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SUBCLASSES OF STARLIKE FUNCTIONS
INVOLVING A CERTAIN INTEGRAL OPERATOR

GANGADHARAN MURUGUSUNDARAMOORTHY

Abstract. Making use of the generalized integral operator, we define a new
subclass of uniformly convex functions and a corresponding subclass of starlike
functions with negative coefficients and obtain coefficient estimates, extreme
points, the radii of close to convexity, starlikeness and convexity . In particular,
we obtain integral means inequalities for the function f(z) belongs to the class
UCT (α, β, γ, λ, m) in the unit disc.
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1. INTRODUCTION

Let A denote the class of functions of the form

(1) f(z) = z +
∞∑
n=2

anz
n,

which are analytic and univalent in the open disc U = {z : z ∈ C, |z| < 1}.
Let S be a subclass of A consisting of univalent functions in U . By K(β), and
S∗(β) respectively, we mean the classes of analytic functions that satisfy the
analytic conditions

Re

{
1 +

zf ′′(z)

f ′(z)

}
> β and Re

{
zf ′(z)

f(z)

}
> β, z ∈ U

for 0 5 β < 1. In particular, K = K(0) and S∗ = S∗(0) respectively, are
the well-known standard class of convex and starlike functions. Let T be the
subclass of S of functions of the form

(2) f(z) = z −
∞∑
n=2

anz
n, an = 0,

that are analytic in the open unit disk U . This class was introduced and
studied by Silverman [13]. Analogous to the subclasses S∗(β) and K(β) of
S respectively, the subclasses of T denoted by T ∗(β) and C(β), 0 5 β < 1,
were also investigated by Silverman in [13]. For functions f ∈ A given by (1)

and g ∈ A given by g(z) = z +
∞∑
n=2

bnz
n, we define the Hadamard product (or
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convolution) of f and g by

(3) (f ∗ g)(z) = z +
∞∑
n=2

anbnz
n, z ∈ U.

In [4] Catas extended the multiplier transformation and defined the operator
Im(λ, µ)f(z) on A by the following series:

(4) Im(λ, µ)f(z) = z +
∞∑
n=2

(
1 + µ+ λ(n− 1)

1 + µ

)m
anz

n,

λ ≥ 0;µ ≥ 0;m ∈ N0 = N ∪ {0};N = {1, 2, 3, ...}; z ∈ U). Note that
I0(1; 0)f(z) = f(z) and I1(1; 0)f(z) = zf ′(z).

Now, we define the integral operator Jm(λ;µ)f(z) for f(z) ∈ A and z ∈ U ,
as follows:

J 0(λ;µ)f(z) = f(z)

J 1(λ;µ)f(z) =

(
1 + µ

λ

)
z1−( 1+µ

λ )
∫ z

0
t ( 1+µ

λ )−2f(t)dt

J 2(λ;µ)f(z) =

(
1 + µ

λ

)
z1−( 1+µ

λ )
∫ z

0
t ( 1+µ

λ )−2J 1(λ;µ)f(t)dt

and in general

Jm(λ;µ)f(z) =

(
1 + µ

λ

)
z1−( 1+µ

λ )
∫ z

0
t ( 1+µ

λ )−2Jm−1(λ;µ)f(t)dt

= J 1(λ;µ)

(
z

1− z

)
∗ J 1(λ;µ)

(
z

1− z

)
∗ ... ∗ J 1(λ;µ)

(
z

1− z

)
︸ ︷︷ ︸

m times

∗f(z).
(5)

We note that if f(z) ∈ A then from (1) and (5) we have

Jm(λ;µ)f(z) = z +

∞∑
n=2

[
1 + µ

1 + µ+ λ(n− 1)

]m
anz

n

= z +

∞∑
n=2

Ψλ
n(m,µ)anz

n,

(6)

where

(7) Ψλ
n(m,µ) =

[
1 + µ

1 + µ+ λ(n− 1)

]m
and (throughout this paper unless otherwise mentioned) the parameters µ, λ
are constrained as λ ≥ 0;µ ≥ 0;m ∈ N0 = N ∪ {0};N = {1, 2, 3, ...}; z ∈ U.
For various choices of m,λ and µ we note the following:

1) J 0(λ;µ)f(z) := f(z);

2) J 1(1; 0)f(z) :=
∫ z

0
f(t)
t dt := Lf(z)(see Alexander [1]);
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3) J 1(1; ν)f(z) := 1+ν
zν

∫ z
0 t

ν−1f(t)dt := z +
∞∑
n=2

(
1+ν
n+ν

)
anz

n = Bνf(z)

(see Bernardi [3]);

4) J 1(1; 1)f(z) := 2
z

∫ z
0 f(t)dt := z +

∞∑
n=2

(
2

n+1

)
anz

n = If(z) (see [10];

5) Jm(1; 1)f(z) := z +
∞∑
n=2

(
2

n+1

)m
anz

n := Imf(z) (see Flett [5] and

Jung et al. [8]).

Motivated by earlier works of [6, 7, 10, 11, 14]) we define an unified class of
analytic function based on the operator Jm(λ;µ). For 0 5 γ 5 1, 0 5 β < 1,
α = 0, and for all z ∈ ∆, we let the class UCT (α, β, γ, λ, m), consists of
functions f ∈ T is said to be in the class satisfying the condition

Re

{
zF ′(z)

F (z)

}
> α

∣∣∣∣zF ′(z)F (z)
− 1

∣∣∣∣+ β,(8)

with

F (z) := (1− γ)Jm(λ;µ)f(z) + γz[Jm(λ;µ)f(z)]′,(9)

where Jm(λ;µ)f(z) is given by (6). The family UCT (α, β, γ, λ, m) unifies
various well-known classes of analytic univalent functions, as follows.

Example 1. If m = 0, then

S(α, β, γ) :=

{
f ∈ A : Re

{
zF ′(z)

F (z)
− α

}
> β

∣∣∣∣zF ′(z)F (z)
− 1

∣∣∣∣ , z ∈ U} .
Further T S(α, β, γ) = S(α, β, γ) ∩ T , where T is given by (2).

Example 2. If m = 1, λ = 1, µ = 0, then

L(α, β, γ) :=

{
f ∈ A : Re

{
z(LF (z))′

LF (z)
− α

}
> β

∣∣∣∣z(LF (z))′

LF (z)
− 1

∣∣∣∣ , z ∈ U} ,
where LF (z) is defined by LF (z) := z+

∞∑
n=2

(
1+nγ−γ

n

)
anz

n.Also T L(α, β, γ) =

L(α, β, γ) ∩ T , where T is given by (2).

Example 3. If m = 1, λ = 1, µ = ν ( ν > −1 ), then

Bν(α, β, γ) =

{
f ∈ A : Re

{
z(BνF (z))′

BνF (z)
− α

}
> β

∣∣∣∣z(BνF (z))′

BνF (z)
− 1

∣∣∣∣ , z ∈ U} ,
where BνF (z) is given by BνF (z) := z+

∞∑
n=2

(1+nγ−γ)
(

1+ν
n+ν

)
anz

n. Further,

TBν(α, β, γ) = Bν(α, β, γ) ∩ T, where T is given by (2).

Example 4. If λ = 1, µ = 1, then

I(α, β, γ) :=

{
f ∈ A : Re

{
z(ImF (z))′

ImF (z)
− α

}
> β

∣∣∣∣z(ImF (z))′

ImF (z)
− 1

∣∣∣∣ , z ∈ U} ,
where Imf(z) is defined by ImF (z) := z +

∞∑
n=2

(1 + nγ − γ)
(

2
n+1

)m
anz

n.
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In the present paper, we obtain a characterization, coefficients estimates,
distortion theorem and covering theorem, extreme points and radii of close-
to-convexity, starlikeness and convexity for functions belonging to the class
UCT (α, β, γ, λ, k).

2. CHARACTERIZATION AND COEFFICIENT ESTIMATES

Theorem 5. Let f ∈ T . Then f ∈ UCT (α, β, γ, λ, m), 0 5 γ 5 1,
0 5 β < 1 and α = 0,

(10)

∞∑
n=2

[n(α+ 1)− (α+ β)] (γ(n− 1) + 1) Ψλ
n(m,µ)|an| 5 1− β.

This result is sharp for the function

(11) f(z) = z − 1− β
[n(α+ 1)− (α+ β)][γ(n− 1) + 1]Ψλ

n(m,µ)
zn, n = 2.

Proof. We employ the technique from [2]. We have f ∈ UCT (α, β, γ, λ, m),
if and only if the condition (8) is satisfied, which is equivalent to

Re

{
zF ′(z)(1 + keiθ)− F (z)keiθ

F (z)

}
> β, −π 5 θ < π.(12)

Now, letting G(z) = zF ′(z)(1 + keiθ)− F (z)keiθ, (12) is equivalent to

|G(z) + (1− β)F (z)| > |G(z)− (1 + β)F (z)|, 0 5 β < 1,

where F (z) is as defined in (9). Now a simple computation gives

|G(z) + (1− β)F (z)|

= |(2− β)z| −

∣∣∣∣∣
∞∑
n=2

{n+ 1− β}{γ(n− 1) + 1}Ψλ
n(m,µ)anz

n

∣∣∣∣∣
−

∣∣∣∣∣keiθ
∞∑
n=2

(n− 1){γ(n− 1) + 1}Ψλ
n(m,µ)anz

n

∣∣∣∣∣
= (2− β)|z| −

∞∑
n=2

{n+ 1− β}{γ(n− 1) + 1}Ψλ
n(m,µ)an|z|n

− k
∞∑
n=2

(n− 1){γ(n− 1) + 1}Ψλ
n(m,µ)an|z|n

= (2− β)|z| −
∞∑
n=2

(
n(α+ 1)− (α+ β) + 1

)(
γ(n− 1) + 1

)
Ψλ
n(m,µ)an|z|n
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and similarly,

|G(z)− (1 + β)F (z)|

5 β|z|+
∞∑
n=2

(
(n(α+ 1)− (α+ β)− 1)

)(
γ(n− 1) + 1

)
Ψλ
n(m,µ)an|z|n.

Therefore,

|G(z) + (1− β)F (z)| − |G(z)− (1 + β)F (z)| = 2(1− β)|z|

− 2
∞∑
n=2

(
(n(α+ 1)− (α+ β))

)(
γ(n− 1) + 1

)
Ψλ
n(m,µ)an|z|n = 0,

which is equivalent to the result (10).

On the other hand, for all −π 5 θ < π, Re
{
zF ′(z)
F (z) (1 + keiθ)− keiθ

}
> β.

Now choosing the values of z on the positive real axis, where 0 5 |z| = r < 1,
and using Re {−eiθ} = −|eiθ| = −1, the above inequality can be written as

Re


(1− β)−

∞∑
n=2

(
n(α+ 1)− (α+ β)

)(
γ(n− 1) + 1

)
Ψλ
n(m,µ)anr

n−1

1−
∞∑
n=2

(
γ(n− 1) + 1

)
Ψλ
n(m,µ)anr

n−1

 = 0.

Setting r → 1−, we get the desired result. �

By taking α = 0, γ = 1, and m = 0 in Theorem 5, we get the following
interesting result given in [13].

Corollary 6 ([13]). If f ∈ T , then we have f ∈ C(β) if and only if∑∞
n=2 n(n− β)an 5 1− β.

Indeed, since f ∈ UCT (α, β, γ, λ, m), (10), we have

∞∑
n=2

(
n(α+ 1)− (α+ β)

)(
γ(n− 1) + 1

)
Ψλ
n(m,µ)an 5 1− β.

Hence for all n = 2, we have

an 5
1− β(

n(α+ 1)− (α+ β)
) (
γ(n− 1) + 1

)
Ψλ
n(m,µ)

,

whenever 0 5 γ 5 1, 0 5 β < 1 and α = 0. Hence we state this important
observation as a separate theorem.

Theorem 7. If f ∈ UCT (α, β, γ, λ, m), then

an 5
1− β(

n(α+ 1)− (α+ β)
) (
γ(n− 1) + 1

)
Ψλ
n(m,µ)

, n = 2,(13)
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where 0 5 γ 5 1, 0 5 β < 1 and α = 0. Equality in (13) holds for the
function

f(z) = z − 1− β(
n(α+ 1)− (α+ β)

) (
γ(n− 1) + 1

)
Ψλ
n(m,µ)

.(14)

3. DISTORTION AND COVERING THEOREMS

Theorem 8. If f ∈ UCT (α, β, γ, λ, m), then f ∈ T ∗(δ), where

δ = 1− 1− β(
2(α+ 1)− (α+ β)

) (
γ + 1

)
Ψλ

2(m,µ)− (1− β)
.

This result is sharp with the extremal function being

f(z) = z − 1− β(
2(α+ 1)− (α+ β)

) (
γ + 1

)
Ψλ

2(m,µ)
z2.

Proof. It is sufficient to show that (10) implies
∞∑
n=2

(n − δ)an 5 1 − δ [13],

that is,

(15)
n− δ
1− δ

5

(
n(α+ 1)− (α+ β)

) (
γ(n− 1) + 1

)
Ψλ
n(m,µ)

1− β
, n = 2.

Since, for n = 2, (15) is equivalent to

δ 5 1− (n− 1)(1− β)(
n(α+ 1)− (α+ β)

) (
γ(n− 1) + 1

)
Ψλ
n(m,µ)− (1− β)

= Φ(n),

and Φ(n) 5 Φ(2), (15) holds true for any 0 5 γ 5 1, 0 5 β < 1 and α = 0.
This completes the proof of the Theorem 8. �

As in the previous cases we note this result has many special cases. If we
take α = 0, γ = 1, and m = 0 in Theorem 8, then we have the following result
of Silverman [13].

Corollary 9 ([13]). If f ∈ C(β), then f ∈ T ∗
(

2

3− β

)
. The result is

sharp for the extremal function f(z) = z − 1−β
2(2−β)z

2.

Remark. Since distortion theorem and covering theorem are available for
the class T ∗(β) [13], we can also obtain the corresponding results for the class
UCT (α, β, γ, λ, m), from the respective results of T ∗(β) by using Theorem
8, and we state them without proof.

Theorem 10. Let Ψλ
n(m,µ) be defined as in (7). Then, for every f ∈

UCT (α, β, γ, λ, m), with z = reiθ ∈ ∆, we have

(16) r −B(α, β, γ, λ)r2 5 |f(z)| 5 r +B(α, β, γ, λ)r2,

where B(α, β, γ, λ) := 1−β
( 2(α+1)−(α+β))( γ+1)Ψλ2 (m,µ)

.
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Theorem 11. If f ∈ UCT (α, β, γ, λ, m), then for |z| = r < 1

(17) 1−B(α, β, γ, λ)r 5 |f ′(z)| 5 1 +B(α, β, γ, λ)r ,

where B(α, β, γ, λ) as in Theorem 10.

Note that in Theorem 10 and Theorem 11 equality holds for the function

f(z) = z − 1− β(
2(α+ 1)− (α+ β)

) (
γ + 1

)
Ψλ

2(m,µ)
z2.

4. EXTREME POINTS OF THE CLASS UCT (α, β, γ, λ, K),

Theorem 12. Let f1(z) = z,

fn(z) = z − 1− β(
n(α+ 1)− (α+ β)

) (
γ(n− 1) + 1

)
Ψλ
n(m,µ)

zn, n = 2

and Ψλ
n(m,µ) be as defined in (7). Then f ∈ UCT (α, β, γ, λ, m), if and only

if it can be represented in the form

(18) f(z) =

∞∑
n=1

ωnfn(z), ωn = 0,

∞∑
n=1

ωn = 1.

Proof. Suppose f(z) can be written as in (18). Then

f(z) = z −
∞∑
n=2

ωn

{
1− β(

n(α+ 1)− (α+ β)
) (
γ(n− 1) + 1

)
Ψλ
n(m,µ)

}
zn.

Now we have
∞∑
n=2

ωn

(
n(α+ 1)− (α+ β)

) (
γ(n− 1) + 1

)
Ψλ
n(m,µ)(1− β)

(1− β)
(
n(α+ 1)− (α+ β)

) (
γ(n− 1) + 1

)
Ψλ
n(m,µ)

=
∞∑
n=2

ωn = 1− ω1 5 1.

Thus f ∈ UCT (α, β, γ, λ, k). Conversely, let us have f ∈ UCT (α, β, γ, λ, k).
Then by using (13), we may write

ωn =

(
n(α+ 1)− (α+ β)

) (
γ(n− 1) + 1

)
Ψλ
n(m,µ)

1− β
an, n = 2,

and ω1 = 1 −
∞∑
n=2

ωn. Then f(z) =
∑∞

n=1 ωnfn(z), with fn(z) is as in the

Theorem. �

Corollary 13. The extreme points of f ∈ UCT (α, β, γ, λ, m), are the
functions f1(z) = z and

fn(z) = z − 1− β(
n(α+ 1)− (α+ β)

) (
γ(n− 1) + 1

)
Ψλ
n(m,µ)

zn, n = 2.
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Remark. As in previous theorems, we can deduce known results for various
other classes and we omit details.

Theorem 14. The class UCT (α, β, γ, λ, m) is a convex set.

Proof. Let the function

fj(z) =
∞∑
n=2

an, jz
n, an, j = 0, j = 1, 2 ,(19)

be the class UCT (α, β, γ, λ, m). It sufficient to show that the function defined
by g(z) = ωf1(z)+(1−ω)f2(z), 0 5 µ 5 1, is in the class UCT (α, β, γ, λ, m).
Since g(z) = z −

∑∞
n=2[ωan,1 + (1− ω)an,2]zn, an easy computation with the

aid of Theorem 5 gives
∞∑
n=2

(
n(α+ 1)− (α+ β)

)(
γ(n− 1) + 1

)
Ψλ
n(m,µ)[ωan,1 + (1− ω)an,2]

+ (1− ω)

∞∑
n=2

( n(α+ 1)− (α+ β))( γ(n− 1) + 1)Ψλ
n(m,µ)

5 ω(1− β) + (1− ω)(1− β) 5 1− β,
which implies that g ∈ UCT (α, β, γ, λ, m). Hence UCT (α, β, γ, λ, m) is con-
vex. �

5. MODIFIED HADAMARD PRODUCTS

For functions of the form (19), we define the modified Hadamard product:

(f1∗f2)(z) = z −
∞∑
n=2

an, 1 an, 2z
n.(20)

Theorem 15. If fj(z) ∈ UCT (α, β, γ, λ, m), j = 1, 2, then

(f1∗f2)(z) ∈ UCT (α, β, γ, λ, m, ξ),

where

ξ =
(2− β)

(
2(α+ 1)− (α+ β)

) (
γ + 1

)
Ψλ

2(m,µ)− 2(1− β)2

(2− β)
(

2(α+ 1)− (α+ β)
) (
γ + 1

)
Ψλ

2(m,µ)− (1− β)2
,

with Ψλ
n(m,µ) be defined as in (7).

Proof. Since fj(z) ∈ UCT (α, β, γ, λ, m), j = 1, 2, we have

(21)
∞∑
n=2

(
n(α+ 1)− (α+ β)

)(
γ(n− 1) + 1

)
Ψλ
n(m,µ)an, j 5 1− β.

The Cauchy-Schwartz inequality leads to
∞∑
n=2

(
n(α+ 1)− (α+ β)

) (
γ(n− 1) + 1

)
Ψλ
n(m,µ)an, j

1− β
√
an, 1 an, 2 5 1.(22)
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Note that we need to find the largest ξ such that
∞∑
n=2

(
n(k + 1)− (k + ξ)

) (
γ(n− 1) + 1

)
Ψλ
n(m,µ)an, j

1− ξ
an, 1 an, 2 5 1.(23)

Therefore, in view of (22) and (23), whenever n−ξ
1−ξ
√
an, 1 an, 2 5

n−β
1−β (n = 2)

holds, then (23) is satisfied. We have, from (22),

(24)
√
an, 1 an, 2 5

1− β(
n(α+ 1)− (α+ β)

) (
γ(n− 1) + 1

)
Ψλ
n(m,µ)

, n = 2.

Thus, for n ≥ 2, if(
n− ξ
1− ξ

)[
1− β(

n(α+ 1)− (α+ β)
) (
γ(n− 1) + 1

)
Ψλ
n(m,µ)

]
5
n− β
1− β

,

or, if

ξ 5
(n− β)

(
n(α+ 1)− (α+ β)

) (
γ(n− 1) + 1

)
Ψλ
n(m,µ)− n(1− β)2

(n− β)
(
n(α+ 1)− (α+ β)

) (
γ(n− 1) + 1

)
Ψλ
n(m,µ)− (1− β)2

,

then (22) is satisfied. Note that the right hand side of the above expression
is an increasing function on n. Hence, setting n = 2 in the above inequality
gives the required result. Finally, by taking the function

f(z) = z − 1− β
(2− β)

(
2(α+ 1)− (α+ β)

) (
γ + 1

)
Ψλ

2(m,µ)
z2,

we see that the result is sharp. �

6. RADII OF CLOSE-TO-CONVEXITY, STARLIKENESS AND CONVEXITY

Theorem 16. Let the function f ∈ T be in the class UCT (α, β, γ, λ, m).
Then f(z) is close-to-convex of order ρ, 0 5 ρ < 1 in |z| < r1(α, β, γ, ρ),
where

r1(α, β, γ, ρ) = inf
n≥2

[
(1− ρ)

(
n(α+ 1)− (α+ β)

) (
γ(n− 1) + 1

)
Ψλ
n(m,µ)

n(1− β)

] 1
n−1

,

with Ψλ
n(m,µ) be defined as in (7). This result is sharp for the function f(z)

given by (11).

Proof. It is sufficient to show that |f ′(z) − 1| 5 1 − ρ, 0 5 ρ < 1, for
|z| < r1(α, β, γ, ρ), or equivalently

∞∑
n=2

(
n

1− ρ

)
an|z|n−1 5 1.(25)

By Theorem 5, (25) will be true if(
n

1− ρ

)
|z|n−1 5

(
n(α+ 1)− (α+ β)

) (
γ(n− 1) + 1

)
Ψλ
n(m,µ)

1− β
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or, if

|z| 5

[
(1− ρ)

(
n(α+ 1)− (α+ β)

) (
γ(n− 1) + 1

)
Ψλ
n(m,µ)

n(1− β)

] 1
n−1

,(26)

for n = 2. The theorem follows easily from (26). �

Theorem 17. Let f(z) defined by (2) be in the class UCT (α, β, γ, λ, m).
Then f(z) is starlike of order ρ, 0 5 ρ < 1 in |z| < r2(α, β, γ, ρ), where

r2(α, β, γ, ρ) = inf
n≥2

[
(1− ρ)

(
n(α+ 1)− (α+ β)

) (
γ(n− 1) + 1

)
Ψλ
n(m,µ)

(n− ρ)(1− β)

] 1
n−1

,

with Ψλ
n(m,µ) be defined as in (7). This result is sharp for the function f(z)

given by (11).

Proof. It is sufficient to show that
∣∣∣ zf ′(z)f(z) − 1

∣∣∣ 5 1− ρ, or equivalently

∞∑
n=2

(
n− ρ
1− ρ

)
an|z|n−1 5 1,(27)

for 0 5 ρ < 1, and |z| < r2(α, β, γ, ρ). Proceeding as in Theorem 16, with the
use of Theorem 5, we get the required result. Hence, by Theorem 5, (27) will
be true if(

n− ρ
1− ρ

)
|z|n−1 5

{n(α+ 1)− (α+ β)}{γ(n− 1) + 1}Ψλ
n(m,µ)

1− β
or, if

|z| 5
[
{n(α+ 1)− (α+ β)}{γ(n− 1) + 1}Ψλ

n(m,µ)

(n− ρ)(1− β)

] 1
n−1

, n = 2.(28)

The theorem follows easily from (28). �

Theorem 18. Let f(z) defined by (2) be in the class UCT (α, β, γ, λ,m).
Then f(z) is convex of order ρ, 0 5 ρ < 1 in |z| < r3(α, β, γ, ρ), where

r3(α, β, γ, ρ) = inf
n≥2

[
(1− ρ)

(
n(α+ 1)− (α+ β)

) (
γ(n− 1) + 1

)
Ψλ
n(m,µ)

n(n− ρ)(1− β)

] 1
n−1

,

with Ψλ
n(m,µ) be defined as in (7). This result is sharp for the function f(z)

given by (11).

Proof. It is sufficient to show that
∣∣∣ zf ′′(z)f ′(z)

∣∣∣ 5 1− ρ, or equivalently

∞∑
n=2

(
n(n− ρ)

1− ρ

)
an|z|n−1 5 1,(29)

for 0 5 ρ < 1 and |z| < r3(α, β, γ, ρ). Proceeding as in Theorem 16, we get
the required result. �
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7. INTEGRAL MEANS

In order to find the integral means inequality and to verify the Silverman
Conjuncture[12] for f ∈ UCT (α, β, γ, λ,m) we need the following subordina-
tion result due to Littlewood [9] .

Lemma 19 ([9]). If the functions f(z) and g(z) are analytic in U with
g(z) ≺ f(z), then

(30)

2π∫
0

∣∣∣g(reiθ)
∣∣∣η dθ ≤

2π∫
0

∣∣∣f(reiθ)
∣∣∣η dθ, η > 0, z = reiθ and 0 < r < 1.

Applying Theorem 5 with extremal function given by (11) and Lemma 19,
we prove the following theorem.

Theorem 20. Let η > 0. If f(z) ∈ UCT (α, β, γ, λ,m), and the sequence
{Φ(α, β, γ, n)}∞n=2 is non-decreasing, then for z = reiθ and 0 < r < 1, we have

(31)

2π∫
0

∣∣∣f(reiθ)
∣∣∣η dθ ≤

2π∫
0

∣∣∣f2(reiθ)
∣∣∣η dθ,

wheref2(z) = z − 1−β
(2(α+1)−(α+β) )( γ+1)Ψλ2 (m,µ)

z2, or f2(z) = z − 1−β
Φ(α,β,γ,2)z

2,

and Φ(α, β, γ, n) = [n(α+ 1)− (α+ β)] (γ(n− 1) + 1) Ψλ
n(m,µ).

Proof. Let f(z) of the form (2) and f2(z) = z − 1−β
Φ(α,β,γ,2)z

2. Then we must

show that
2π∫
0

∣∣∣∣∣1−
∞∑
n=2

anz
n−1

∣∣∣∣∣
η

dθ ≤
2π∫
0

∣∣∣∣1− 1− β
Φ(α, β, γ, 2)

z

∣∣∣∣η dθ.

By Lemma 19, it suffices to show that 1−
∞∑
n=2

anz
n−1 ≺ 1− 1−β

Φ(α,β,γ,2)z. Setting

(32) 1−
∞∑
n=2

anz
n−1 = 1− 1− β

Φ(α, β, γ, 2)
w(z).

From (32) and (10), we obtain

|w(z)| =

∣∣∣∣∣
∞∑
n=2

Φ(α, β, γ, n)

1− β
anz

n−1

∣∣∣∣∣ ≤ |z|
∞∑
n=2

Φ(α, β, γ, n)

1− β
an ≤ |z| < 1.

This completes the proof of the Theorem 20. �

Concluding remarks. By suitably specializing the various parameters in-
volved in our theorems, we can state the corresponding results for the new
subclasses defined in our examples and also for many relatively more familiar



12 Subclasses of starlike functions 95

function classes. Further, by choosing α = 0, m = 0 and γ = 0, γ = 1 the re-
sults obtained for the class UCT (α, β, γ, λ, m) yield the results of Silverman
[13], and for m = 0, γ = 0, γ = 1, the results in [14].
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