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THE SECOND HANKEL DETERMINANT Hy(n)
FOR ODD STARLIKE AND CONVEX FUNCTIONS

TOSHIO HAYAMI and SHIGEYOSHI OWA

Abstract. For odd starlike and convex functions f defined on the open unit
disk U, the upper bounds of the functional |anant+2 — CL%+1|, defined by using
the second Hankel determinant Hz(n) due to J. W. Noonan and D. K. Thomas
(see [4]), are studied. Furthermore, applying the second Hankel determinant
H>(n), a new operator H is introduced and the properties of new functions # f
are discussed.

MSC 2010. 34C40.

Key words. Hankel determinant, odd analytic function, odd starlike function,
odd convex function.

1. INTRODUCTION AND PRELIMINARIES
Let A be the class of functions f of the form

(1) f(2) =24 an2",
n=2

which are analytic on the open unit disk U= {z € C: |z] < 1}.
Furthermore, let P denote the class of functions p of the form

(2) p(z) =1+ b,
k=1

which are analytic on U and satisfy
Re p(z) > 0 (z € U).

Every element p € P is called a Carathéodory function (cf. [1]).
If f € A satisfies the following inequality

2f'(2)
(3) Re<f(z)>>oz (z€U)
for some o (0 < v < 1), then f is said to be starlike of order o in U. We denote
by §*(a) the subclass of A consisting of all functions f which are starlike of
order o in U.
Similarly, we say that f is a member of the class IC(«) of convex functions
of order o in U if f € A satisfies the following inequality

2f"(2)
f’(z)>>a (z € U)

(4) Re <1 +

for some o (0 < a < 1).
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Also, let Aogq C A be the class of odd functions f normalized by

(5) f2) =2+ agmpz®™H,

m=1

which are analytic on U. Moreover, we define the following subclasses of Ayqq
Sraa(@) = Apaa NS (@), Kodd(a) = Agqa N K ().

A function f € S8}y () is called an odd starlike function of order o, while an
element f € Koqq(@) is a convex function of order c.
For simplicity we write
Sodd = S5da(0) and  Koad = Kodaa(0).
REMARK 1. Let f € Aoqq. Then
f(2) € Koga(a) if and only if zf/(2) € Skyq()
and

f(2) € Siqq(@) if and only if /OZ f(COdC € Koda(a).

EXAMPLE 2. The function f defined by
z

f(Z):m

belongs to S7;,(c), while the function g given by

1 3
g(Z) = Z2F1 (271 — Qg 2;Z2> )

where 9 F} (a, b; ¢; z) represents the hypergeometric function, lies in Koqq(a).

In [4], Noonan and Thomas introduced the ¢g-th Hankel determinant as

Qn an4+1  *°°  Qntg-—1
an+1  Ap42 " Qn+q
Hgy(n) = det : A : (n,ge N={1,2,3,---}).
An+q—1 Qn+q " (An42q—2

This determinant has been discussed by several authors. For example, it is
known that the Fekete and Szegd functional |asz — a3| is equal to |Ha(1)] (see,
2]), and that the functional |asas — a3| is equivalent to |Hz(2)).

Janteng, Halim, and Darus showed in [3] the following theorems.

THEOREM 3. Let f € §*. Then
lasay — a3| < 1.
FEquality is attained for functions of the following form

fz) = (1_’22)2 — 2422438 1420 4
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and
f(2)2m22+z3+z5+z7+---,
THEOREM 4. Let f € K. Then

|azay — a3| <

oo =

The present paper is motivated by these results and the purpose of this
investigation is to find upper bounds of the functional |ananie — a2 4| =
|H2(n)|, given by the second Hankel determinant, for functions f in the class
S¥iq(a) and Koqa (o), respectively.

2. PROPERTIES OF THE CLASSES S¢)jyy (o) AND Kopp (o)

In this section, we derive upper bounds of |az,,+1| for functions f in S, ()
and Koqq(a). We apply the following lemmas to obtain our results.

LEMMA 5. The equality

l m+1
o G-0) T-a)
b ; B

holds for any m (m =1,2,3,...).

1 2
Proof. For the case m = 1, noting that 1+ [[(j—a) = [[( — @) =2 —aq,

j=1 j=2
the assertion of the lemma holds true. Next, we suppose that the equality

) M+1 ]
M Hl(J ) H2 (J—a)
j= =
bt lz TR V7
=1
is valid for some M (M > 1). Then
M1 Hl(J —a) M Hl(J — ) H1 (J—a)
1 = 1 J= J=
+l; T +; TG V)]
M+1 ) M+1 )
G- 10—
_ =2 L =1
M! (M +1)!
M+1 ] M+2 )
1:[ (J—a) ]:[ (j — )

j—2 ]._Oé ]—2
M M+1 (M +1)!

The statement follows now by mathematical induction. O
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The following result is fundamental for Carathéodory functions.

LEMMA 6. (cf. [1], [5]) If a function p, defined by p(z) = 1 + Z 2,
belongs to P, then |cx| < 2 for each k (k= 1,2,3,...). Equality holds for

p(z) = 1+Z—1+Z2z

1—=2

From this lemma, we deduce immediately the following result.
o0

LEMMA 7. If an even function p(z) = 1+ > corz?* satisfies
k=1

Re p(z) > « (z€ )
for some a (0 < aw < 1), then |cox| < 2(1 —«) for each k (k=1,2,3,...), with
equality for

sy P22 S

1—22

Proof. Put q(z) = pz) —a

o0
. Then g(2) =1+ > 16% 22k hence q € P.
k=1

1-— -«
Thus, it follows from Lemma 6 that
Cok
<2 k=1,2,3,...
1 —« — ( Y ) ) )

or, equivalently,
lear] < 2(1 — ) (k=1,2,3,...).

From these, we derive now the following important preliminary results.

THEOREM 8. Let f € §)yq(a). Then
G-
’a2m+1‘<_T (m:172737"')7
with equality for
QU—@
f(Z) (1_2:21 o Z+ZJ 2m+1'

Proof. Since f € 8*,4(), there is a function p of the form

o
z)=1+ Z o2k
k=1
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satisfying Re p(z) > a (2 € U) and such that

(©) ey =2

Equation (6) is equivalent to

(7 1+ Z (2m + 1agpm12*™ =1+ Z (Z A2141C2(m—1 > :

m=1
where a; = ¢g = 1. Equalizing the coefficient of 2™ on both sides of the

above equality for each m, and applying Lemma 7, we obtain the following
inequality

1 m—1 1 m—1
lagm1] = o Z a21+41 Co(m—1)| < o |lagi11] - |02(mfl)|
1=0 1=0

Since a1 = 1, we get that |a3| < (1 — a)|ai| =1 —«a,

11—« « 1-a)(2 -«
sl < 25 (] Jasl) < 15 (14 (1) = EE 22
and
1l -«
la7] < —5— (la1| + las| + las|)
< 1 -« 14 (1—a)+ (1-a)(2—-w) _ (1—a)(2—a)(3—a).
3 2 6
m .
1:[1(3 —a)
Therefore, we expect that |agm,+1| < — ‘ (m=1,2,3,...). Actually,
. !
G-
supposing |agm1| < = ' (m =1,2,3,..., M) and using Lemma 5,
m!

we derive

lag(v41)+1l <

l
M H (J—a)
11—« 7j=1
< {1 + Z }
M+1 M41
I[1 G—a) I10G-a
1l-—a j=2 !

M+1 M M+
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The inequality to be proved follows now by mathematical induction. Equality
is attained for f € S}, ,(c) given by

2f'(z) 1+ (1—2a)z?
flz) 1—22

Taking a = 0 in Theorem 8, we get the following result.
COROLLARY 9. Let f € 83y4- Then
lagmsr| <1 (m=1,2,3,...),
with equality for

2m+1
flz)= . 22 =z+ Z z
We can obtain similarly upper bounds of |agm,+1| for odd convex functions

f.
THEOREM 10. Let f € Koqa(a). Then

m

fG-a
|a2m+1’§m (m:1,2,3,...),

with equality for

m

f(Z):ZQF1<2,1a;2 )—Z+Z I T 2m+1.

Proof. By Remark 1, it is clear that if f € Kyqq(«), then
G-

=1
(2m + Dlagmy1| < ——
m:

or, equivalently,
m

[1(G—-a)

=1
<=
|azm 1] < (2m +1)m!

For o« = 0 in Theorem 10 we obtain the next result.

COROLLARY 11. Let f € Koqa. Then
1
2m +1

]a2m+1\ S (m:1,2,3,...),
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with equality for
1 14z =1,
=-1 = ——_p2ml
/) 2(%<1—z> Z+2;2m+12

3. MAIN RESULTS

Applying Theorem 8 and Theorem 10, we get upper bounds for the second

Eank(el)determinant |Ha(n)| = |ana@nt2 — a2, 4| for functions in Sy, (a) and
odd\&)-
THEOREM 12. Let f € S¥;4(c). Then

(11—« (n=1),

16 =a)

]:

—_ n=2m),
Hon)| = lantnsz — sl < (P = 2m)

(ﬁ(j—a)?) (m+1-a)

j=1

=2 1
m! (m +1)! (n=2m+1),
where m = 1,2,3, ..., with equality for
m
QU—M
_ Jj= H2mtl
fz) = (1_Z21a HZ s
Proof. Since f € S¥;4(«), it follows that
(
|aras — a3| = |a1]| - |as] (n=1),
ana —a? = —a? = 2 =2
nln4-2 an+1‘ = |a2ma2(m+1) a2m+1| = |agm+1| (n = 2m),
[ lazm+109m43 — aé(mH)I = lagmy1] - [a2m13| (n=2m +1),
where m = 1,2,3,.... By Theorem 8 we obtain the asserted inequalities. [J

When o = 0 we get the following particular result.
COROLLARY 13. Let f € 8§344. Then
|Ho(n)| = |anants — a2 ] < 1 (n=1,2,3,...),
with equality for

flz) = . z2 =z+ Z Z2mHl
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We also derive the following results for odd convex functions f by applying
Theorem 10.

THEOREM 14. Let f € Koqq(a). Then

(1l —«
3 (n=1),
[1G—a)?
2 =1 (n =2m)
|H2(n)‘ = |anan+2 - an—i—l’ < (2m + 1)2(m!)2 ’
(H(j—a)2> (m+1-a)
j=1
=2 1
GmtD@m +mimen 2D,
where m = 1,2,3, ..., with equality for
HO—M

1
— F 21— e — 2m+1.
/() 221<T Gy ) Z+§: mn+17m

Setting a = 0, we get the following particular result.

COROLLARY 15. Let f € Koaa- Then

! (n=2m 1)
T n=2m-—1),
|Hy(n)] = |ananys — a2 ) < 411
CTEST

with equality for

1 1+z =1,
= —1 — - m+1'
/) 2(%(1—z> Z+222m+1z

4. APPLICATIONS AND OPEN PROBLEMS

We consider now a new operator related to the second Hankel determinant
Hs(n).

DEFINITION 16. For f € A with f(z) = z+ > an2" define

n=2

o
z):z—l—Z(a — Gp— 1an+1 —Z_ZHQTL—l
n=2
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Note that the above operator H, applied to a function f € A, can be written
as

1) = (06 - (24 ) )

z
where * means the convolution (or Hadamard) product of two functions.
We recall now the following result due to Robertson [6].

LEMMA 17. Let f € K(a). Then

I16 - 20)

lan| < =2 (n=2,3,4,...).

n!
In particular, for o =0, if f € IC, then
lan| <1 (n=2,3,4,...).

Using the operator ‘H given by Definition 16 and taking into account Corol-
lary 13, we can conjecture that the new function Hf may be in the class K if
[ € 8}4q- But this is not true, as it is shown by the following counter-example.

1
REMARK 18. Let f(z) =z + §z3 € Apaqa- A simple computation gives us

z2f'(z)\ o 1+ 22 B
Re<f(z)>R <1+§22>>0 (z € ).

Therefore, f € §7;4. On the other hand, we see that

o) = HI() =2 = 322+ 5P £ K,

231 + 33v/95i 99
because for the point zp = 2L SV el <|20] =—< 1) we have

400 100
209" (20) 994883
14 209200 | TS
Re < 20 31204889

Inspired by the above result, we formulate an interesting problem below.

PrROBLEM 1. Find the class M of functions satisfying the property that if
f € 844, then the new function Hf € M.

Moreover, we can also formulate the following generalized problem.

PROBLEM 2. Find the class A/(«) of functions satisfying the property that
if f € §*(a), then the new function Hf € N(a).
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