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INTEGRAL INEQUALITIES
INVOLVING MAXIMA OF THE UNKNOWN FUNCTION

SNEZHANA G. HRISTOVA

Abstract. Some new nonlinear integral inequalities that involve the maximum
of the unknown scalar function of one variable are solved. The considered in-
equalities are generalizations of the classical nonlinear integral inequality of Bi-
hari. The importance of these integral inequalities is given by their wide appli-
cations in qualitative investigations of differential equations with “maxima” and
it is illustrated by some direct applications.
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1. INTRODUCTION

The integral inequalities that provide explicit bounds for unknown functions
play an important role in the development of the theory of differential and
integral equations. For instance, the explicit bounds given by the well-known
Gronwall—Bellman inequality and its nonlinear generalization due to Bihari
(2], [3], 5], [7]) are used to a considerable extent in the literature. However,
in the situations of qualitative investigations of differential equations with
“maxima” ([1], [4], [6], [8]) totally different types of integral inequalities are
required.

The main purpose of this paper is to solve some nonlinear Bihari-like in-
equalities that can be used to study the qualitative behavior of the solutions
of differential equations with “maxima”. Some applications of the obtained
results are also given.

2. MAIN RESULTS
Let tg, T be fixed points such that 0 <ty < T < cc.

THEOREM 1. Let the following conditions be satisfied:

1) The function o € C([to, T),Ry) is nondecreasing and a(t) < t.

2) Assume that p, ¢ € C([to,T),Ry) and a, b € C([a(ty),T),Ry).

3) The function ¢ € C([to — h,T),Ry) is such that ¢(t) > k,
k = const > 0.

4) The function g € C(Ry, (0,00)) is increasing.

where
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2 Integral inequalities 93

5) The function u € C([a(tg) — h,T),Ry) satisfies the inequalities

u(t) < k + / 0 (u(6)) +atoga pmax u(@))]as

£€[s—h,s]

+/;(t) [a(s)g<u(s)>+b(s)g< max u(g)ﬂds, for t € [to,T),

(to) £€[s_h’s]

(2) u(t) < ¢(t), for t e [to— h,to], where h = const > 0.
Then the following inequality holds for every to <t <t

3)  u(t) <Gt (G(k)+ /t t [p(s)+q(s)]ds+ / " [a(s)+b(s)}ds>,

0 a(to)

where G~ is the inverse function of

(4) G(r) = / gﬁ) ro > 0,

and

t1 = sup {7’ >ty : G(k)+ /t [p(s) + q(s)]ds

to

a(to)
Proof. Define the function z: [a(tg) — h,T) — Ry by
k, ift € [a(to) - h,to]

A(t) = k+ ftz [p(s)g (u(s)) + q(s)g(maxfe[s—h,s] u }d
+ ffé?) [a(S)g (u(s)) +b(s)g (maxfe[s hys] U( )] ds, if t € [to,T).
< 2

(t) holds for t €

+/Oé(t) [a(S)‘f'b( )}ds € Dom (G™') for t€ [to, ]}

The function z is nondecreasing and the inequality wu(t)
[a(tg) — h,T). Note that

max z(s) = z(t) for t € [a(ty),T).
s€t—h,t]

Inequality (1) and the definition of the function z yield for ¢ € [to,T)

2(t) <k + /t: [P(3)9<Z(5)> + q(5)9<561[151§;§7512(£)>]d8
B [ (o) + o s =)

<k+ /tt [p(s) + q(s)]g(z(s))ds + /a(t) [a(s) + b(s)}g(z(s))ds.

0 a(to)
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After differentiation we get from inequality (5)
(=)' < [p(t) + a(t)] 9 (1))
(6) + [a(a(®) + b(a(®)] g (2(a(1) ) (a)’
< o) o) + a0 + (a(a(9) + b{a(0) ) (a(0) |

Relations (4) and (6) imply

(7) %G(z(ﬂ) — g(ézg < p(t) +q(t) + (a(a(t)) + b(a(t))) (1)),

We integrate inequality (7) from tg to t for ¢ € [tg,T'), change the variable
n = «(s) and we obtain

®) G<z(t)) < Glk) + /t [p(n) + q(n)]dn + /“(t)

to a(to)

[a(n) + b(n)] dn.

Since G~! is an increasing function, we obtain from (8) and u(t) < z(t) the
required inequality (3). O

REMARK 2. If h = 0 and «(t) = ¢, the statement of Theorem 1 reduces to
the classical Bihari inequality.

If the constant k£ on the right-hand side of inequality (1) is replaced by a
function, we will obtain a bound for u(t), using the class of functions defined
below.

DEFINITION 3. We say that a function g € C(Ry,Ry) is from the class Q
if the following conditions are satisfied:

(i) g is a nondecreasing function;

(ii) g(x) > 0 for z > 0;

(iii) g(tz) > tg(x) for 0 <t <1, x > 0;
(iv) g(=) +9(y) > g(z +y) for z,y > 0;
v) f1oo % =00

REMARK 4. Note that the functions f(z) = v/ and g(z) = x are from the
class ).

THEOREM 5. Let the following conditions be satisfied:

1) The function a € C([to, T),Ry) is nondecreasing and a(t) < t.
2) Assume that p, q € C([to,T),R4) and a, b € C([a(ty),T),Ry).
3) Let k€ C([to— h,T),Ry).

4) Let g € C(Ry,Ry4) and g € Q.
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5) The function u € C([a(tg) — h,T),Ry) satisfies the inequalities

) < b0+ [ [p(o)9(u6)) +atelo( mas_ute))] as
(9) o) |

n /a N |:a(s)g(u(s)> +b(s)g<££§i$} u(g)ﬂds for t € [to, T),

(10) u(t) < k(t) fort € [to — h,to], where h = const > 0.
Then the following inequality holds for every tg <t < to

alt)
|

(11) u(t) < k(t)+e(t)G! (G(1)+ /t t [p(s)+q(s)}ds+ /a a(s)—l—b(s)]ds),

(to)

where e: [ty, T) — Ry is defined by

() =1+ / 90 (k69)) + ateho _max_1©)) s

£€[s—h,s]
. /tomax (a(t):to) [a(s)g(k(s)) —i—b(s)g(ger[ilais]k({))}ds,

G~ is the inverse of the function G defined by equality (4), and

(12)

tgzsup{tho : G(1)+/t [p(s)+q(s)}ds
(13) .

[l et e )

Proof. Define the function z: [a(ty) — h,T) — Ry by

u(t), it ¢ € [al(to) — ks to]
= ] I [P0 (9) + ate)a mareer g u(©))|as

+ fo‘j‘(g’;)) [a(s)g (u(s)) + b(s)g<max§e[s_h’s] u(f))} ds, if t € (to,T).
From (9) and the definition of z(¢) we have for ¢ € [ty,T)

(14) u(t) < k(t) + 2(t).
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Let t € [tg,T) be such that «a(t) > to. Inequality (14), the definition of z(t),
and condition 4 of Theorem 5 imply that

[ [atra(ut9) + seia (s ute))
< /;;0) a(S)g(z(S)) + b(S)g(ser[ga;;s] z(f))}ds

+ /t :(t) [a(s)g(k(s) +2(5))

+b(s)g ( JJnax k(€) + JJnax Z(£)>] ds

< /tomax(a(t)’“’) a0 (k) + 6630 max k) |as

S€[s—h,s]

+ /a Z(:)) [a(s)g(z(s)) 4 b(s)g<3£aﬁ] z({))] ds.

Let t € [to, T) be such that «(t) < tg. Then, using the definition of z(t), we

(15)

_ /tomax(a(t)’m) [a(s)g(k‘(s)) + b(s)g<s£g<7s] k(f))] ds

+ /a (::; [a(s)g(z(s)) + b(s)g<8€r§a§§] z(é))] ds.

By the definition of z(¢) and by (10), (15), (16) we obtain that

get
/a (t(t)) [a(8)9<u(8)> +b(s)g ( max u<g)>] 0s
P bt

(17) R /t: {p(s)g(z(sn tals)s (selﬁii‘id Z(Oﬂ &

. /aa(w [a(5)9<z(8)) —l—b(s)g( max z(g)>]ds, for ¢ € [to, T),

(to) §€[s—h,s}

(18) z(t) < k(t), for t € [ty — h,to),

where the function e is defined by (12). Note that the function e is nonde-
creasing on [tg,T) and that e(tg) = 1.
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From (17), (18), condition 4 of Theorem 5, and ?lt) < 1 we obtain for
t € [to,T') the inequality

=1 [, () oo (B o

Lo [ (G5 (==

The monotonicity of e yields for ¢ € [tp,T") and s € [a(to), t] the relations
maXee(s—h,s) 2(§) _ maxee

: = max () max @
(20) e(?) = &(s = I A S e E )

(19)

+

T
=
S,
IS
—
I
~—
I

where the continuous and nondecreasing function é : [«(tg) — h,T) — Ry is
defined by

é(t) = e(t), forte [ty,T),
"~ elto), fort e [afto) — h,to).

From (19) and (20) it follows that for ¢ € [tg,T") the inequality

iy =, o (G5 - e 56

o LG5 o, 56
holds.

Define now the function u;: [a(ty) — h,T) — R4 by wui(t) = %, and
denote the right-hand side of inequality (21) by z; : [to,T") — Ry. Note that
the function z; is increasing, zi(tp) = 1, and for t € [tp,T) the inequality

u1(t) < z1(t) holds. Therefore,

(21)

a(t)

@) 20 <1+ [ [ +46)statonas + [

to a(to)

[a(s) + b(s)] 921 (s))ds.
After differentiation we obtain from (22)

(21(8)' < [p) + a9 (21(1)
+ [aa@®) + ba®) g (=1 (a(t) (1) "

Inequality (23) and condition 1 of Theorem 5 yield

(23)

@) () < o(210) [p0) + 60 + (ala) + 4a) ) (@) |
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Relations (4) and (24) imply

() ,
——— <p(t) +q(t) + { ala(t)) + bla(t)) ) (b)) -
AT ( )a(o)

Integrating inequality (25) from ¢y to ¢, we get for ¢ € [tp,T') the inequality:

G(zl(t)) <o)+ / t [p(s) + q(s)}ds

to

25)  Sa(a) =

(26) + [ [atats) + blats))] as))'as

to

<G(1) +/t [p(n) +q(n)]dn+/

to a(to)

" [a(n) + b(n)] dn.

Since G~! is an increasing function, we obtain from (26) and wui(t) < z1(¢)
that for t € [tg,T") the inequality

on 2o G—1<G(l)+ / t [p(s)+q(s>}ds+ / " [a(s)+b(s)]ds>

(t) to alto)
holds. The inequalities (14), (27), and the definition of é(¢) imply (11). O

>

In the nonlinear case, when the unknown function is defined with the aid
of a power, the following result is valid.

THEOREM 6. Let the following conditions be satisfied:
1) The function a € C([to, T),Ry) is nondecreasing and a(t) < t.
2) Assume that p, q € C([to,T),R+) and a, b € C([a(ty),T),Ry).
3) Let ¢ € C([to — h,to),Ry).
4) The function k € C([ty,T), (0,00)) is nondecreasing and the inequality
M = maxe(yg—p1o) (5) = {/k(to) holds.
5) Let g € C(Ry,Ry) and g € Q.
6) The function u € C([a(ty) — h,T),Ry) satisfies the inequalities

Gz [ onta) s g )

a(t)

+/ [a(s)g(u(s)) + b(s)g( max u(f))]ds fort € [to,T),
a(to) £€[s—h,s]

(29) wu(t) < P(t) for t € [to— h,to], where h = const >0, n = const > 1.

Then the following inequality holds for every ty <t < t3

@) ult) < D+t E(k0) T+ 67 (60)+ a0+ i) |
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where
sty =1+ [ [o0619(09) + a0 e vie))]as
(31) max(a(®)to) ’
f ol (w(5)) s + 0(5)g om0 [
@ a0 =1 [ (k) T ae) e (k0) 7 as
@) mo- [ (()) ) (K) ™ +56) e (K(f))l"n]ds,

[ k), telto,T) [ WVE@D), te(to,T
K(t)_{k(to)a tG[O?(to)Jo% 1/1(75)—{M7() teft(?—;hto],

G~ is the inverse of the function G defined by (4), and
t3 = sup {T : G(1) + Ai(t) + B1(t) € Dom (G™') fort e [tg,T]}.

Proof. Define the function z: [a(tg) — h,T) — Ry by
u(t), if t € [a(ty) — h, to)
= 1 G (1 [019(u9) + o) (msets-ng ) s
+ f;((g) [a(s)g (u(s)) + b(s)g(max&[s_mﬂ u(§)>]ds>, if t € [to,T).

From (28) and the definition of z(t) we get for t € [to,T)

(u(t))n < k(t) <1 +n "cht()t)>

or, equivalently,

u(t) < k(D) <1+n () )

Vk()

Applying Bernoulli’s inequality (1 4+ z)® < 1 + ax, where 0 < a < 1 and
—1 < x, we observe that

(34) u(t) < V&) <1+ jggﬂ) = V() +2(t) = p(t)+2(8), if t € [to, T),

and

(85)  ult) < 6(t) < B(t) + 2(t) = w(t) + 2(1), it € [to— h,to].
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Therefore,

(36) (e ]U(f) < cnax }1/1(5) + gelfﬁf,s}z(f)’ s € [to, T).

Let t € [tg,T) be such that a(t) > tg. Then we get from (34) and (35)

[ [0 <fsﬁaﬁsﬂ<@)]ds
“L.. [ (5 2,70 o
[

+ [ s)g 1/1
(37) fo
T b(s)g ( e 0(O)+ z(f))} s

= [ atsra(v00) +o60r0 (e vie))as
v f (()) a0l (+(0)) + ool ([ max_+()) |as.

Let t € [tg,T') be such that a(t) < to. The definition of z(¢) and the inequalities
(34), (35) imply then that

/a (:)) [a(s)g(u(s))—l—b(s)g( max u(€) ]ds

T o e g
Y

(38)

v (()) (ol (+(0)) + ool (s +(6)) .

It follows from the definition of z(¢) and the inequalities (37), (38) that

<y (emf) # [ [pera(s0) + ato( mox <16

n(k;(t))T
)

+ /C::) [a(s)f}(z(s)) +¥es ( ecloh Z(£)>] dS)
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It follows that

n
alo)(ke) o max x©)]as
(39) L fa® 1-n
w0 (10) T oe00)
+b(s) (K(S)) ng<€€1£ais] z(f))] ds, if t € [to, T),
(40) z(t) < ¢(t), if t € [to — h,to].
According to Theorem 5, we get from inequalities (39), (40) that

(a1) Awgq@{;§3+a*@m»wmw+3w0}

where A; and Bj are defined by (32) and (33), respectively. From (34) and
(41) we finally obtain the required inequality (30). O

3. APPLICATIONS

We will apply some of the previously obtained results to the following system
of differential equations with “maximum”

/
(42) x' = f(t, x(t),se[g(ltz)iﬁ(t)]x(s)), for t > to,
with initial condition
(43) x(t) = ¢(t), for t € [to — h, to],
where z takes values in R", ¢: [tog — h,tg] — R", f: [0,00) x R" x R®” — R",
and h > 0 is a constant.
THEOREM 7 (Bounds). Let the following conditions be satisfied:

1) The functions a, 3 € CY([tp, <), Ry) are so that « is nondecreasing,
B(t) < a(t) < t, and there exists a constant h > 0 such that 0 <
a(t) = B(t) < h fort > to.

2) The function f € C([tg,00) x R™ x R" R™) satisfies for t > to and
xz,y € R™ the condition

7t =, v)|| < POV + @@/,

where P, B € C([ty,00),R).

3) Let p € C([to — h,to], Ry).

4) The function x(-;tg, ) is a solution of the initial value problem (42),
(43), defined fort > to — h.
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Then the solution x(-;tg, @) satisfies for t > to the inequality

2
(44) |[z(t;to, )|| < 5 ( VI le(to)] +/ ds> .

Proof. The function x = z(+;to, ) satisfies the integral equation

t
z(t) = p(t —i—/ s, z(s), max z(s))ds, for t > g,
O =lto)+ | £(s o(0), e a(s)) 0

with
z(t) = @(t), for t € [tg — h, to].

Then we obtain the following relations for the norm of the vector x(t)

Hx(t)H < H(p(to)H —1—/; f(s, z(s), max )}x(s))‘

s€[B(t),a(t

< [|e(to)|| + / (P(s) |[2:(s)]|

(45) SCON[ I H)ds

< [|o(to)|| + / P(s)y/|[2(s)]|ds

ds

t
X i Il o £t

and
(46) =@ = [le@Il;
Put u(t) = Hx(t)” for t € [to — h,00). Then we get for ¢t > 1

(47)  u(t) < Hga(to)H—i-/t P(S)\/go(s)ds—i—/t / én(tax

Changing the variable s = a~1(n) in the second integral of (47) and using
the inequality maxec( (), a(t) (§) < MaXee(a(t)—h, a(r) W(E) (that follows from
condition 1 of Theorem 7), we obtain

<Hcpt0H—|-/ () aln)dn

a

o @(al@))(al@))'Mdn

Note that the conditions of Theorem 1 are satisfied for the constant & =
HSD(to)H and the functions p(t) = P(t), q(t) = 0 for t € [tg,0), a(t) =

for t € [to — h, to].

(48)
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b(s) = Q(a(s))(a"1(s)) for t € [a(ty),o0), g(u) = Vau, Gu) = 2/,
G Hu) = iuQ, Dom (G_l) = R4, and ¢t; = co. Applying now Theorem 1, we
obtain from (48) that the following inequality holds for ¢ > tg

(49) u(t)gi 2/[e(to) +/tt [P(s) + Q(s)] s

Inequality (49) implies the validity of (44). O
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