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THE SECOND HANKEL DETERMINANT H2(n)
FOR ODD STARLIKE AND CONVEX FUNCTIONS

TOSHIO HAYAMI and SHIGEYOSHI OWA

Abstract. For odd starlike and convex functions f defined on the open unit
disk U, the upper bounds of the functional |anan+2 − a2

n+1|, defined by using
the second Hankel determinant H2(n) due to J. W. Noonan and D. K. Thomas
(see [4]), are studied. Furthermore, applying the second Hankel determinant
H2(n), a new operator H is introduced and the properties of new functions Hf
are discussed.
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1. INTRODUCTION AND PRELIMINARIES

Let A be the class of functions f of the form

(1) f(z) = z +
∞∑
n=2

anz
n,

which are analytic on the open unit disk U = {z ∈ C : |z| < 1}.
Furthermore, let P denote the class of functions p of the form

(2) p(z) = 1 +
∞∑
k=1

ckz
k,

which are analytic on U and satisfy

Re p(z) > 0 (z ∈ U).

Every element p ∈ P is called a Carathéodory function (cf. [1]).
If f ∈ A satisfies the following inequality

(3) Re

(
zf ′(z)

f(z)

)
> α (z ∈ U)

for some α (0 ≤ α < 1), then f is said to be starlike of order α in U. We denote
by S∗(α) the subclass of A consisting of all functions f which are starlike of
order α in U.

Similarly, we say that f is a member of the class K(α) of convex functions
of order α in U if f ∈ A satisfies the following inequality

(4) Re

(
1 +

zf ′′(z)

f ′(z)

)
> α (z ∈ U)

for some α (0 ≤ α < 1).
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Also, let Aodd ⊂ A be the class of odd functions f normalized by

(5) f(z) = z +
∞∑
m=1

a2m+1z
2m+1,

which are analytic on U. Moreover, we define the following subclasses of Aodd

S∗odd(α) = Aodd ∩ S∗(α), Kodd(α) = Aodd ∩ K(α).

A function f ∈ S∗odd(α) is called an odd starlike function of order α, while an
element f ∈ Kodd(α) is a convex function of order α.

For simplicity we write

S∗odd = S∗odd(0) and Kodd = Kodd(0).

Remark 1. Let f ∈ Aodd. Then

f(z) ∈ Kodd(α) if and only if zf ′(z) ∈ S∗odd(α)

and

f(z) ∈ S∗odd(α) if and only if

∫ z

0

f(ζ)

ζ
dζ ∈ Kodd(α).

Example 2. The function f defined by

f(z) =
z

(1− z2)1−α

belongs to S∗odd(α), while the function g given by

g(z) = z2F1

(
1

2
, 1− α;

3

2
; z2
)
,

where 2F1(a, b; c; z) represents the hypergeometric function, lies in Kodd(α).

In [4], Noonan and Thomas introduced the q–th Hankel determinant as

Hq(n) = det


an an+1 · · · an+q−1
an+1 an+2 · · · an+q

...
...

. . .
...

an+q−1 an+q · · · an+2q−2

 (n, q ∈ N = {1, 2, 3, · · · }).

This determinant has been discussed by several authors. For example, it is
known that the Fekete and Szegö functional |a3 − a22| is equal to |H2(1)| (see,
[2]), and that the functional |a2a4 − a23| is equivalent to |H2(2)|.

Janteng, Halim, and Darus showed in [3] the following theorems.

Theorem 3. Let f ∈ S∗. Then

|a2a4 − a23| ≤ 1.

Equality is attained for functions of the following form

f(z) =
z

(1− z)2
= z + 2z2 + 3z3 + 4z4 + · · ·
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and

f(z) =
z

1− z2
= z + z3 + z5 + z7 + · · · .

Theorem 4. Let f ∈ K. Then

|a2a4 − a23| ≤
1

8
.

The present paper is motivated by these results and the purpose of this
investigation is to find upper bounds of the functional |anan+2 − a2n+1| =
|H2(n)|, given by the second Hankel determinant, for functions f in the class
S∗odd(α) and Kodd(α), respectively.

2. PROPERTIES OF THE CLASSES S∗ODD(α) AND KODD(α)

In this section, we derive upper bounds of |a2m+1| for functions f in S∗odd(α)
and Kodd(α). We apply the following lemmas to obtain our results.

Lemma 5. The equality

1 +

m∑
l=1

l∏
j=1

(j − α)

l!
=

m+1∏
j=2

(j − α)

m!

holds for any m (m = 1, 2, 3, . . . ).

Proof. For the case m = 1, noting that 1 +
1∏
j=1

(j−α) =
2∏
j=2

(j−α) = 2−α,

the assertion of the lemma holds true. Next, we suppose that the equality

1 +
M∑
l=1

l∏
j=1

(j − α)

l!
=

M+1∏
j=2

(j − α)

M !

is valid for some M (M ≥ 1). Then

1 +
M+1∑
l=1

l∏
j=1

(j − α)

l!
= 1 +

M∑
l=1

l∏
j=1

(j − α)

l!
+

M+1∏
j=1

(j − α)

(M + 1)!

=

M+1∏
j=2

(j − α)

M !
+

M+1∏
j=1

(j − α)

(M + 1)!

=

M+1∏
j=2

(j − α)

M !

(
1 +

1− α
M + 1

)
=

M+2∏
j=2

(j − α)

(M + 1)!
.

The statement follows now by mathematical induction. �
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The following result is fundamental for Carathéodory functions.

Lemma 6. (cf. [1], [5]) If a function p, defined by p(z) = 1 +
∞∑
k=1

ckz
k,

belongs to P, then |ck| ≤ 2 for each k (k = 1, 2, 3, . . . ). Equality holds for

p(z) =
1 + z

1− z
= 1 +

∞∑
k=1

2zk.

From this lemma, we deduce immediately the following result.

Lemma 7. If an even function p(z) = 1 +
∞∑
k=1

c2kz
2k satisfies

Re p(z) > α (z ∈ U)

for some α (0 ≤ α < 1), then |c2k| ≤ 2(1−α) for each k (k = 1, 2, 3, . . . ), with
equality for

p(z) =
1 + (1− 2α)z2

1− z2
= 1 +

∞∑
k=1

2(1− α)z2k.

Proof. Put q(z) =
p(z)− α

1− α
. Then q(z) = 1 +

∞∑
k=1

c2k
1− α

z2k, hence q ∈ P.

Thus, it follows from Lemma 6 that∣∣∣∣ c2k1− α

∣∣∣∣ ≤ 2 (k = 1, 2, 3, . . . )

or, equivalently,

|c2k| ≤ 2(1− α) (k = 1, 2, 3, . . . ).

�

From these, we derive now the following important preliminary results.

Theorem 8. Let f ∈ S∗odd(α). Then

|a2m+1| ≤

m∏
j=1

(j − α)

m!
(m = 1, 2, 3, . . . ),

with equality for

f(z) =
z

(1− z2)1−α
= z +

∞∑
m=1

m∏
j=1

(j − α)

m!
z2m+1.

Proof. Since f ∈ S∗odd(α), there is a function p of the form

p(z) = 1 +

∞∑
k=1

c2kz
2k
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satisfying Re p(z) > α (z ∈ U) and such that

(6) f ′(z) =
f(z)

z
p(z).

Equation (6) is equivalent to

(7) 1 +
∞∑
m=1

(2m+ 1)a2m+1z
2m = 1 +

∞∑
m=1

(
m∑
l=0

a2l+1c2(m−l)

)
z2m,

where a1 = c0 = 1. Equalizing the coefficient of z2m on both sides of the
above equality for each m, and applying Lemma 7, we obtain the following
inequality

|a2m+1| =
1

2m

∣∣∣∣∣
m−1∑
l=0

a2l+1 c2(m−l)

∣∣∣∣∣ ≤ 1

2m

m−1∑
l=0

|a2l+1| · |c2(m−l)|

≤ 1− α
m

m−1∑
l=0

|a2l+1|.

Since a1 = 1, we get that |a3| ≤ (1− α)|a1| = 1− α,

|a5| ≤
1− α

2
(|a1|+ |a3|) ≤

1− α
2

(1 + (1− α)) =
(1− α)(2− α)

2
,

and

|a7| ≤
1− α

3
(|a1|+ |a3|+ |a5|)

≤ 1− α
3

(
1 + (1− α) +

(1− α)(2− α)

2

)
=

(1− α)(2− α)(3− α)

6
.

Therefore, we expect that |a2m+1| ≤

m∏
j=1

(j − α)

m!
(m = 1, 2, 3, . . . ). Actually,

supposing |a2m+1| ≤

m∏
j=1

(j − α)

m!
(m = 1, 2, 3, . . . ,M) and using Lemma 5,

we derive

|a2(M+1)+1| ≤
1− α
M + 1

M∑
l=0

|a2l+1|

≤ 1− α
M + 1

{
1 +

M∑
l=1

l∏
j=1

(j − α)

l!

}

=
1− α
M + 1

M+1∏
j=2

(j − α)

M !
=

M+1∏
j=1

(j − α)

(M + 1)!
.
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The inequality to be proved follows now by mathematical induction. Equality
is attained for f ∈ S∗odd(α) given by

zf ′(z)

f(z)
=

1 + (1− 2α)z2

1− z2
.

�

Taking α = 0 in Theorem 8, we get the following result.

Corollary 9. Let f ∈ S∗odd. Then

|a2m+1| ≤ 1 (m = 1, 2, 3, . . . ),

with equality for

f(z) =
z

1− z2
= z +

∞∑
m=1

z2m+1.

We can obtain similarly upper bounds of |a2m+1| for odd convex functions
f .

Theorem 10. Let f ∈ Kodd(α). Then

|a2m+1| ≤

m∏
j=1

(j − α)

(2m+ 1)m!
(m = 1, 2, 3, . . . ),

with equality for

f(z) = z2F1

(
1

2
, 1− α;

3

2
; z2
)

= z +

∞∑
m=1

m∏
j=1

(j − α)

(2m+ 1)m!
z2m+1.

Proof. By Remark 1, it is clear that if f ∈ Kodd(α), then

(2m+ 1)|a2m+1| ≤

m∏
j=1

(j − α)

m!

or, equivalently,

|a2m+1| ≤

m∏
j=1

(j − α)

(2m+ 1)m!
.

�

For α = 0 in Theorem 10 we obtain the next result.

Corollary 11. Let f ∈ Kodd. Then

|a2m+1| ≤
1

2m+ 1
(m = 1, 2, 3, . . . ),
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with equality for

f(z) =
1

2
log

(
1 + z

1− z

)
= z +

∞∑
m=1

1

2m+ 1
z2m+1.

3. MAIN RESULTS

Applying Theorem 8 and Theorem 10, we get upper bounds for the second
Hankel determinant |H2(n)| = |anan+2 − a2n+1| for functions in S∗odd(α) and
Kodd(α).

Theorem 12. Let f ∈ S∗odd(α). Then

|H2(n)| = |anan+2 − a2n+1| ≤



1− α (n = 1),

m∏
j=1

(j − α)2

(m!)2
(n = 2m),

(
m∏
j=1

(j − α)2

)
(m+ 1− α)

m! (m+ 1)!
(n = 2m+ 1),

where m = 1, 2, 3, . . . , with equality for

f(z) =
z

(1− z2)1−α
= z +

∞∑
m=1

m∏
j=1

(j − α)

m!
z2m+1.

Proof. Since f ∈ S∗odd(α), it follows that

|anan+2−a2n+1| =



|a1a3 − a22| = |a1| · |a3| (n = 1),

|a2ma2(m+1) − a22m+1| = |a2m+1|2 (n = 2m),

|a2m+1a2m+3 − a22(m+1)| = |a2m+1| · |a2m+3| (n = 2m+ 1),

where m = 1, 2, 3, . . . . By Theorem 8 we obtain the asserted inequalities. �

When α = 0 we get the following particular result.

Corollary 13. Let f ∈ S∗odd. Then

|H2(n)| = |anan+2 − a2n+1| ≤ 1 (n = 1, 2, 3, . . . ),

with equality for

f(z) =
z

1− z2
= z +

∞∑
m=1

z2m+1.
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We also derive the following results for odd convex functions f by applying
Theorem 10.

Theorem 14. Let f ∈ Kodd(α). Then

|H2(n)| = |anan+2 − a2n+1| ≤



1− α
3

(n = 1),

m∏
j=1

(j − α)2

(2m+ 1)2(m!)2
(n = 2m),

(
m∏
j=1

(j − α)2

)
(m+ 1− α)

(2m+ 1)(2m+ 3)m! (m+ 1)!
(n = 2m+ 1),

where m = 1, 2, 3, . . . , with equality for

f(z) = z2F1

(
1

2
, 1− α;

3

2
; z2
)

= z +
∞∑
m=1

m∏
j=1

(j − α)

(2m+ 1)m!
z2m+1.

Setting α = 0, we get the following particular result.

Corollary 15. Let f ∈ Kodd. Then

|H2(n)| = |anan+2 − a2n+1| ≤


1

4m2 − 1
(n = 2m− 1),

1

(2m+ 1)2
(n = 2m),

with equality for

f(z) =
1

2
log

(
1 + z

1− z

)
= z +

∞∑
m=1

1

2m+ 1
z2m+1.

4. APPLICATIONS AND OPEN PROBLEMS

We consider now a new operator related to the second Hankel determinant
H2(n).

Definition 16. For f ∈ A with f(z) = z +
∞∑
n=2

anz
n define

Hf(z) = z +
∞∑
n=2

(
a2n − an−1an+1

)
zn = z −

∞∑
n=2

H2(n− 1)zn.
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Note that the above operatorH, applied to a function f ∈ A, can be written
as

Hf(z) = (f ∗ f)(z)−
(
zf ∗ f

z

)
(z),

where ∗ means the convolution (or Hadamard) product of two functions.
We recall now the following result due to Robertson [6].

Lemma 17. Let f ∈ K(α). Then

|an| ≤

n∏
j=2

(j − 2α)

n!
(n = 2, 3, 4, . . . ).

In particular, for α = 0, if f ∈ K, then

|an| ≤ 1 (n = 2, 3, 4, . . . ).

Using the operator H given by Definition 16 and taking into account Corol-
lary 13, we can conjecture that the new function Hf may be in the class K if
f ∈ S∗odd. But this is not true, as it is shown by the following counter-example.

Remark 18. Let f(z) = z +
1

3
z3 ∈ Aodd. A simple computation gives us

Re

(
zf ′(z)

f(z)

)
= Re

(
1 + z2

1 + 1
3z

2

)
> 0 (z ∈ U).

Therefore, f ∈ S∗odd. On the other hand, we see that

g(z) = Hf(z) = z − 1

3
z2 +

1

9
z3 6∈ K,

because for the point z0 =
231 + 33

√
95i

400
∈ U

(
|z0| =

99

100
< 1

)
we have

Re

(
1 +

z0g
′′(z0)

g′(z0)

)
= − 994883

31204889
< 0.

Inspired by the above result, we formulate an interesting problem below.

Problem 1. Find the class M of functions satisfying the property that if
f ∈ S∗odd, then the new function Hf ∈M.

Moreover, we can also formulate the following generalized problem.

Problem 2. Find the class N (α) of functions satisfying the property that
if f ∈ S∗(α), then the new function Hf ∈ N (α).
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