitz instead of a Lipschitz condition in our conver-
gence analysis. This way we obtain: weaker convergence criteria, tighter error
bounds and more precise information on the location of the solution than in
earlier studies (such as [13]).
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1. INTRODUCTION

LetX andH be Hilbert spaces. Let U(x,R) and U(x,R) stand, respectively,
for the open and closed ball in X with center x and radius R > 0. Let also
L(X,H) be the space of all bounded linear operators from X into H.

In this study we are concerned with the problem of approximating a solution
of the equation

(1.1) AF (x) = y,

where A : H → H is a positive self-adjoint operator with its range R(A) not
closed in H and F : D(F ) ⊆ X → H.

Many problems from computational sciences and other disciplines can be
brought in a form similar to equation (1.1) using mathematical modelling, e.g.,
[1], [4], [5], [6], [17], [18]. The solutions of these equations can rarely be found
in closed form. That is why most solution methods for these equations are
iterative. The study of the convergence of iterative procedures is usually based
on two types of methods: on semi-local, respectively, on local convergence
analysis. While the semi-local convergence analysis is based on the information
around an initial point and gives conditions ensuring the convergence of the
iterative procedure, the local one is based on the information around a solution
and aims to find estimates of the radii of convergence balls.

Since R(A) is not closed, the equation (1.1) is ill-posed in the sense that
small perturbations of the data y can lead to large deviations of the “solution”.
In this case regularization techniques are needed to obtain stable approximate
solutions for (1.1), e.g., [5]–[7], [8], [10], [16]. A solution x∗ of (1.1) is called
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an x0-minimum norm solution of (1.1) if

(1.2) ‖x∗ − x0‖ = min{‖x− x0‖ : AF (x) = y, x ∈ D(F )}.
We are interested in a solution x∗ ∈ D(F ) of equation (1.1) which satisfies

(1.3) ‖F (x∗)− F (x0)‖ = min{‖F (x)− F (x0)‖ : AF (x) = y, x ∈ D(F )},
instead of (1.2). We also assume that yδ ∈ H are the available noisy data with

(1.4) ‖y − yδ‖ ≤ δ.
George and Nair used in [13] the Newton-Lavrentiev regularization method
(NLRM) defined for each n ∈ {1, 2, . . . }, a fixed α > 0 and δ > 0 by

(1.5) xδn,α = xδn−1,α − F ′(x0)−1[(F (xδn−1,α)− zδα],

where zδα = F (x0)+(K∗K+αI)−1(K∗yδ−AF (x0)) and xδ0,α = x0 is an initial

point to generate a sequence {xδn,α} for obtaining approximate solutions xδα of
the equation

(1.6) F (x) = zδα.

The regularization parameter α is chosen following the adaptive parameter
selection procedure due to Pereverzev and Schock [15].

(NLRM) can be written in the more condensed form

(1.7) xδn,α = Gδα(xδn−1,α), n ∈ {1, 2, . . . },

where Gδα(x) = x−F ′(x0)−1(F (x)−zδα). A semilocal convergence analysis was
given by George and Nair in [13] under the conditions:

(C1) There exist x0 ∈ X, b > 0 and w > 0 such that F ′(x0)
−1 ∈ L(H,X),

‖F ′(x0)‖ ≤ b and ‖F (x̂)− F (x0)‖ ≤ w.
(C2) F : U(x0, R) ⊆ X → H, for some R > 0, is Fréchet differentiable and

there exists a constant L > 0 such that for each x, y ∈ U(x0, R) the
following Lipschitz condition holds

‖F ′(x)− F ′(y)‖ ≤ L‖x− y‖.
(C3) For α > 0 and δ > 0 set

(1.8) h := 2b2L

(
δ

α
+ w

)
and

(1.9) q := 1−
√

1− h.
Suppose that

(1.10)
δ

α
+ w <

1

2b
min

{
R,

1

bL

}
.

We shall refer to (C1)–(C2) as the (C) conditions. Note that (1.10) implies

(1.11) h < 1
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and

(1.12) r =
1−
√

1− h
bL

< R.

In the present paper we present a semilocal convergence analysis for (NLRM)
with the following advantages over the one given in [13]:

(A1) less expensive computational cost for the Lipschitz constants,
(A2) weaker convergence conditions,
(A3) tighter error estimates on ‖xδn,α − xδα‖ and ‖xn,α − xα‖,
(A4) more precise information on the location of the solution.

We shall refer to (A1)–(A4) as the (A) advantages. Let us explain how these
advantages are obtained. Note that in view of (C2) we get:

(C2)’ There exists L0 > 0 such that center Lipschitz condition

‖F ′(x)− F ′(x0)‖ ≤ L0‖x− x0‖.
holds for each x ∈ U(x0, R)

Consider also:

(C3)’ Put

(1.13) h0 := 2b2L0

(
δ

α
+ w

)
and

(1.14) q0 := 1−
√

1− h0.
Suppose that

(1.15)
δ

α
+ w <

1

2b
min

{
R,

1

bL0

}
.

Note that (1.15) yields

(1.16) h0 < 1

and

(1.17) r0 =
1−
√

1− h0
bL0

< R.

We shall refer to (C1), (C2)’ and (C3)’ as the (C0) conditions.
Note that the inequality

(1.18) L0 ≤ L
holds in general, and that L

L0
can be arbitrarily large, see [1], [2]–[4].

Our semilocal convergence analysis is based on the (C0) conditions. Observe
that

(1.19) h < 1 =⇒ h0 < 1,

(1.20)
h0
h
→ 0 as

L0

L
→ 0,
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and

(1.21) r0 ≤ r.

If L0 < L, then strict inequality will hold in (1.21), too. The estimate (1.20)
shows that the applicability of these methods can be expanded infinitely many
times when compared to the results in [13]. The computation of L0 is less
expensive than that of L. Finally, there are problems for which (C2)’ holds
but not (C2) (see the examples at the end of this study).

The proof of the result in [13] involving (C2) can be given by simply using
(C2)’. Based on this crucial observation, the results in [13] can be given using
the (C0) conditions instead of (C). That is why in Section 2 we simply present
the results without any proofs. We refer the reader to [13] for these proofs.
Finally, in Section 3 we provide examples where (C2) does not hold but (C2)’
holds.

2. CONVERGENCE ANALYSIS

We present the semilocal result for (NLRM).

Theorem 2.1. Suppose that the (C0) conditions hold. Then the sequence
{xδn,α}, generated by (NLRM), is well-defined, remains in U(x0, r0) for each

n ∈ {0, 1, 2, . . . } and converges to a unique solution xδα ∈ U(x0, r0) of the
equation

(2.22) F (x) = zδα

such that

(2.23) ‖xδn,α − xδα‖ ≤
qn0 r0

1− q0
,

where

(2.24) q0 = 1−
√

1− h0.

If in addition bL0R < 1, then the following inequalities hold

‖xδα − x̂‖ ≤
b

1− bL0R
‖zδα − F (x̂)‖

and

‖xδn,α − x̂‖ ≤
qn0 r0

1− q0
+

b

1− bL0R
‖zδα − F (x̂)‖.

Moreover, if F (x̂) − F (x0) ∈ R(A), then, for zα = F (x0) + (A + αI)−1(y −
F (x0)), the following assertion holds

‖F (x̂)− zα‖ → 0 as α→ 0.

Concerning error bounds under source conditions we present the following
result.
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Theorem 2.2. Suppose that the (C0) conditions hold, that bL0R < 1 and
that there exists a continuous, strictly increasing function ϕ : (0, a] → (0,∞)
with a > ‖A‖ satisfying:

• limλ→ 0ϕ(λ) = 0,

• sup
λ≥0

αϕ(λ)

λ+ α
≤ ϕ(α), for all α ∈ (0, a],

• there exists v ∈ X with ‖v‖ ≤ 1 such that F (x̂) = ϕ(K∗K)v.

Then the following inequality holds for each n ∈ {1, 2, . . . }

‖x̂− xδn,α‖ ≤
b

1− bL0R
(ϕ(α) +

δ√
α

) +
qn0 r0

1− q0
.

Let ψ(λ) := λ
√
ϕ−1(λ), where 0 < λ ≤ ‖A‖, and

αδ := ϕ−1(ψ−1(δ)).

If ψ(αδ) + w < min{R, 1
bL0
} and rδ := min{qn0 ≤ δ

αδ
}, then

‖xδnδ,αδ − x̂‖ = O(ψ−1(δ)).

Concerning an adaptive selection of the parameter, which does not involve
even the regularization method in an explicit sense, we have the following
result (see [12] and [13] for more details).

Theorem 2.3. Suppose that

2bw < R < min

{
2b(1 + w),

1

bL0

}
, µ >

2b

R− 2bw
.

Define αj, for j ∈ {0, 1, 2, . . . , N}, and k, respectively, by α0 := δ, αj := µjδ,
for j ∈ {1, 2, . . . , N}, and

k := max{i : ‖zδαi − z
δ
αj‖ ≤ 4µ−j , i = 0, 1, . . . , i}.

Then the following inequality holds

‖F (x̂)− zδαk‖ ≤ 6µψ−1(δ),

where ψ(t) := tϕ(t), for 0 < t < ‖A‖. Furthermore, if

h0,k := 2b2L0(w +
1

µk
) < 1

and if n0,k := min{n : qn0,k ≤
1
µk
} with q0,k = 1−

√
1− h0,k, then the following

equality holds
‖xδn0,k,αk

− x̂‖ = O(ψ−1(δ)).

Algorithm 2.4. For i, j ∈ {0, 1, . . . , N} we have

zδαi − z
δ
αj = (αj − αi)(A+ αjI)−1(A+ αiI)−1(yδ −AF (x0)).

Hence the adaptive algorithm associated with the choice of the parameter
specified in Theorem 2.3 involves the following steps:
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Part I:

• i = 1.
• Solve for wi : (A+ αiI)wi = yδ −AF (x0).
• Solve for zij : (A+ αiI)zij = (αj − αi)wi, j ≤ i.
• If ‖zij‖ > 4µ−j , then take k = i− 1.
• Otherwise, repeat with i+ 1 in place of i.

Part II:

• n = 1.
• If qn0,k ≤ µ−k, then take n0,k = n.
• Otherwise, repeat with n+ 1 in place of n.

Part III:

• Solve for uj−1 : F ′(x0)uj−1 = F (xδj−1,αk)− zδαk .

• xδj,αk := xδj−1,αk − uj−1, j = 1, 2, . . . , n0,k.

Remark 2.5. If L0 = L the results reduce to the ones in [13]. Otherwise,
i.e., if L0 < L, these results constitute an improvement with advantages (A)
as stated in the introduction of this paper. Note also that in this case q0 < q
and the choice of the parameters α, δ and of the functions ϕ and ψ are tighter.
Moreover, the choice of x0 plays the role of a selection criterion, see [11].
Finally note that the algorithm is also tighter, which in practice leads to fewer
steps to achieve a desired error tolerance ε > 0.

3. EXAMPLES

In this section we first present two examples where (C2) is not satisfied but
(C2)’ is satisfied.

Example 3.1. Let X = Y = R, D = [0,∞), x0 = 1 and define the function
F on D by

(3.25) F (x) =
x1+

1
i

1 + 1
i

+ c1x+ c2,

where c1, c2 are real parameters and i > 2 is an integer. Then F ′(x) = x1/i+c1
is not Lipschitz on D. However, the central Lipschitz condition (C2)’ holds for
L0 = 1. Indeed, we have

‖F ′(x)− F ′(x0)‖ = |x1/i − x1/i0 | =
|x− x0|

x
i−1
i

0 + · · ·+ x
i−1
i

≤ L0|x− x0|.

Example 3.2. We consider the integral equations

(3.26) u(s) = f(s) + λ

∫ b

a
G(s, t)u(t)1+1/ndt, n ∈ N,
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where f is a given continuous function satisfying f(s) > 0, s ∈ [a, b], λ is a
real number, and the kernel G is continuous and positive in [a, b]× [a, b].

For example, when G(s, t) is the Green kernel, the corresponding integral
equation is equivalent to the boundary value problem{

u′′ = λu1+1/n

u(a) = f(a), u(b) = f(b).

These type of problems have been considered in [1], [2], [14].
Equations of the form (3.26) generalize the equations

(3.27) u(s) =

∫ b

a
G(s, t)u(t)ndt

studied in [1], [2], [14]. Instead of (3.26) we can try to solve the equation
F (u) = 0, where

F : Ω→ C[a, b], with Ω = {u ∈ C[a, b] : u(s) ≥ 0, s ∈ [a, b]},

and

F (u)(s) = u(s)− f(s)− λ
∫ b

a
G(s, t)u(t)1+1/ndt.

The norm we consider in this case is the max-norm.
The derivative F ′ is given by

F ′(u)v(s) = v(s)− λ
(

1 +
1

n

)∫ b

a
G(s, t)u(t)1/nv(t)dt, v ∈ Ω.

First of all, we notice that F ′ does not satisfy any Lipschitz-type condition in
Ω. Let us consider, for instance, [a, b] = [0, 1], G(s, t) = 1 and y(t) = 0. Then
F ′(y)v(s) = v(s) and

‖F ′(x)− F ′(y)‖ = |λ|
(

1 +
1

n

)∫ b

a
x(t)1/ndt.

Assuming that F ′ is a Lipschitz function, then

‖F ′(x)− F ′(y)‖ ≤ L1‖x− y‖,

or, equivalently,

(3.28)

∫ 1

0
x(t)1/ndt ≤ L2 max

x∈[0,1]
x(s), for all x ∈ Ω,

and for a constant L2. But this is not true. Consider, for example, the functions

xj(t) =
t

j
, j ≥ 1, t ∈ [0, 1].

If these are substituted into (3.28), we obtain

1

j1/n(1 + 1/n)
≤ L2

j
⇔ j1−1/n ≤ L2(1 + 1/n), ∀j ≥ 1.
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This inequality is not true when j → ∞. Therefore condition (3.28) is not
satisfied in this case. However, condition (C2)’ holds true. To show this, let
x0(t) = f(t) and γ = mins∈[a,b] f(s), α > 0. For v ∈ Ω we then have

‖[F ′(x) − F ′(x0)]v‖

= |λ|
(

1 +
1

n

)
max
s∈[a,b]

∣∣∣∣∫ b

a
G(s, t)(x(t)1/n − f(t)1/n)v(t)dt

∣∣∣∣
≤ |λ|(1 +

1

n
) max
s∈[a,b]

Gn(s, t),

where Gn(s, t) = G(s,t)|x(t)−f(t)|
x(t)(n−1)/n+x(t)(n−2)/nf(t)1/n+···+f(t)(n−1)/n ‖v‖.

Hence

‖[F ′(x)− F ′(x0)]v‖ =
|λ|(1 + 1/n)

γ(n−1)/n
max
s∈[a,b]

∫ b

a
G(s, t)dt‖x− x0‖

≤ L0‖x− x0‖,

where L0 = |λ|(1+1/n)

γ(n−1)/n N and N = maxs∈[a,b]
∫ b
a G(s, t)dt. Thus condition (C2)’

holds true for sufficiently small λ.
In the last example we compare the “h” conditions.

Example 3.3. Let X = Y = R, D = [0,∞), x0 = 1, A = F, D(F ) =

U(x0, 1− p) for p ∈ (0, 12), y = 0, yδ = 0, δ = 0 and define the function F on
D by

F (x) = x3 − p.
Then, using (3.28) and (C3), (C3)’, we have that b = 1

3 , η = 1
3(1 − p) and

L0 = 3(3−p) < L = 6(2−p). Then we have that h = 2bLη > 1 for all p ∈ (0, 12).
Hence there is no guarantee that the method converges to x̂ = 3

√
p. However,

our new condition 4h0 = 2bL0η ≤ 1 holds for all p ∈ [0.418861170, 0.5). So the
new result can be applied for p ∈ [0.418861170, 0.5), but not the old ones.

If p ∈ (0, 1) and we choose, say p = 0.7, then we get that

L0 = 2.3 < L = 2.6, η = 0.1, h = 0.52, h0 = 0.46.

Hence the old and the new hypotheses are satisfied by

q0 = 0.265153077 < q = 0.307179677.

That is the ratio of convergence is tighter with the new approach.
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