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ON HARMONIC MAPPINGS LIFTING TO MINIMAL SURFACES

HAKAN METE TASTAN and YASAR POLATOGLU

Abstract. The projection on the base plane of a regular minimal surface S
in R? with isothermal parameters defines a complex-valued univalent harmonic
function f. We obtain distortion theorems for the Weierstrass-Enneper param-
eters and the Gaussian curvature of the minimal surface S, provided that the
corresponding univalent harmonic function f belongs to the class Sf.
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1. INTRODUCTION

Minimal surfaces are most commonly known as which have the minimum
area amongst all other surfaces spanning a given closed curve in R?. Geome-
trically, the definition of a minimal surface is that the mean curvature H is
zero at every point of the surface. If locally one can write the minimal surface
in R? as (x,7, ®(x,y)) the minimal surface equation H = 0 is equivalent to

(1+ @)@y — 28,0, Doy + (1+ ©F)yy = 0.

There exists a choice of isothermal parameters (u,v) € Q C R? so that the
surface X (u,v) = (z(u,v),y(u,v), ®(u,v)) € R3 satisfying the minimal surface
equation is given by

E=|X =X, =G>0, F=<Xu,Xy>=0, ApnX=0

(where A denotes the Laplacian operator). The general solution of such an
equation is called the local Weierstrass-Enneper representation [2].

A complex-valued function f which is harmonic in a simply connected do-
main D C C has the canonical representation f = h 4+ g, where h and g are
analytic in D and ¢(z9) = 0 for some prescribed point zyp € D. According
to a theorem of H. Lewy [1]; f is locally univalent if and only if its Jacobian
(1f:12 = =12 = |K(2)]? = |¢ (2)|?) does not vanish. f is said to be sense-
preserving if its Jacobian is positive. In this case h/(z) does not vanish and

the analytic function w(z) = %, called the second dilatation of f, has the
property |w(z)| < 1 for all z € D. Throughout this paper we will assume that
f is locally univalent sense -preserving, and we call f a harmonic mapping.
A harmonic mapping f = h + g can be lifted locally to a regular minimal
surface given by conformal (or isothermal) parameters if and only if its di-
latation is the square of an analytic function w(z) = ¢?(z) for some analytic

function ¢ with |¢(z)| < 1. Equivalently, the requirement is that any zero
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of w be of even order, unless w = 0 on its domain, so that there is no loss
of generality in supposing that z ranges over the unit disc D, because any
other isothermal representation can be precomposed with a conformal map
from the unit disc D whose existence is guaranteed by the Riemann mapping
theorem. For such a harmonic mapping f = u + iv, the minimal surface has
the Weierstrass-Enneper representation with parameters (u,v,t) given by

u=Re{f(2)} =Re {/OZ(PI(C)(K}?
1) o=t (1)) =Re { [“atcrac

tzlﬁf{ﬂfws@ﬁK},

for z € D with

ou
N /I 2\
pr=h+g —P(1+Q)—*8Z,
2) po = =il —g) = —ip(l - ) = 5.

ot
w3 = —2ipg = 5 cp% = —4w(h’)2 and A =p.

See [1] and [4, p. 176].
The metric of the surface has the form ds = A|dz|, where A = A(z) > 0.
Here, the function A\ takes the form

(3) A= 1|+ 1g'| = W1+ |w]) = [pl (1 + |gl?) -

A general theorem of differential geometry says that if any regular surface
is represented by conformal parameters (or isothermal parameters) so that
its metric has the form ds = A|dz| for some positive function A, then the
Gauss curvature of the surface is K = —A"2A(log A). This quantity K is also
known as the curvature of the metric. In our special case of a minimal surface
associated with a harmonic mapping f = h + g, the formula for curvature
reduces to

dlq'”?
(4) K=—-——f———.
pIP(1 +[ql?)*
Since the underlying harmonic mapping f has dilatation w = % = ¢%® and
h' = p. An equivalent expression is the following
/12
6 K=l

[7'g'|(1+ |w])*
Now we define the following class of harmonic functions [2], which is used
throughout this paper.

Let h(z) = ag + a1z + agz® + --- and g(z) = bg + b1z + byz? + --- be
analytic functions in the open unit disc D = {z € C: |2| < 1}. The class of all



3 On harmonic mappings 187

sense-preserving harmonic functions in D with ag = by = 0 and a1 = 1 will be
denoted by Sy. Thus Sy contains the standard class S of analytic functions.
See [3] and [4].

Let s(z) = z + c2z + 322 + - - - be analytic function in the open unit disc
D. If s(z) satisfies the condition

s'(2)
s(2)
then s(z) is called starlike function in I, and the class of starlike functions in
D is denoted by S*.

Let © be the family of functions ¢(z) which are regular and satisfy the
conditions ¢(0) = 0 and |¢(z)| < 1 for every z € D, and let Q(a), where
a = |by|, be the class of functions w(z) which are analytic in D and satisfy
w(0) = b1 #0, |w(z)| <1 for all z € D. We note that € be the union of all
classes Q(a) whereas a ranges over (0,1).

We denote by Sj; the subclass of Sy consisting of all univalent harmonic
functions whose analytic part is starlike.

(6) Re [z ] >0, (zeD).

2. MAIN RESULTS

LEMMA 1. Let w be an element of Q. Then

(7)

Proof. The inequality (7) is clear for z = 0, whence r = |z| = 0. Now, let
z € D\ {0}, and define b; = ae'? for some # € R. Now we consider the function

o=l ) < 2ET
1+ ar

1—ar

e Yw(z)—a
¢(z) = 1_ae(_igw(z),

This function satisfies the conditions of Schwarz’s lemma. The estimation of
Schwarz’s lemma, |¢(2)| < |z| = r, gives

(8) [o(2)] =
The inequality (8) is equivalent to

a(l —1r?)
(9) -

1 — a?r?
The equality holds in the inequality (9) only for the function

z € D.

e y(2) —a

—if —if
T%(z) S'I":>|e IW(Z)*CL‘ST‘]_*CLQ l(JJ(Z)|.

r(1 —a?)
— 1—a?r?’

e Yuw(z)

0 €¥z+a

== c E D, E R
w(z) =e 1+ ael?z ‘ v
If we use the triangle inequality in the inequality (9), we get
2 2 2
i a(l—r7) i a(l—r%)| _r(l—a?)
o™ w(z)] = 1 — a?r? < el - 1—a?r?2| = 1—a?r?’
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Therefore, we have

2 ' ) 2
~r(l—a%) < Je ()| — a(l —r?) < r(l—a )’
1 —a?r? 1—a?r? 1 —a?r?
r(l1 —a?) |a(l—1r?) _io r(l1 —a?) |a(l—r?)
— < ! <
1 — a?r? 1—a2r? | — e w(z)] < 1 — a?r? 1—a?r?
and this last inequalities are equivalent to
a—r _ig a+r
10 < = < .
(10) IT < fo(a)] = e (e < 2o

Similarly, if we replace a with r in the inequality (8), we finally get

r—a a—+r
11 < < .
(11) l—ar_‘w(z)‘_lﬁ—ar
From the inequalities (10) and (11), we obtain (7). O

COROLLARY 1. Ifw € Qu, then

(1-a)(1—r) 1—ar—|a—r|
12 2 < (1 <
(12) D < - ) < —
and
1—ar+|a—r| (14+a)(1+7)
1 <1 <2 7
(13) oy S1tl@l s —7—
for all |z] =r < 1.
Proof. These inequalities are simple consequences of Lemma 1. ([l

COROLLARY 2. Let f = h+g be an element of Sf;. Then

(1—=7r)a—r| (I1+7r)(a+r)
(1+7)3(1 —ar) (1—rP1l+ar)

Proof. Recall that if the analytic part h of f is starlike, then we have

(14) <1g(2)] <

1—r , 147
mﬁ‘h(zﬂgm-

On the other hand, if we consider Lemma 1 and the definition of the second
dilatation of f, then we can write

(15)

q'(2)
~N(2)

Considering the inequalities (15) and (16) together, we obtain (14). O

la — 7| < a+r

~ 1l4ar

(16)

1—ar
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3. APPLICATIONS TO MINIMAL SURFACES

THEOREM 1. Let the functions ¢ for k = 1,2,3, be the Weierstrass-
Enneper parameters of a reqular minimal surface S and f = (h+9) € Sf
lifts to the minimal surface S, then

(1—a)(1—r)? (1+a)(1+7)?

(17) (I4+ar)(1+7r)3 — S (I4+ar)(1—r)3’
(1—a)(1—r)? (1+a)(1+7)?

(18) (14+ar)(1+7r)3 — < el < (I4+ar)(1—r)3’

and

(19) 4(1 —r)a— 7| < Jpsl? < 4(a+7)(1+7)2

(I—ar)(1+7r)s — (I+ar)(1—r)
Proof. Using the formulas (2) and the Corollary 1. we obtain (17), (18) and
(19). O
THEOREM 2. Let K be the Gaussian curvature of the reqular minimal surface
S and f = (h+7) € S lifts to the minimal surface S, then
(1—ar—la—7r)?(1+7)5(1 —ar)®(1 +a)?
1—ar+ja—r)*A—=r)*Q+ar)la—r|
Proof. Using the Corollary 2. and after the simple calculations we get
(1—7)5(1 + ar) - 1 < (14+7)5(1 — ar)

(20) K| <

(21) A+r2a+r) —|¢dEHE)] = T=—r2a—r1] "’
and
(22) K| = (=) W' (2)]2(1 +7r)°(1 — ar)

g/ (2)H (2)|(1+ lw(z))* — (1 + |w())* (1 =7)*|a—7|
On the other hand , if we use the Schwarz-Pick’s Lemma for the function
w(z) —w(0

o) = L) =wl0)
1 —w(0)w(z)
we obtain

1—|w(=)?)? _ (1 - |wz))?A + w(z)])?

2 / 2 < ( — .
(23) @I < =7 (1—r)2(1+7)?
Considering the inequalities (12), (13), (22) and (23), we obtain (20). O

ExAMPLE 1. Consider the function f(2) = z — 152, z € D. Since Af =

2 . .
ggaé =0, then f is harmonic.

The functions h(z) = z and g(z) = —5.5%, the analytic and co- analytic
parts of f are analytic in D and they satisfy h(0) = g(0) = 0.

Ji(z) = )P - 1d )P =1~ ﬁ > 0 in D, so f is sense-preserving
and univalent.
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Furthermore, the analytic part h(z) = z of f is starlike, so f belongs to
the class Sjj. The second dilatation of f is w(z) = %2 = —(5)% Since
lw(0)| =7 €(0,1) and |w(z)| < 1, in D, so w € Q.

On the other hand w(z) is the square of the analytic function ¢(z) = Qiz in
D. Thus univalent harmonic function f can lift locally to a (regular) minimal
surface.

Now, let find the minimal surface, using by formulas (1), we get p(z) = 1
and ¢(z) = 212. We know that these functions p and ¢ are the Weierstrass-
Enneper parameters of the minimal surface Catenoid.
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