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1. INTRODUCTION

Let
∑

p be the class of functions of the form

(1) f(z) = z−p +

∞∑
k=1

ak−pz
k−p (p ∈ N = {1, 2, 3, · · · }),

which are analytic and p-valent on the punctured unit disc U∗ = {z ∈ C : 0 <
|z| < 1} = U\{0}. For a function f ∈

∑
p given by (1) and a function g ∈

∑
p

given by

(2) g(z) = z−p +

∞∑
k=1

bk−pz
k−p (p ∈ N),

one introduces the Hadamard product (or convolution) of f and g as the
function f ∗ g defined by

(3) (f ∗ g)(z) = z−p +
∞∑
k=1

ak−pbk−pz
k−p = (g ∗ f)(z).

We define now a linear operator Imp (λ, `) (where λ ≥ 0, ` > 0, m ∈ N0 =
N∪{0}, N = {1, 2, 3, · · · }) which acts as described below on a function f ∈

∑
p

given by (1)

(4) Imp (λ, `)f(z) = z−p +
∞∑
k=1

[
λk + `

`

]m
ak−pz

k−p.

We can write (4) also as

Imp (λ, `)f(z) = (Φp,m
λ,` ∗ f)(z),
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where

(5) Φp,m
λ,` (z) = z−p +

∞∑
k=1

[
λk + `

`

]m
zk−p.

It follows easily from (4) that

(6) λz(Imp (λ, `)f(z))
′

= `Im+1
p (λ, `)f(z)− (λp+ `)Imp (λ, `)f(z) (λ > 0).

We also note that

I0p (λ, `)f(z) = f(z)

and

I1p (1, 1)f(z) =
(zp+1f(z))

′

zp
= (p+ 1)f(z) + zf

′
(z).

By specializing the parameters λ, `, m, and p one obtains the following oper-
ators studied by various authors:

(i) Imp (1, 1) = Dm
p (see Aouf and Hossen [1], Liu and Owa [7], Liu and

Srivastava [8], and Srivastava and Patel [11]);
(ii) Im1 (1, `) = Dm

` (see Cho et al. [4, 5]);
(iii) Im1 (1, 1) = Im (see Uralegaddi and Somanatha [12]);
(iv) Imp (1, `) = Ip(m, `), where Ip(m, `) is defined by

Ip(m, `)f(z) = z−p +

∞∑
k=1

[
k + `

`

]m
ak−pz

k−p;

(v) Imp (λ, 1) = Dm
p,λ, where Dm

p,λf(z) is defined by

(7) Dm
p,λf(z) = z−p +

∞∑
k=1

[λk + 1]m ak−pz
k−p.

We denote by
∑m

p,λ,`(α, δ, µ, γ) the class of all functions f ∈
∑

p such that

(8)

Re

{
(1− γ)

(
Imp (λ, `)f(z)

Imp (λ, `)g(z)

)µ
+ γ

Im+1
p (λ, `)f(z)

Im+1
p (λ, `)g(z)

(
Imp (λ, `)f(z)

Imp (λ, `)g(z)

)µ−1}
> α,

where g ∈
∑

p satisfies the condition

(9) Re

{
Imp (λ, `)g(z)

Im+1
p (λ, `)g(z)

}
> δ (0 ≤ δ < 1, z ∈ U),

where α and µ are real numbers such that 0 ≤ α < 1, µ > 0, p ∈ N, and γ ∈ C
with Re{γ} > 0.

We note that
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(i) For λ = 1 we have that
∑m

p,`(α, δ, µ, γ) is the class of functions f ∈
∑

p

satisfying the condition
(10)

Re

{
(1− γ)

(
Ip(m, `)f(z)

Ip(m, `)g(z)

)µ
+ γ

Ip(m+ 1, `)f(z)

Ip(m+ 1, `)g(z)

(
Ip(m, `)f(z)

Ip(m, `)g(z)

)µ−1}
> α,

where g ∈
∑

p is such that

(11) Re

{
Ip(m, `)g(z)

Ip(m+ 1, `)g(z)

}
> δ (0 ≤ δ < 1, z ∈ U),

with 0 ≤ α < 1, µ > 0, and γ ∈ C with Re{γ} > 0;
(ii) For ` = 1 we have that

∑m
p,λ(α, δ, µ, γ) is the class of functions f ∈

∑
p

satisfying the condition

(12) Re

(1− γ)

(
Dm
p,λf(z)

Dm
p,λg(z)

)µ
+ γ

Dm+1
p f(z)

Dm+1
p,λ g(z)

(
Dm
p,λf(z)

Dm
p,λg(z)

)µ−1 > α,

where g ∈
∑

p is such that

(13) Re

{
Dm
p,λg(z)

Dm+1
p,λ g(z)

}
> δ (0 ≤ δ < 1, z ∈ U),

with 0 ≤ α < 1, µ > 0, λ > 0, p ∈ N, m ∈ N0, and γ ∈ C with
Re{γ} > 0;

(iii) For λ = ` = 1 we have that
∑m

p (α, δ, µ, γ) is the class of functions

f ∈
∑

p satisfying the condition

(14) Re

{
(1− γ)

(
Dm
p f(z)

Dm
p g(z)

)µ
+ γ

Dm+1
p f(z)

Dm+1
p g(z)

(
Dm
p f(z)

Dm
p g(z)

)µ−1}
> α,

where g ∈
∑

p is such that

(15) Re

{
Dm
p g(z)

Dm+1
p g(z)

}
> δ (0 ≤ δ < 1, z ∈ U),

with 0 ≤ δ < 1, µ > 0, p ∈ N, m ∈ N0, and γ ∈ C with Re{γ} > 0.

To establish our main results we need the following lemmas.

Lemma 1. (see [9]) Let Ω be a set in the complex plane C and let the function

Ψ: C2 → C satisfy the condition Ψ(ir2, s1) /∈ Ω for all reals r2, s1 ≤ −
1+r22
2 .

If q is analytic on U with q(0) = 1 and if Ψ(q(z), zq
′
(z)) ∈ Ω, for all z ∈ U ,

then Re{q(z)} > 0 for all z ∈ U .

Lemma 2. (see [10]) If q is analytic on U with q(0) = 1, and if λ ∈ C∗ =

C\{0} satisfies Re{λ} ≥ 0, then Re{q(z) + λzq
′
(z)} > α (0 ≤ α < 1) implies

Re{q(z)} > α+ (1− α)(2γ − 1),
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where γ is given by

γ = γ(Reλ) =

1∫
0

(
1 + tRe{λ}

)−1
dt.

(Note that γ is an increasing function of Re{λ} satisfying 1
2 ≤ γ < 1.) The

estimate is sharp in the sense that the bound cannot be improved.

For real or complex numbers a, b, c (c /∈ Z−0 ), the Gauss hypergeometric
function is defined by

2F1(a, b; c; z) = 1 +
ab

c
· z

1!
+
a(a+ 1)b(b+ 1)

c(c+ 1)
· z

2

2!
+ · · · .

Note that the above series converges absolutely for z ∈ U and hence represents
an analytic function on the unit disc U (see [13, chapter 14] for details).

Each of the identities asserted by Lemma 3 below is fairly well known (for
instance, cf. [13, chapter 14]).

Lemma 3. Let a, b, c (c /∈ Z−0 ) be real or complex parameters. Then the
following equalities hold true

(16)

1∫
0

tb−1(1− t)c−b−1(1− tz)−adt =
Γ(b)Γ(c− b)

Γ(c)
2F1(a, b; c; z)

(if Re(c) > Re(b) > 0),

(17) 2F1(a, b; c; z) = 2F1(b, a; c; z),

(18) 2F1(a, b; c; z) = (1− z)−a 2F1

(
a, c− b; c; z

z − 1

)
,

and

(19) 2F1

(
1, 1; 2;

1

2

)
= 2`n2.

The methods we will use to obtain our main results are similar to those of
Kwon et al. [6], El-Ashwah [3], and Aouf and Mostafa [2].

2. MAIN RESULTS

We will assume throughout the paper that the powers are understood as
principle values.

Theorem 4. Let f ∈
∑m

p,λ,`(α, δ, µ, γ), λ, ` > 0, p ∈ N, m ∈ N0 and γ ≥ 0.
Then

(20) Re

{(
Imp (λ, `)f(z)

Imp (λ, `)g(z)

)µ}
>

2`αµ+ δγλ

2`µ+ δγλ
(0 ≤ α < 1, µ > 0, z ∈ U),

where the function g ∈
∑

p satisfies condition (9).
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Proof. Let β =
2`αµ+ δγλ

2`µ+ δγλ
and define the function q by

(21) q(z) =
1

(1− β)

{(
Imp (λ, `)f(z)

Imp (λ, `)g(z)

)µ
− β

}
.

The function q is analytic on U and q(0) = 1. If we set

(22) h(z) =
Imp (λ, `)g(z)

Im+1
p (λ, `)g(z)

,

then, by hypothesis, Re{h(z)} > δ. Differentiating (21) and using the identity
(6), we get

(1− γ)

(
Imp (λ, `)f(z)

Imp (λ, `)g(z)

)µ
+ γ

Im+1
p (λ, `)f(z)

Im+1
p (λ, `)g(z)

(
Imp (λ, `)f(z)

Imp (λ, `)g(z)

)µ−1

(23) = [β + (1− β)q(z)] +
λγ(1− β)

µ`
h(z)zq

′
(z).

Define the function Ψ by

(24) Ψ(r, s) = β + (1− β)r +
λγ(1− β)

µ`
h(z)s.

Using (24) and the fact that f ∈
∑m

p,λ,`(α, δ, µ, γ), we obtain{
Ψ(q(z), zq

′
(z)) : z ∈ U

}
⊂ Ω = {w ∈ C : Re{w} > α} .

The following relations hold for all reals r2, s1 ≤ −
1 + r22

2

Re {Ψ(ir2, s1)} = β +
λγ(1− β)s1

µ`
Re {h(z)}

≤ β − λγ(1− β)δ(1 + r22)

2µ`

≤ β − λγ(1− β)δ

2µ`
= α.

Hence Ψ(ir2, s1) /∈ Ω for each z ∈ U . Applying now Lemma 1, we get
Re{q(z)} > 0, for z ∈ U , hence

Re

{(
Imp (λ, `)f(z)

Imp (λ, `)g(z)

)µ}
> β (z ∈ U).

This finishes the proof. �

For ` = 1 in Theorem 4 we obtain the following result.
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Corollary 5. Let f ∈
∑m

p,λ(α, δ, µ, γ), λ > 0, p ∈ N, m ∈ N0, and γ ≥ 0.
Then

Re

{(
Dm
p,λf(z)f(z)

Dm
p,λf(z)g(z)

)µ}
>

2αµ+ δγλ

2µ+ δγλ
(0 ≤ α < 1, µ > 0, z ∈ U),

where the function g ∈
∑

p satisfies condition (9) with ` = 1.

Corollary 6. Let the functions f and g be in
∑

p and let g satisfy condi-

tion (9). If λ, ` > 0, γ ≥ 1, p ∈ N, m ∈ N0, and

(25) Re

{
(1− γ)

(
Imp (λ, `)f(z)

Imp (λ, `)g(z)

)
+ γ

Im+1
p (λ, `)f(z)

Im+1
p (λ, `)g(z)

}
> α

(0 ≤ α < 1, p ∈ N, m ∈ N0, z ∈ U),

then

(26) Re

{
Im+1
p (λ, `)f(z)

Im+1
p (λ, `)g(z)

}
> β =

α(2`+ δλ) + δλ(γ − 1)

2`+ δγλ
(z ∈ U).

Proof. We have

γ
Im+1
p (λ, `)f(z)

Im+1
p (λ, `)g(z)

=

{
(1− γ)

(
Imp (λ, `)f(z)

Imp (λ, `)g(z)

)
+ γ

Im+1
p (λ, `)f(z)

Im+1
p (λ, `)g(z)

}

+ (γ − 1)
Imp (λ, `)f(z)

Imp (λ, `)g(z)
(z ∈ U).

Since γ ≥ 1, using (25) and (20) (for µ = 1), we deduce that

Re

{
Im+1
p (λ, `)f(z)

Im+1
p (λ, `)g(z)

}
> β =

α(2`+ δλ) + δλ(γ − 1)

2`+ δγλ
.

�

Corollary 7. Let γ ∈ C∗ with Re{γ} ≥ 0 and λ, ` > 0. If f ∈
∑

p satisfies
the following condition

Re
{

(1− γ)(zpImp (λ, `)f(z))µ + γzpIm+1
p (λ, `)f(z)(zpImp (λ, `)f(z))µ−1

}
> α

(0 ≤ α < 1, µ > 0, p ∈ N, m ∈ N0, z ∈ U),

then

(27) Re
{(
zpImp (λ, `)f(z)

)µ}
>

2α`µ+ λRe(γ)

2`µ+ λRe(γ)
(z ∈ U).

Moreover, if γ ≥ 1, λ, ` > 0, and f ∈
∑

p satisfy

Re
{

(1− γ)zpImp (λ, `)f(z) + γzpIm+1
p (λ, `)f(z)

}
> α (z ∈ U),

then

(28) Re
{
zpIm+1

p (λ, `)f(z)
}
>
α(2`+ λ) + λ(γ − 1)

2`+ γλ
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(0 ≤ α < 1, p ∈ N, m ∈ N0, z ∈ U).

Proof. The relations (27) and (28) follow by considering g(z) =
1

zp
in The-

orem 4 and Corollary 6, respectively. �

Remark 8. Choosing γ, δ, `, µ, λ, and m appropriately in Corollary 7, we
obtain the following results.

(i) For γ = λ = ` = 1 and m = 0 in Corollary 7, we have that

Re

{(
1 + p+

zf
′
(z)

f(z)

)
(zpf(z))µ

}
> α

(0 ≤ α < 1, µ > 0, p ∈ N, z ∈ U)

(29)

implies

Re {(zpf(z))µ} > 2µα+ 1

2µ+ 1
(z ∈ U).

(ii) For γ ∈ C∗ with Re{γ} ≥ 0, µ = λ = ` = 1, and m = 0 in Corollary 7,
we have that

Re
{

(1 + γp)zpf(z) + γzp+1f
′
(z)
}
> α

(0 ≤ α < 1, µ > 0, p ∈ N, z ∈ U)

implies

Re{zpf(z)} > 2α+ Re{γ}
2 + Re{γ}

(z ∈ U).

(iii) Replacing f(z) by −zf
′
(z)

p
in (ii), we have that

−Re

{
(1 + γ + γp)

zp+1f
′
(z)

p
+
γ

p
zp+2f

′′
(z)

}
> α

(0 ≤ α < 1, p ∈ N, z ∈ U)

implies

−Re

{
zp+1

p
f

′
(z)

}
>

2α+ Re{γ}
2 + Re{γ}

(z ∈ U).

(iv) For γ ∈ R with γ ≥ 1, µ = λ = ` = 1, and m = 0 in Corollary 7, we
have that

Re
{

(1 + γp)zpf(z) + γzp+1f
′
(z)
}
> α

(0 ≤ α < 1, p ∈ N, z ∈ U)

implies

Re {zpf(z)} > 3α+ γ − 1

2 + γ
(z ∈ U).
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(v) For γ = λ = 1 in Corollary 7 we have that

Re
{
zpIp(m+ 1, `)f(z)(zpIp(m, `)f(z))µ−1

}
> α

(0 ≤ α < 1, µ > 0, p ∈ N, m ∈ N0, z ∈ U)

implies

Re {(zpIp(m, `)f(z))µ} > 2`µα+ 1

2`µ+ 1
(z ∈ U).

(vi) For γ ∈ C∗ with Re{γ} ≥ 0, µ = λ = 1 in Corollary 7, we have that

Re {(1− γ)zpIp(m, `)f(z) + γzpIp(m+ 1, `)f(z)} > α

(0 ≤ α < 1, p ∈ N, m ∈ N0, z ∈ U)

implies

Re {zpIp(m, `)f(z)} > 2`α+ Re{γ}
2`+ Re{γ}

(z ∈ U).

(vii) For γ = λ = ` = 1, in Corollary 7 we have that

Re
{
zpDm+1

p f(z)(zpDm
p f(z))µ−1

}
> α

(0 ≤ α < 1, µ > 0, p ∈ N, m ∈ N0, z ∈ U)

implies

Re
{

(zpDm
p f(z))µ

}
>

2µα+ 1

2µ+ 1
(z ∈ U).

(viii) For µ = λ = ` = 1, in Corollary 7 we have that

Re
{

(1− γ)(zpDm
p f(z)) + γzpDm+1

p f(z)
}
> α

(0 ≤ α < 1, p ∈ N, m ∈ N0, z ∈ U)

implies

Re
{
zpDm

p f(z)
}
>

2α+ Re{γ}
2 + Re{γ}

(z ∈ U).

Theorem 9. Let γ ∈ C with Re{γ} > 0 and λ, ` > 0. Assume that f ∈
∑

p

satisfies the following condition
(30)
Re
{

(1− γ)(zpImp (λ, `)f(z))µ + γzpIm+1
p (λ, `)f(z)(zpImp (λ, `)f(z))µ−1

}
> α

(0 ≤ α < 1, µ > 0, p ∈ N, m ∈ N0, z ∈ U).

Then

(31) Re
{

(zpImp (λ, `)f(z))µ
}
> α+ (1− α)(2ρ− 1),

where

(32) ρ =
1

2
2F1

(
1, 1;

µ`

λRe{γ}
+ 1;

1

2

)
.
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Proof. Let

(33) q(z) = (zpImp (λ, `)f(z))µ.

Then q is analytic on U and q(0) = 1. Differentiating (33) with respect to z
and using relation (6), we obtain

(1− γ)(zpImp (λ, `)f(z))µ + γzpIm+1
p (λ, `)f(z)(zpImp (λ, `)f(z))µ−1

= q(z) +
γλzq

′
(z)

`µ
.

Hence (30) yields

Re

{
q(z) +

γλzq
′
(z)

`µ

}
> α (z ∈ U).

In view of Lemma 2 this implies that

Re{q(z)} > α+ (1− α)(2ρ− 1),

where

ρ = ρ(Re{γ}) =

1∫
0

(
1 + t

λRe{γ}
`µ

)−1
dt.

Putting Re{γ} = γ1 > 0, we have

ρ =

1∫
0

(
1 + t

λγ1
`µ

)−1
dt =

`µ

λγ1

1∫
0

u
`µ
λγ1
−1

(1 + u)−1du.

Using (16), (17), (18), and (19), we obtain

ρ = 2F1(1,
`µ

λγ1
;
`µ

λγ1
+ 1;−1)

=
1

2
2F1(1, 1;

`µ

λγ1
+ 1;

1

2
).

This finishes the proof. �

Choosing ` = 1 in Theorem 9, we obtain the next result.

Corollary 10. Let γ ∈ C with Re{γ} > 0 and λ > 0. Assume that
f ∈

∑
p satisfies the condition

Re
{

(1− γ)(zpDm
p,λf(z))µ + γzpDm

p,λf(z)(zpDm
p,λf(z))µ−1

}
> α

(0 ≤ α < 1, µ > 0, p ∈ N, m ∈ N0, z ∈ U).

Then
Re
{
zpDm

p,λf(z)f(z)
}µ

> α+ (1− α)(2ρ− 1),

where

ρ =
1

2
2F1

(
1, 1;

µ

λRe{γ}
+ 1;

1

2

)
.
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Corollary 11. Let γ ∈ R with γ ≥ 1. If f ∈
∑

p satisfies

(34) Re
{

(1− γ)zpImp (λ, `)f(z) + γzpIm+1
p (λ, `)f(z)

}
> α

(0 ≤ α < 1, λ, ` > 0, p ∈ N, m ∈ N0, z ∈ U),

then

Re{zpIm+1
p (λ, `)f(z)} > α+ (1− α)(2ρ∗ − 1)(1− γ−1) (z ∈ U),

where

ρ∗ =
1

2
2F1

(
1, 1;

`

γλ
+ 1;

1

2

)
.

Proof. The assertion follows by using the identity

γzpIm+1
p (λ, `)f(z) =

[
(1− γ)zpImp (λ, `)f(z) + γzpIm+1

p (λ, `)f(z)
]

+ (γ − 1)zpImp (λ, `)f(z).
(35)

�

Remark 12. (i) Note that if γ = µ > 0, λ = ` = 1, and m = 0 in Corollary
7, that is,

Re
{

(1 + γp)(zpf(z))γ + γzp+1f
′
(z)(zpf(z))γ−1

}
> α

(0 ≤ α < 1, p ∈ N, z ∈ U),
(36)

then (27) implies that

(37) Re {(zpf(z))γ} > 2α+ 1

3
(z ∈ U).

On the other hand, if f ∈
∑

p satisfies condition (36) then, by Theorem 9, we
get

Re {(zpf(z))γ} > 2(1− `n2)α+ (2`n2− 1) (z ∈ U),

which is better than (37).

(ii) We observe that if γ ∈ R satisfies γ > 0 and

k(z) =
Im+1
p (λ, `)f(z)

Im+1
p (λ, `)g(z)

+

(
1

γ
− 1

)
Imp (λ, `)f(z)

Imp (λ, `)g(z)
(z ∈ U),

then Theorem 4, applied for µ = 1, yields that

Re{k(z)} > α

γ

implies

(38) Re

{
Imp (λ, `)f(z)

Imp (λ, `)g(z)

}
>

2`α+ δγλ

2`+ δγλ
,

whenever

Re

{
Imp (λ, `)g(z)

Im+1
p (λ, `)g(z)

}
> δ (0 ≤ δ < 1, p ∈ N, m ∈ N0, z ∈ U).
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Let γ → +∞. Then it follows from (38) that

Re{k(z)} ≥ 0 (z ∈ U)

implies

Re

{
Imp (λ, `)f(z)

Imp (λ, `)g(z)

}
≥ 1 (z ∈ U),

whenever

Re

{
Imp (λ, `)g(z)

Im+1
p (λ, `)g(z)

}
> δ (0 ≤ δ < 1, p ∈ N, m ∈ N0, z ∈ U).

We will extend in the following theorem the above results.

Theorem 13. Suppose that the functions f and g are in
∑

p and suppose

that g satisfies condition (9). If

Re

{
Im+1
p (λ, `)f(z)

Im+1
p (λ, `)g(z)

−
Imp (λ, `)f(z)

Imp (λ, `)g(z)

}
> −(1− α)δλ

2`

(0 ≤ α < 1, 0 ≤ δ < 1, λ, ` > 0, p ∈ N, m ∈ N0, z ∈ U),

(39)

then

(40) Re

{
Imp (λ, `)f(z)

Imp (λ, `)g(z)

}
> α (z ∈ U)

and

Re

{
Im+1
p (λ, `)f(z)

Im+1
p (λ, `)g(z)

}
>

(2`+ λδ)α− λδ
2`

(0 ≤ α < 1, 0 ≤ δ < 1, λ, ` > 0, p ∈ N, m ∈ N0, z ∈ U).

(41)

Proof. Let

(42) q(z) =
1

(1− α)

{
Imp (λ, `)f(z)

Imp (λ, `)g(z)
− α

}
.

Then q is analytic on U and q(0) = 1. For

(43) φ(z) =
Imp (λ, `)g(z)

Im+1
p (λ, `)g(z)

(z ∈ U)

we observe that, by hypothesis, Re{φ(z)} > δ (0 ≤ δ < 1) for z ∈ U . A simple
computation shows that

λ(1− α)zq
′
(z)φ(z)

`
=
Im+1
p (λ, `)f(z)

Im+1
p (λ, `)g(z)

−
Imp (λ, `)f(z)

Imp (λ, `)g(z)

= Ψ(q(z), zq
′
(z)),

where

Ψ(r, s) =
λ(1− α)φ(z)s

`
(` ∈ R\{0}).
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Using (39), we obtain{
Ψ(q(z), zq

′
(z); z ∈ U

}
⊂ Ω =

{
w ∈ C : Re{w} > −λδ(1− α)

2`

}
.

For all reals r2, s1 ≤ −
(1 + r22)

2
we have that

Re {Ψ(ir2, s1)} =
λs1(1− α)Re{φ(z)}

`
≤ −λδ(1− α)(1 + r22)

2`

≤ −λδ(1− α)

2`
.

This shows that Ψ(ir2, s1) /∈ Ω for each z ∈ U. Hence, by Lemma 1, we
conclude that Re{q(z)} > 0 (z ∈ U). This proves (40). The proof of (41)
follows by using (40) and (41) in the identity

Re

{
Im+1
p (λ, `)f(z)

Im+1
p (λ, `)g(z)

}
= Re

{
Im+1
p (λ, `)f(z)

Im+1
p (λ, `)g(z)

−
Imp (λ, `)f(z)

Imp (λ, `)g(z)

}

+ Re

{
Imp (λ, `)f(z)

Imp (λ, `)g(z)

}
.

This finishes the proof. �

Putting ` = 1 in Theorem 13, we obtain the next result.

Corollary 14. Suppose that the functions f and g are in
∑

p and suppose

that g satisfies condition (9) with ` = 1. If

Re

{
Dm+1
p,λ f(z)

Dm+1
p,λ g(z)

−
Dm
p,λf(z)

Dm
p,λg(z)

}
> −(1− α)δλ

2

(0 ≤ α < 1, 0 ≤ δ < 1, λ > 0, p ∈ N, m ∈ N0, z ∈ U),

then

Re

{
Dm
p,λf(z)

Dm
p,λg(z)

}
> α (z ∈ U)

and

Re

{
Dm+1
p,λ f(z)

Dm+1
p,λ g(z)

}
>

(2 + λδ)α− λδ
2

(0 ≤ α < 1, 0 ≤ δ < 1, λ > 0, p ∈ N, m ∈ N0, z ∈ U).

For λ = 1 in Theorem 13 we get the following result.

Corollary 15. Suppose that the functions f and g are in
∑

p and suppose
that g satisfies

Re

{
Ip(m, `)g(z)

Ip(m+ 1, `)g(z)

}
> δ (0 ≤ δ < 1, z ∈ U).
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If

Re

{
Ip(m+ 1, `)g(z)

Ip(m+ 1, `)g(z)
− Ip(m, `)f(z)

Ip(m, `)g(z)

}
> −(1− α)δ

2`

(0 ≤ α < 1, 0 ≤ δ < 1, ` > 0, p ∈ N, m ∈ N0, z ∈ U),

then

Re

{
Ip(m, `)f(z)

Ip(m, `)g(z)

}
> α (z ∈ U)

and

Re

{
Ip(m+ 1, `)f(z)

Ip(m+ 1, `)g(z)

}
>

(2`+ δ)α− δ
2`

(0 ≤ α <, 0 ≤ δ < 1, ` > 0, p ∈ N, m ∈ N0, z ∈ U).

Remark 16. For δ = λ = ` = 1, m = 0, and g(z) =
1

zp
in Theorem 13 we

get that

Re

{
zpf(z) +

zp+1

p
f ′(z)

}
> −(1− α)

2p
(0 ≤ α < 1, p ∈ N, z ∈ U)

implies
Re{zpf(z)} > α (0 ≤ α < 1, p ∈ N, z ∈ U)

and

Re{(1 + p)zpf(z) + zp+1f ′(z)} > 3α− 1

2
(0 ≤ α < 1, p ∈ N, z ∈ U).
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