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A UNIVALENCE CONDITION FOR ANALYTIC FUNCTIONS
IN THE UNIT DISK

VERONICA OANA NECHITA

Abstract. In this paper we give a univalence criterion for analytic functions in
the unit disk, which generalizes previously known, recent results. We use the
method of Loewner chains in order to prove our main theorem.
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1. INTRODUCTION AND PRELIMINARIES

Let Ur denote the disk {z ∈ C : |z| < r} in the complex plane, where 0 <
r ≤ 1 and consider U = U1. Let A denote the class of analytic functions in the
unit disk, which are also normalized by the conditions f(0) = f ′(0)− 1 = 0.

Let f and F be members of A. The function f is said to be subordinate
to F , written f ≺ F or f(z) ≺ F (z), if there exists a function w analytic in
U , with w(0) = 0 and |w(z)| < 1, and such that f(z) = F (w(z)). If F is
univalent, then f ≺ F if and only if f(0) = F (0) and f(U) ⊂ F (U) [3, p.36].

A function L(z, t), z ∈ U, t ≥ 0, is a subordination chain if L(·, t) is analytic
and univalent in U for all t ≥ 0, and L(z, t1) ≺ L(z, t2), whenever 0 ≤ t1 ≤ t2.

The aim of this paper is to give a new univalence criterion for analytic
functions defined in the unit disk. The main tool in our development is the
following result, due to Ch. Pommerenke [4], which gives a method of con-
structing univalence criteria.

Lemma 1.1. Let r be a real number such that 0 < r ≤ 1 and let L : Ur ×
[0,∞)→ C be a function that satisfies the following conditions:

(i) L (·, t) is analytic in Ur, for each t ∈ [0,∞), L (z, t) = a1 (t) z+ ... and
locally absolutely continuous in [0,∞), locally uniformly with respect
to Ur;

(ii) for each t ∈ [0,∞), a1 (t) 6= 0, lim
t→∞
|a1 (t)| =∞ and

{
L(·,t)
a1(t)

}
t≥0

forms

a normal family in Ur;
(iii) there exists a function p : U × [0,∞)→ C, such that p (·, t) is analytic

in U , Re p (z, t) > 0 for each (z, t) ∈ U × [0,∞) and ∂L(z,t)
∂t = p (z, t) ·

z · ∂L(z,t)∂z for z ∈ Ur and almost all t ∈ [0,∞).
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Then, for each t ∈ [0,∞), L (·, t) can be analytically continued in U and
gives a univalent function.

2. MAIN RESULTS

We are now able to give our main result. Let a (t) a complex valued function
defined on [0,∞) such that the following conditions hold:

(1) a ∈ C1[0,∞), a (0) = 1, a (t) 6= 0, a (t) + a′ (t) 6= 0, for each t ∈ [0,∞),

(2) lim
t→∞
|a (t)| =∞.

Theorem 2.1. Let f ∈ A and let a : [0,∞) → C be a function such that
(1) and (2) hold. If α ∈ C, Reα > 1,

(3)

∣∣∣∣1− αα +
1− a′ (0)

2

∣∣∣∣ < |1 + a′ (0)|
2

,

max
|z|=e−t

∣∣∣∣1− αα
[
a (t)

|z|
−
(
a (t)

|z|
− 1

)
zf ′ (z)

f (z)

]
+

(
a (t)

|z|
− 1

)
z

d

dz
log

z2f ′ (z)

f2 (z)

+
a (t)− a′ (t)

2a (t)

∣∣∣∣ ≤ |a (t) + a′ (t)|
2 |a (t)|

, z ∈ U̇ , t ≥ 0,

(4)

then f is univalent in U .

Proof. We introduce the function L : U × [0,∞)→ C,

(5) L (z, t) :=
[
f
(
e−tz

)]1−α f (e−tz)+
(a (t) et − 1) e−tzf ′ (e−tz)

1− (a (t) et − 1)
(

e−tzf ′(e−tz)
f(e−tz) − 1

)
α .

The function f ∈ A has the series expansion f (z) = z + a2z
2 + . . .. From (4)

we have f (z) 6= 0, for each z ∈ U̇ , and we obtain that

f1 (z, t) :=
e−tzf ′

(
e−tz

)
f (e−tz)

= 1 + ...

is analytic in U . Hence, the function

f2 (z, t) :=
e−tzf ′

(
e−tz

)
f (e−tz)

− 1 = a2e
−tz + ...

is also analytic in U . It follows from

f3 (z, t) := 1 +

(
a (t) et − 1

)
f1 (z, t)

1− (a (t) et − 1) f2 (z, t)
= a (t) et + ....

that there is an r ∈ (0, 1] such that f3 (z, t) is analytic in Ur and f3 (z, t) 6= 0,
for each z ∈ Ur, t ≥ 0. For the function given by

f4 (z, t) := [f3 (z, t)]α = [a (t)]α eαt + ....

we will choose an analytic branch in Ur. We have that

(6) L (z, t) = f
(
e−tz

)
f4 (z, t) = [a (t)]α e(α−1)tz + ...
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is analytic in Ur, for each t ≥ 0. From (6) we have L (z, t) = a1 (t) z + . . .,

where a1 (t) = [a (t)]α e(α−1)t 6= 0 and |a1 (t)| = |[a (t)]α| eRe(α−1)t. Because
Reα > 1 and from (2), we can conclude that lim

t→∞
|a1 (t)| =∞.

Let p : Ur × [0,∞)→ C, be the function given by

p (z, t) =
∂L (z, t) /∂t

z · ∂L (z, t) /∂z

and consider w : Ur × [0,∞)→ C,

w (z, t) =
1− p (z, t)

1 + p (z, t)
=
z · ∂L (z, t) /∂z − ∂L (z, t) /∂t

z · ∂L (z, t) /∂z + ∂L (z, t) /∂t
.

We determine from (5) the partial derivatives of L with respect to z and t,
and by introducing the results in the previous relation, we obtain

w (z, t) =

{
1− α
α

[
a (t) et −

(
a (t) et − 1

) e−tzf ′
(
e−tz

)
f (e−tz)

]
+
(
a (t) et − 1

)
·

[
2 +

e−tzf ′′
(
e−tz

)
f ′ (e−tz)

− 2
e−tzf ′

(
e−tz

)
f (e−tz)

]
+
a (t)− a′ (t)

2a (t)

}
· 2a (t)

a (t) + a′ (t)
.

From (4) it follows that f (z) · f ′ (z) 6= 0, for each z ∈ U , and therefore we
can analytically continue the function w (·, t) in U , and p (·, t) will also admit
an analytic continuation in U , for each t ∈ [0,∞).

We have w (z, 0) =
[
1−α
α + a(0)−a′(0)

2a(0)

]
· 2a(0)
a(0)+a′(0) , and hence, from (3),

|w (z, 0)| < 1 for each z ∈ U .
For fixed t > 0, because w (z, t) is analytic in U , we obtain by the maximum

principle, that |w (z, t)| < max
|ζ|=1

|w (ζ, t)|. We will prove that max
|ζ|=1

|w (ζ, t)| ≤ 1.

Let z = e−tζ, hence z ∈ U and |z| = e−t. We have

max
|z|=e−t

|w (z, t)| = max
|z|=e−t

{
1− α
α

[
a (t)

|z|
−
(
a (t)

|z|
− 1

)
zf ′ (z)

f (z)

]
+

(
a (t)

|z|
− 1

)
·
[
2 +

zf ′′ (z)

f ′ (z)
− 2

zf ′ (z)

f (z)

]
+
a (t)− a′ (t)

2a (t)

}
· 2a (t)

a (t) + a′ (t)
.

From relation (4) it follows that max
|ζ|=1

|w (ζ, t)| = max
|z|=e−t

|w (z, t)| ≤ 1.

Because ∂L(z,t)
∂t = [a (t)]α−1 e(α−1)t [αa′ (t) + (1− α) a (t)] z + ..., it follows

that

∣∣∣∣∂L (z, t)

∂t

∣∣∣∣ is bounded in [0, T ] for each fixed T > 0 and for each z ∈ U .

Thus, the function L (z, t) is locally absolutely continuous in [0,∞), locally
uniformly with respect to z ∈ U .

It is easy to see that there is M > 0 such that
∣∣∣L(z,t)a1(t)

∣∣∣ ≤ M for all z ∈ U

and t ∈ [0,∞), and thus the function family

{
L (z, t)

a1 (t)

}
t≥0

is normal in U .
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We showed that the function L given by relation (5) satisfies the conditions
of Lemma 1.1, so we can conclude now that for each t ∈ [0,∞), L (·, t) has an
analytic and univalent continuation in U . In particular, the function f (z) =
L (z, 0) is univalent in U . �

If we take a (t) = et in Theorem 2.1, we obtain a result of D. Răducanu [5].

Corollary 2.2. Let f ∈ A and let α be a complex number such that

Reα >
1

2
. If∣∣∣∣1− αα
[
1−

(
1− |z|2

) zf ′ (z)
f (z)

]
+
(

1− |z|2
)
z

d

dz
log

z2f ′ (z)

f2 (z)

∣∣∣∣ ≤ |z|2
for all z ∈ U , then the function f is univalent in U .

Another consequence of Theorem 2.1 is the following result:

Corollary 2.3. Let f ∈ A, let c > −1 and α ∈ C such that Reα >

max

{
1,

1 + c

2

}
. If∣∣∣∣∣∣1− αα

1 + c |z|2

1 + c
−

(
1− |z|2

)
1 + c

zf ′ (z)

f (z)

+

(
1− |z|2

)
1 + c

z
d

dz
log

z2f ′ (z)

f2 (z)

+
c |z|4

1 + c |z|2

∣∣∣∣∣ ≤ |z|2

1 + c |z|2

for all z ∈ U , then f is univalent in U .

Proof. A simple calculation for a (t) =
et + ce−t

1 + c
in Theorem 2.1 yields the

result. �
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