SECOND ORDER DIFFERENTIAL SUBORDINATIONS AND SUPERORDINATIONS USING THE DZIOK-SRIVASTAVA LINEAR OPERATOR

GEORGIA IRINA OROS and GHEORGHE OROS

Abstract. By using the properties of the Dziok-Srivastava linear operator we obtain differential subordinations and superordinations by using functions from class A.

MSC 2010. 30C45, 30A10, 30C80.

Key words. Univalent function, differential subordination, differential super-ordination, Dziok-Srivastava linear operator, analytic function.

1. INTRODUCTION AND PRELIMINARIES

Let U denote the unit disc of the complex plane $U = \{z \in \mathbb{C} : |z| < 1\}$ and $\overline{U} = \{z \in \mathbb{C} : |z| \le 1\}.$

Let $\mathcal{H}(U)$ denote the space of holomorphic functions in U and let

$$A_n = \{ f \in \mathcal{H}(U), \ f(z) = z + a_{n+1} z^{n+1} + \dots, \ z \in U \}$$

with $A_1 = A$.

Let

$$\mathcal{H}[a,n] = \{ f \in \mathcal{H}(U), \ f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \dots, \ z \in U \},$$

 $S = \{ f \in A; \ f \text{ is univalent in } U \}.$

If f and g are analytic functions in U, then we say that f is subordinate to g, written $f \prec g$, if there is a function w analytic in U, with w(0) = 0, |w(z)| < 1, for all $z \in U$ such that f(z) = g[w(z)], for $z \in U$.

If g is univalent, then $f \prec g$ if and only if f(0) = g(0) and $f(U) \subset g(U)$.

The method of differential subordinations (also known as the admissible functions method) was introduced by P.T. Mocanu and S.S. Miller in 1978 [2] and 1981 [3] and developed in [4].

Let Ω and Δ be any sets in \mathbb{C} and let p be an analytic function in the unit disk with p(0) = a and let $\psi(r, s, t; z) : \mathbb{C}^3 \times U \to \mathbb{C}$. The heart of this theory deals with generalizations of the following implication:

(i)
$$\{\psi(p(z), zp'(z), z^2p''(z); z) \mid z \in U\} \subset \Omega$$
 implies $p(U) \subset \Delta$.

DEFINITION 1 ([4, p.16]). Let $\psi : \mathbb{C}^3 \times U \to \mathbb{C}$ and let h be univalent in U. If p is analytic in U and satisfies the (second-order) differential subordination

(ii) $\psi(p(z), zp'(z), z^2p''(z); z) \prec h(z), z \in U$,

then p is called a solution of the differential subordination.

The univalent function q is called a dominant of the solutions of the differential subordination, or more simply a dominant, if $p \prec q$ for all p satisfying

(ii). A dominant \tilde{q} that satisfies $\tilde{q} \prec q$ for all dominants q of (ii) is said to be the best dominant of (ii). (Note that the best dominant is unique up to a rotation of U.)

In [5] the authors introduced the dual problem of the differential subordination which they called differential superordination.

DEFINITION 2 ([5]). Let $f, F \in \mathcal{H}(U)$ and let F be univalent in U. The function F is said to be superordinate to f, or f is subordinate to F, written $f \prec F$, if f(0) = F(0) and $f(U) \subset F(U)$.

Let Ω and Δ be any sets in \mathbb{C} and let p be an analytic function in the unit disc and function $\varphi: \mathbb{C}^3 \times U \to \mathbb{C}$. The heart of this theory deals with generalizations of the following implication:

(j) $\Omega \subset \{\varphi(p(z), zp'(z), z^2p''(z); z) \mid z \in U\}$ implies $\Delta \subset p(U)$.

DEFINITION 3 ([5]). Let $\varphi : \mathbb{C}^3 \times U \to \mathbb{C}$ and let h be analytic in U.

If p and $\varphi(p(z), zp'(z), z^2p''(z); z)$ are univalent in U and satisfy the (second-order) differential superordination

(jj) $h(z) \prec \varphi(p(z), zp'(z), z^2p''(z); z)$

then p is called a solution of the differential superordination.

An analytic function q is called a subordinant of the solution of the differential superordination, or more simply a subordinant if $q \prec p$ for all p satisfying (jj). A univalent subordinant \tilde{q} that satisfies $q \prec \tilde{q}$ for all subordinants q of (jj) is said to be the best subordinant. (Note that the best subordinant is unique up to a rotation of U).

DEFINITION 4 ([5, Definition 2.2b. p. 21]). We denote by Q the set of functions f that are analytic and injective on $\overline{U} \setminus E(f)$, where

$$E(f) = \left\{ \zeta \in \partial U; \lim_{z \to \zeta} f(z) = \infty \right\}$$

and are such that $f'(\zeta) \neq 0$ for $\zeta \in \partial U \setminus E(f)$.

The subclass of Q for which f(0) = a is denoted by Q(a).

DEFINITION 5 ([3, 4, 5, Definition 2.3.a, p. 27]). Let Ω be a set in \mathbb{C} , $q \in Q$ and n be a positive integer. The class of admissible functions $\psi_n[\Omega, q]$, consists of those functions $\psi : \mathbb{C}^3 \times U \to \mathbb{C}$ that satisfy the admissibility condition:

(A)
$$\psi(r, s, t; z) \notin \Omega$$

whenever $r = q(\zeta)$, $s = m\zeta q'(\zeta)$, Re $\left(\frac{t}{s} + 1\right) \ge m\text{Re }\left[\frac{\zeta q''(\zeta)}{q'(\zeta)} + 1\right]$, $z \in U$, $\zeta \in \partial U \setminus E(q)$ and $m \ge n$.

In particular q(0) = 1, $\Omega = \Delta = q(U) = \{w \in \mathbb{C} : \text{Re } w > 0\}$ and we denote the class $\psi_n[\Omega, q]$ by $\psi_n\{1\}$. Condition of admissibility (A) becomes

(A') $\psi(\rho i, \sigma, \mu + \nu i; z) \notin \Omega$, when $\rho, \sigma, \mu, \nu \in \mathbb{R}$, $\sigma \leq -\frac{n}{2}(1 + \rho^2)$, $\sigma + \mu \leq 0$, $z \in U$ and $n \geq 1$.

DEFINITION 6 ([5, Definition 3]). Let Ω be a set in \mathbb{C} and $q \in \mathcal{H}[a,n]$ with $q'(z) \neq 0$. The class of admissible functions $\phi_n[\Omega, q]$, consists of those functions $\varphi: \mathbb{C}^3 \times \overline{U} \to \mathbb{C}$ that satisfy the admissibility condition:

(B)
$$\varphi(r, s, t; \zeta) \in \Omega$$
 whenever $r = q(z)$, $s = \frac{zq'(z)}{m}$, Re $\left(\frac{t}{s} + 1\right) \le \frac{1}{m} \operatorname{Re} \left[\frac{zq''(z)}{q'(z)} + 1\right]$, where $\zeta \in \partial U$, $z \in U$ and $m \ge n \ge 1$. When $n = 1$ we write $\phi_1[\Omega, q]$ as $\phi[\Omega, q]$

In the special case when h is an analytic mapping of U onto $\Omega \neq \mathbb{C}$, we denote this class $\phi_n[h(U), q]$ by $\phi_n[h, q]$

In order to prove the new results we shall use the following lemmas:

LEMMA A ([4, Lemma 2.2.d, p. 24]). Let $q \in Q$ with q(0) = a, and let $p(z) = a + a_n z^n + \dots$ be analytic in U with $p(z) \not\equiv a$ and $n \ge 1$. If p is not subordinate to q, then there exist points $z_0 = r_0 e^{i\theta_0} \in U$ and $\zeta_0 \in \partial U \setminus E(q)$, and an $m \geq n \geq 1$ for which $p(U_{r_0}) \subset q(U)$,

(i)
$$p(z_0) = q(\zeta_0)$$

(ii)
$$z_0 p'(z_0) = m\zeta_0 q'(\zeta_0)$$
 and
(iii) Re $\frac{z_0 p''(z_0)}{p'(z_0)} + 1 \ge m \operatorname{Re} \left[\frac{\zeta_0 q''(\zeta_0)}{q'(\zeta_0)} + 1 \right]$.

We will use the following Lemma A from the theory of differential subordination to determine subordinants of differential superordination.

LEMMA B ([5, Lemma A]). Let $p \in Q(a)$ and let $q(z) = a + a_n z^n + \dots$ be analytic in U with $q(z) \not\equiv a$ and $n \geq 1$. If q is not subordinate to p, then there exist points $z_0 = r_0 e^{i\theta_0} \in U$ and $\zeta_0 \in \partial U \setminus E(p)$, and an $m \ge n \ge 1$ for which $q(U_{r_0}) \subset p(U),$

(i)
$$q(z_0) = p(\zeta_0)$$

(ii) $z_0 q'(z_0) = m\zeta_0 p'(\zeta_0)$ and

(iii) Re
$$\frac{z_0 q''(z_0)}{q'(z_0)} + 1 \ge m \text{Re } \left[\frac{\zeta_0 p''(\zeta_0)}{p'(\zeta_0)} + 1 \right].$$

In [1] the Dziok-Srivastava operator was defined:

(1)
$$H_m^l(\alpha_1, \alpha_2, \dots, \alpha_l; \beta_1, \beta_2, \dots, \beta_m) f(z) = z + \sum_{n=2}^{\infty} \frac{(\alpha_1)_{n-1}(\alpha_2)_{n-1} \dots (\alpha_l)_{n-1}}{(\beta_1)_{n-1}(\beta_2)_{n-1} \dots (\beta_m)_{n-1}} a_n \frac{z^n}{(n-1)!},$$

 $\alpha_i \in \mathbb{C}, i = 1, 2, \dots, l, \beta_j \in \mathbb{C} - \{0, -1, -2, \dots\}, j = 1, 2, \dots, m.$ For simplicity, we write

(2)
$$H_m^l[\alpha_1]f(z) = H_m^l(\alpha_1, \alpha_2, \dots, \alpha_l; \beta_1, \beta_2, \dots, \beta_m)f(z).$$

For this operator we have the property

(3)
$$\alpha_1 H_m^l[\alpha_1 + 1] f(z) = z \{ H_m^l[\alpha_1] f(z) \}' + (\alpha_1 - 1) H_m^l[\alpha_1] f(z).$$

2. MAIN RESULTS

2.1. Differential subordinations in the right half-plane

THEOREM 1. Let $\psi \in \psi_n\{1\}$, $\alpha_1 > 0$, $f \in A$ and let $\frac{H_m^l[\alpha_1]f(z)}{z} \in \mathcal{H}[1,1]$, where $H_m^l[\alpha_1]f(z)$ is the Dziok-Srivastava linear operator given by (1). Let

$$(4) \qquad \psi\left(\frac{H_{m}^{l}[\alpha_{1}]f(z)}{z}, \frac{H_{m}^{l}[\alpha_{1}+1]f(z)}{z}, \frac{H_{m}^{l}[\alpha_{1}+2]f(z)}{z}; z\right) \\ = \frac{H_{m}^{l}[\alpha_{1}]f(z)}{z} + \frac{H_{m}^{l}[\alpha_{1}+1]f(z)}{z} + \frac{H_{m}^{l}[\alpha_{1}+2]f(z)}{z}, \quad z \in U.$$

If

(5)
$$\left\{\psi\left(\frac{H_m^l[\alpha_1]f(z)}{z}, \frac{H_m^l[\alpha_1+1]f(z)}{z}, \frac{H_m^l[\alpha_1+2]f(z)}{z}; z\right)\right\} \subset \Omega,$$

then

$$\frac{H_m^l[\alpha_1]f(z)}{z} \prec q(z), \quad z \in U.$$

Proof. If we let

(6)
$$p(z) = \frac{H_m^l[\alpha_1]f(z)}{z}$$

$$= \frac{z + \sum_{n=2}^{\infty} \frac{(\alpha_1)_{n-1}(\alpha_2)_{n-1} \dots (\alpha_l)_{n-1}}{(\beta_1)_{n-1}(\beta_2)_{n-1} \dots (\beta_m)_{n-1}} \cdot a_n \cdot \frac{z^n}{(n-1)!}}{z}$$

$$= 1 + p_1 z + p_2 z^2 + \dots,$$

then $p \in \mathcal{H}[1,1]$.

Differentiating (6), we obtain

(7)
$$\{H_m^l[\alpha_1]f(z)\}' = p(z) + zp'(z), \quad z \in U.$$

Using (3) and (6) and (7) we have

(8)
$$\frac{H_m^l[\alpha_1]f(z)}{z} = p(z) + \frac{zp'(z)}{\alpha_1},$$

(9)
$$\{H_m^l[\alpha_1 + 1]f(z)\}' = p(z) + \frac{(\alpha_1 + 2)zp'(z)}{\alpha_1} + \frac{z^2p''(z)}{\alpha_1}$$

(10)
$$\frac{H_m^l[\alpha_1+2]f(z)}{z} = \frac{\alpha_1(\alpha_1+1)p(z) + (2\alpha_1+2)zp'(z) + z^2p''(z)}{\alpha_1(\alpha_1+1)}.$$

Using (6), (8) and (10), (5) becomes

(11)
$$\psi\left(\frac{H_m^l[\alpha_1]f(z)}{z}, \frac{H_m^l[\alpha_1+1]f(z)}{z}, \frac{H_m^l[\alpha_1+2]f(z)}{z}; z\right) = r(p(z), zp'(z), z^2p''(z); z) = 3p(z) + \frac{3zp'(z)}{\alpha_1} + \frac{z^2p''(z)}{\alpha_1(\alpha_1+1)}.$$

Then (5) becomes

(12)
$$\{r(p(z), zp'(z), z^2p''(z); z)\} \subset \Omega = \{w \in \mathbb{C} : \text{Re } w > 0\}$$

which is equivalent to

(13) Re
$$r(p(z), zp'(z), z^2p''(z); z) > 0, z \in U.$$

Assume $p(z) \not\prec q(z)$. By Lemma A there exist points $z_0 = r_0 e^{i\theta_0} \in U$ and $\zeta_0 \in \partial U \setminus E(q)$, and $m \geq n \geq 1$ that satisfy (i)-(iii) of Lemma A,

$$p(z_0) = q(\zeta_0) = \rho i$$
, $z_0 p'(z_0) = m\zeta_0 q'(\zeta_0) = \sigma$, $z_0^2 p''(z_0) = \mu + i\nu$.

Using these conditions with $r = q(\zeta_0) = \rho i$, $\sigma = m\zeta_0 q'(\zeta_0)$, $t = \mu + i\nu$, $\rho, \sigma, \mu, \nu \in \mathbb{R}$ and $z = z_0$ in Definition 5, we obtain

Re
$$r(p(z_0), z_0 p'(z_0), z_0^2 p''(z_0); z_0) = \text{Re } r(\rho i, \sigma, \mu + i\nu; z_0)$$

$$= \text{Re } \left[3\rho i + \frac{3\sigma}{\alpha_1} + \frac{\mu + i\nu}{\alpha_1(\alpha_1 + 1)} \right] = \frac{3\sigma}{\alpha_1} + \frac{\mu}{\alpha_1(\alpha_1 + 1)} \le \frac{3\sigma}{\alpha_1} - \frac{\sigma}{\alpha_1(\alpha_1 + 1)}$$

$$= \frac{\sigma(3\alpha_1 + 3 - 1)}{\alpha_1(\alpha_1 + 1)} \le -\frac{1}{2}(1 + \rho^2) \cdot \frac{3\alpha_1 + 2}{\alpha_1(\alpha_1 + 1)} < 0.$$

Since this contradicts (13) we must have
$$p(z) = \frac{H_m^l[\alpha_1]f(z)}{z} \prec q(z)$$
.

REMARK 1. Upon examining the proof of Theorem 1, it is easy to see that the theorem also holds if condition (5) is replaced by

(14)
$$\left\{ \psi \left(\frac{H_m^l[\alpha_1] f(w(z))}{w(z)}, \frac{H_m^l[\alpha_1 + 1] f(w(z))}{w(z)}, \frac{H_m^l[\alpha_1 + 2] f(w(z))}{w(z)}; w(z) \right) \right\} \subset \Omega,$$

where w(z) is any function mapping U into U.

We next consider the special situation when $\Omega = \{w \in \mathbb{C} : \text{Re } w > 0\}$ is a simply connected domain. In this case $\Omega = h(U)$, where h is a conformal mapping of U onto Ω and the class $\Psi_n[h(U),q]$ is written as $\Psi_n[h,q]$. The following result is an immediate consequence of Theorem 1.

COROLLARY 1. Let $\psi \in \Psi_n[h,q]$ with q(0) = 1, $\alpha_1 > 0$. If

$$\frac{H_m^l[\alpha_1]f(z)}{z} \in \mathcal{H}[1,1],$$

$$\psi\left(\frac{H_m^l[\alpha_1]f(z)}{z}, \frac{H_m^l[\alpha_1+1]f(z)}{z}, \frac{H_m^l[\alpha_1+2]f(z)}{z}; z\right) \text{ is analytic in } U, \text{ and}$$

(15)
$$\psi\left(\frac{H_m^l[\alpha_1]f(z)}{z}, \frac{H_m^l[\alpha_1+1]f(z)}{z}, \frac{H_m^l[\alpha_1+2]f(z)}{z}; z\right) \prec h(z),$$

then

$$\frac{H_m^l[\alpha_1]f(z)}{z} \prec q(z), \quad z \in U.$$

Example 1. Let

$$h(z) = \frac{1-z}{1+z}, \quad h(U) = \{w \in \mathbb{C} : \text{Re } w > 0\} = \Omega.$$

If
$$\psi\left(\frac{H_m^l[\alpha_1]f(z)}{z}, \frac{H_m^l[\alpha_1+1]f(z)}{z}, \frac{H_m^l[\alpha_1+2]f(z)}{z}\right) \prec \frac{1-z}{1+z}$$
, then $\frac{H_m^l[\alpha_1]f(z)}{z} \prec q(z), z \in U$, i.e. $1+p_1z+p_2z^2+\cdots \prec q(z), z \in U$.

This result can be extended to those cases in which the behavior of q on the boundary of U is unknown by the following theorem.

THEOREM 2. Let h and q be univalent in U, with q(0) = 1, and set $q_{\rho}(z) = q(\rho z)$ and $h_{\rho}(z) = h(\rho z)$. Let $\Psi : \mathbb{C}^3 \times U \to \mathbb{C}$ satisfy one of the following conditions:

(i) $\psi \in \Psi_n[h, q_\rho]$ for some $\rho \in (0, 1)$, or

(ii) there exists $\rho_0 \in (0,1)$ such that $\psi \in \Psi_n[h_\rho, q_\rho]$, for all $\rho \in (\rho_0, 1)$.

If
$$\frac{H_m^l[\alpha_1]f(z)}{z} \in \mathcal{H}[1,1],$$

$$\psi\left(\frac{H_m^l[\alpha_1]f(z)}{z}, \frac{H_m^l[\alpha_1+1]f(z)}{z}, \frac{H_m^l[\alpha_1+2]f(z)}{z}; z\right)$$

is analytic in U, and

(16)
$$\psi\left(\frac{H_m^l[\alpha_1]f(z)}{z}, \frac{H_m^l[\alpha_1+1]f(z)}{z}, \frac{H_m^l[\alpha_1+2]f(z)}{z}; z\right) \prec h(z),$$

then

$$\frac{H_m^l[\alpha_1]f(z)}{z} \prec q(z), \quad z \in U.$$

Proof. Case (i). By applying Theorem 1 we obtain $\frac{H_m^l[\alpha_1]f(z)}{z} \prec q_\rho(z)$.

Since $q_{\rho}(z) \prec q(z)$, we deduce $\frac{H_m^l[\alpha_1]f(z)}{z} \prec q(z)$, $z \in U$.

Case (ii). If we let

$$\frac{H_m^l[\alpha_1]f(\rho z)}{\rho z} = p(\rho z) = p_\rho(z),$$

then

$$\psi(p_{\rho}(z), zp'_{\rho}(z), z^{2}p''_{\rho}(z); \rho z) = \psi(p(\rho z), \rho zp'(\rho z), \rho^{2}z^{2}p''(\rho z); \rho z) \in h_{\rho}(U).$$

By using Theorem 1 and the comment associated with (14), with $w(z) = \rho z$, we obtain $p_{\rho}(z) \prec q_{\rho}(z)$, for $\rho \in (\rho_0, 1)$.

By letting
$$\rho \to 1$$
 we obtain $\frac{H_m^l[\alpha_1]f(z)}{z} \prec q(z), \quad z \in U.$

The next two theorems yield best dominants of the differential subordination (16).

THEOREM 3. Let h be univalent in U and let $\psi : \mathbb{C}^3 \times U \to \mathbb{C}$. Suppose that the differential equation

(17)
$$\psi(q(z), zq'(z), z^2q''(z); z) = h(z),$$

has a solution q, with q(0) = 1, and one of the following conditions is satisfied:

- (i) $q \in Q$ and $\psi \in \Psi[h, q]$.
- (ii) q is univalent in U and $\psi \in \Psi[h, q_{\rho}]$, for some $\rho \in (0, 1)$, or
- (iii) q is univalent in U and there exists $\rho_0 \in (0,1)$ such that $\psi \in \Psi[h_\rho, q_\rho]$ for all $\rho \in (\rho_0, 1)$.

$$\frac{H_m^l[\alpha_1]f(z)}{z} \in \mathcal{H}[1,1]$$

and $\psi\left(\frac{H_m^l[\alpha_1]f(z)}{z}, \frac{H_m^l[\alpha_1+1]f(z)}{z}, \frac{H_m^l[\alpha_1+2]f(z)}{z}; z\right)$ is analytic in U,

(18)
$$\psi\left(\frac{H_m^l[\alpha_1]f(z)}{z}, \frac{H_m^l[\alpha_1+1]f(z)}{z}, \frac{H_m^l[\alpha_1+2]f(z)}{z}; z\right) \prec h(z),$$

then

$$\frac{H_m^l[\alpha_1]f(z)}{z} \prec q(z),$$

and q is best dominant.

Proof. By applying Corollary 1 and Theorem 2 we deduce that q is a dominant of (18). Since q satisfies (17) it is a solution of (18) and therefore q will be dominated by all dominants of (18). Hence q will be the best dominant of (18).

2.2. Differential superordinations in the right half-plane

THEOREM 4. Let $\Omega \subset \{w \in \mathbb{C} : \text{Re } w > 0\}$, $\alpha_1 > 0$ let $q \in \mathcal{H}[1, n]$ and let $\varphi \in \phi_n[\Omega, q]$. If $\frac{H_m^l[\alpha_1]f(z)}{z} \in Q(1)$ and

(19)
$$\varphi\left(\frac{H_{m}^{l}[\alpha_{1}]f(z)}{z}, \frac{H_{m}^{l}[\alpha_{1}+1]f(z)}{z}, \frac{H_{m}^{l}[\alpha_{1}+2]f(z)}{z}; z\right) = \frac{H_{m}^{l}[\alpha_{1}]f(z)}{z} + \frac{H_{m}^{l}[\alpha_{1}+1]f(z)}{z} + \frac{H_{m}^{l}[\alpha_{1}+2]f(z)}{z}$$

is univalent in U, then

(20)
$$\Omega \subset \left\{ \varphi \left(\frac{H_m^l[\alpha_1]f(z)}{z}, \frac{H_m^l[\alpha_1+1]f(z)}{z}, \frac{H_m^l[\alpha_1+2]f(z)}{z}; z \right) \right\}$$

implies

$$q(z) \prec \frac{H_m^l[\alpha_1]f(z)}{z}, \quad z \in U,$$

where $H_m^l[\alpha_1]f(z)$ is given by (1).

Proof. Using (6), (8), (10), we have

(21)
$$\varphi\left(\frac{H_m^l[\alpha_1]f(z)}{z}, \frac{H_m^l[\alpha_1+1]f(z)}{z}, \frac{H_m^l[\alpha_1+2]f(z)}{z}; z\right) = v(p(z), zp'(z), z^2p''(z); z) = 3p(z) + \frac{3zp'(z)}{\alpha_1} + \frac{z^2p''(z)}{\alpha_1(\alpha_1+1)}.$$

Then (20) becomes

(22)
$$\Omega \subset v(p(z), zp'(z), z^2p''(z); z), \quad z \in U.$$

Assume

$$q(z) \not\prec p(z) = \frac{H_m^l[\alpha_1]f(z)}{z}, \quad p \in \mathcal{H}[1,1].$$

By Lemma B there exist points $z_0 = r_0 e^{i\theta_0} \in U$ and $\zeta_0 \in \partial U \setminus E(q)$ and $m \ge n \ge 1$, that satisfy conditions (i)-(iii) of Lemma B. Using these conditions with $r = q(z_0) = p(\zeta_0)$, $s = z_0 q'(z_0) = m\zeta_0 p'(\zeta_0)$, $t = \zeta_0^2 p''(\zeta_0)$ and $\zeta = \zeta_0$ in Definition 6, we obtain

(23)
$$\varphi\left(\frac{H_m^l[\alpha_1]f(z_0)}{z_0}, \frac{H_m^l[\alpha_1+1]f(z_0)}{z_0}, \frac{H_m^l[\alpha_1+2]f(z_0)}{z_0}; \zeta_0\right) = v(p(\zeta_0), \zeta_0 p'(\zeta_0), \zeta_0^2 p''(\zeta_0); \zeta_0) \in \Omega.$$

Since (23) contradicts (22), we must have
$$q(z) \prec \frac{H_m^l[\alpha_1]f(z)}{z}, \quad z \in U.$$

We next consider the special situation when h is analytic in U and $h(U) = \Omega \neq \mathbb{C}$. In this case, the class $\phi_n[h(U), q]$ is written as $\phi_n[h, q]$ and the following result is an immediate consequence of Theorem 4.

Theorem 5. Let $q \in \mathcal{H}[1,n]$, h be analytic in U, $\alpha_1 > 0$ and $\varphi \in \phi_n[h,q]$. If

$$\frac{H_m^l[\alpha_1]f(z)}{z} \in Q(1),$$

and $\varphi\left(\frac{H_m^l[\alpha_1]f(z)}{z}, \frac{H_m^l[\alpha_1+1]f(z)}{z}, \frac{H_m^l[\alpha_1+2]f(z)}{z}; z\right)$ is univalent in U,

(24)
$$h(z) \prec \varphi\left(\frac{H_m^l[\alpha_1]f(z)}{z}, \frac{H_m^l[\alpha_1+1]f(z)}{z}, \frac{H_m^l[\alpha_1+2]f(z)}{z}; z\right)$$

implies

$$q(z) \prec \frac{H_m^l[\alpha_1]f(z)}{z}, \quad z \in U,$$

where $H_m^l[\alpha_1]f(z)$ is given by (1).

Example 2. Let

$$h(z) = \frac{1 + (1 - 2\alpha)z}{1 - z}, \quad 0 \le \alpha < 1, \ h(U) = \{w \in \mathbb{C}; \ \text{Re} \ w > \alpha\}.$$

From Theorem 5, if

$$\frac{1+(1-2\alpha)z}{1-z} \prec \varphi\left(\frac{H_m^l[\alpha_1]f(z)}{z}, \frac{H_m^l[\alpha_1+1]f(z)}{z}, \frac{H_m^l[\alpha_1+2]f(z)}{z}; z\right),$$

then
$$q(z) \prec \frac{H_m^l[\alpha_1]f(z)}{z} = 1 + p_1 z + p_2 z^2 + \dots, z \in U.$$

Theorem 4 and Theorem 5 can only be used to obtain subordinants of a differential superordination of the form (20) and (24). The following theorem proves the existence of the best subordinant of (24) for certain φ and also provides a method for finding the best subordinant.

THEOREM 6. Let h be analytic in U and let $\varphi : \mathbb{C}^3 \times U \to \mathbb{C}$. Suppose that the differential equation

(25)
$$\varphi(q(z), zq'(z); z^2q''(z); z) = h(z)$$

has a solution $q \in Q(1)$. If $\varphi \in \phi[h,q]$, $\frac{H_m^l[\alpha_1]f(z)}{z} \in Q(1)$ and $\varphi\left(\frac{H_m^l[\alpha_1]f(z)}{z}, \frac{H_m^l[\alpha_1+1]f(z)}{z}, \frac{H_m^l[\alpha_1+2]f(z)}{z}; z\right)$ is univalent in U, then

(26)
$$h(z) \prec \varphi\left(\frac{H_m^l[\alpha_1]f(z)}{z}, \frac{H_m^l[\alpha_1+1]f(z)}{z}, \frac{H_m^l[\alpha_1+2]f(z)}{z}; z\right)$$

implies

$$q(z) \prec \frac{H_m^l[\alpha_1]f(z)}{z}, \quad z \in U,$$

where $H_m^l[\alpha_1]f(z)$ is given by (1) and q is the best dominant.

Proof. Since $\varphi \in \phi[h, q]$, by applying Theorem 5 we deduce that q is a subordinant of (26). Since q also satisfies (25) it is also a solution of the differential equation (26) and therefore all subordinants of (26) will be subordinate to q. Hence q will be the best subordinant of (26).

REMARK. The conclusion of the theorem can be written in the symmetric form $\varphi(q(z), zq'(z), z^2q''(z); z) \prec \varphi(q(z), zq'(z), z^2q''(z); z)$ implies $q(z) \prec p(z)$, $z \in U$.

Example 3. If $\alpha_1 = 1$, m = 0, l = 1 we have

$$H_0^1[1]f(z) = f(z), \quad H_0^1[2]f(z) = zf'(z), \quad H_0^1[3]f(z) = \frac{z^2f''(z)}{2} + zf'(z).$$

Then

$$\frac{H_0^1[1]f(z)}{z} = \frac{f(z)}{z}, \quad \frac{H_0^1[2]f(z)}{z} = f'(z), \quad \frac{H_0^1[3]f(z)}{z} = \frac{zf''(z)}{2} + f'(z)$$

and

$$\varphi\left(\frac{H_0^1[1]f(z)}{z}, \frac{H_0^1[2]f(z)}{z}, \frac{H_0^1[3]f(z)}{z}; z\right) = \frac{f(z)}{z} + 2f'(z) + \frac{zf''(z)}{2}.$$

Let $z = \cos \alpha + i \sin \alpha$, q(z) = 1 + z from which we deduce

$$q(\cos \alpha + i \sin \alpha) = 1 + \cos \alpha + i \sin \alpha, \quad q(U) \subset \{w \in \mathbb{C}; \text{ Re } w > 0\}$$

and

$$h(z) = \frac{q(z)}{z} + 2q'(z) + \frac{zq''(z)}{z} = \frac{1+z}{z} + 2 = \frac{1+3z}{z},$$

$$h(\cos \alpha + i \sin \alpha) = \cos \alpha + 3 - i \sin \alpha,$$

$$h(U) = \{ w \in \mathbb{C}; \text{ Re } w > 3 + \cos \alpha \} \subset \{ w \in \mathbb{C}; \text{ Re } w > 0 \}.$$

If
$$\frac{1+3z}{z} < \frac{f(z)}{2} + 2f'(z) + \frac{zf''(z)}{z}$$
, then we deduce $q(z) = 1 + z < 1 + a_2z + a_3z^2 + \dots, \quad z \in U.$

REFERENCES

- [1] DZIOK, J. and SRIVASTAVA, H.M., Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput., 103 (1999), 1–13.
- [2] MILLER, S.S. and MOCANU, P.T., Second order differential inequalities in the complex plane, J. Math. Anal. Appl., 65 (1978), 298–305.
- [3] MILLER, S.S. and MOCANU, P.T., Differential subordinations and univalent functions, Michigan Math. J., 28 (1981), 157–171.
- [4] MILLER, S.S. and MOCANU, P.T., Differential subordinations. Theory and applications, Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 2000.
- [5] MILLER, S.S. and MOCANU, P.T., Subordinants of differential superordinations, Complex Var. Theory Appl., 48 (10) (2003), 815–826.

University of Oradea Department of Mathematics Str. Universității Nr. 1 410087 Oradea, Romania

 $E ext{-}mail: ext{georgia_oros_ro@yahoo.co.uk}$