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POSINORMAL FACTORABLE MATRICES WHOSE
INTERRUPTER IS DIAGONAL

H. CRAWFORD RHALY, JR.

Dedicated to Thomas L. Kriete, III

Abstract. First we determine sufficient conditions for a lower triangular fac-
torable matrix to be a posinormal operator on `2. Then we compute the inter-
rupter and determine when it will be a diagonal matrix. This leads us to a large
collection of hyponormal factorable matrices.
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1. INTRODUCTION

Throughout this paper we assume that M is a lower triangular infinite
matrix acting through multiplication to give a bounded linear operator on
`2. If {an} and {cn} are sequences of real or complex numbers, then M :≡
M({an}, {cn}) is said to be factorable if its nonzero entries mij satisfy mij =
aicj , where ai depends only on i (for i = 0, 1, 2, . . . ) and cj depends only
on j (for j = 0, 1, 2, . . . ); a factorable matrix M is terraced if cj = 1 for all
j. The operator M is hyponormal if it satisfies 〈[M∗,M ]f, f〉 ≡ 〈(M∗M −
MM∗)f, f〉 ≥ 0 for all f in `2.

Initially we consider the Cesàro matrix C, the factorable matrix that occurs
when ai = 1

i+1 and cj = 1 for all i,j, and we let D denote the diagonal matrix

with diagonal {1
2 ,

2
3 , ...,

n+1
n+2 , . . . }. It can be verified that CC∗ = C∗DC and

hence

〈[C∗, C]f, f〉 ≡ 〈(C∗C − CC∗)f, f〉 = 〈(I −D)Cf,Cf〉 ≥ 0

for all f in `2, so C is easily seen to be a hyponormal operator on `2; for a
different proof, as well as a proof that C is a bounded operator on `2, see
[1]. This example provided the original motivation for the introduction of
posinormal operators in [20]. M is posinormal if there is a bounded, positive
operator P on `2 satisfying MM∗ = M∗PM , and the operator P is referred
to as an interrupter for M . We note that posinormal operators have also been
studied in a more general setting in [2, 3, 5, 6, 9, 10, 12, 13, 15, 22, 23].

Using the fact that the interrupter for C is a diagonal matrix, we present
the following adaptation of [20, Theorem 2.5].

The author wishes to express his gratitude to Billy Rhoades, who suggested the expansion
of the study of the operators in [21] to include factorable matrices.
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Proposition 1.1. If qn is chosen from the interval
[
n+1
n+2 , 1

]
for each n, then

the factorable matrix T = [tij ], where tij = aicj with ai =
√
qi

i+1 and cj =
√
qj,

is hyponormal.

Proof. If Q is the diagonal matrix with diagonal {q0, q1, . . . , qn, . . . }, then
I ≥ Q ≥ D and T =

√
QC
√
Q, so that

[T ∗, T ] =
√
QC∗QC

√
Q−

√
QC∗DC

√
Q+

√
QC∗DC

√
Q−

√
QCQC∗

√
Q

=
√
QC∗(Q−D)C

√
Q+

√
QC(I −Q)C∗

√
Q.

Therefore

〈[T ∗, T ]f, f〉 = 〈(Q−D)C
√
Qf,C

√
Qf〉+ 〈(I −Q)C∗

√
Qf,C∗

√
Qf〉 ≥ 0

for all f in `2, so T is hyponormal. �

Seeing what happened for the Cesàro matrix, we now set out in search
of other posinormal lower triangular factorable matrices having a diagonal
matrix for interrupter, in hopes that this will once again result in manageable
arithmetic that will uncover some more examples of hyponormal factorable
matrices. As a first step, we obtain sufficient conditions for the posinormality
of a lower triangular factorable matrix.

2. SUFFICIENT CONDITIONS FOR A FACTORABLE MATRIX TO BE POSINORMAL

In [20] it was observed that the set of all posinormal operators on any Hilbert
space H is an enormous collection that includes every invertible operator and
all the hyponormal operators. Here we are concerned with H = `2 and we
employ the techniques of [21] to obtain an alternative route for identifying
posinormal, and potentially hyponormal, lower triangular factorable matrices
in cases when the matrices may not be invertible. Our first theorem presents
sufficient conditions.

Theorem 2.1. Suppose M = M({an}, {cn}) is a factorable matrix that acts
as a bounded operator on `2 and that the following conditions are satisfied:

(1) {an} and
{
an
cn

}
are positive decreasing sequences that converge to 0;

(2) {cn} and
{

(n+ 1)
(

1
cn
− 1

cn+1

an+1

an

)}
are bounded sequences.

Then M is posinormal.

Proof. We will display an operator B on `2 that satisfies M* = BM ; con-
sequently, M = M*B* also, and it will follow from [20, Theorem 2.1] that M
is posinormal.

We define B = [bmn] by

bmn =


cm( 1

cn
− 1

cn+1

an+1

an
) if m ≤ n;

−an+1

an
if m = n+ 1;

0 if m > n+ 1.
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Condition (2) will help us show that B is a bounded operator on `2. Let R =

M(s, 1), where s =
{

1
cn
− 1

cn+1

an+1

an
: n = 0, 1, 2, . . .

}
, so R is a terraced matrix

with all of its entries nonnegative. The diagonal matrix D1 with diagonal{
(n+ 1)

(
1
cn
− 1

cn+1

an+1

an

)}
is positive and bounded, and hence R = D1C is

bounded. The diagonal matrix D2 with diagonal {cn} is bounded, so RD2 is
bounded. We observe that (B∗ −RD2) is the adjoint of a unilateral weighted
shift; since {an} is positive and decreasing, (B∗−RD2) is bounded. Therefore
B∗ = RD2 + (B∗ − RD2) is a bounded operator, and hence B is bounded
also. A direct computation using condition (1) shows that M* = BM , as
needed. �

Corollary 2.2. Suppose M = M({an}, {cn}) acts as a bounded operator
on `2 and that the following conditions are satisfied:

(1) {an} and {ancn } are positive decreasing sequences that converge to 0;

(2) {cn} is a decreasing sequence such that limn→∞ cn > 0;

(3)
{

(n+ 1)
(

1− an+1

an

)}
is a bounded sequence.

Then M is posinormal.

Example 2.3. Consider the case where ai = 1
i+1 and cj = 1

2 +
(

1
10

)j+1
for

each i, j. This example satisfies all parts of the hypothesis of Corollary 1, so
the associated factorable matrix gives a posinormal operator on `2. We note
that boundedness follows from the fact that all of the entries are nonnegative
and are dominated by the corresponding entries of C.

Corollary 2.4. If a = {an} is a positive decreasing sequence that con-
verges to 0 and {nan} is an increasing sequence that converges to L < +∞,
then the terraced matrix M = M(a, 1) is posinormal.

Remark 2.5. We note that the sufficient conditions of Theorem 2.1 are
not necessary for the posinormality of a factorable matrix M . Consider, for
example, the discrete generalized Cesàro matrices (see [16, 17]), occurring

when ai = αi

i+1 and cj = 1
αj for all i,j and 0 < α < 1. Since {cj} is not

bounded, condition (2) of the theorem is not satisfied, although these matrices
were shown to be posinormal in [20, Theorem 4.1], where a different approach
was used to prove that B is a bounded operator on `2.

In view of Remark 2.5, we include the following modification of Theorem
2.1.

Theorem 2.6. Suppose M = M({an}, {cn}) is a factorable matrix that acts
as a bounded operator on `2 and that the following conditions are satisfied:

(1) {an} and
{
an
cn

}
are positive decreasing sequences that converge to 0;

(2) the matrix B from the proof of Theorem 2.1 is a bounded operator on
`2.

Then M is posinormal.
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The next result gives sufficient conditions for the posinormality of the ad-
joint of a lower triangular factorable matrix.

Theorem 2.7. Suppose M = M({an}, {cn}) is a factorable matrix that acts
as a bounded operator on `2 and that the following conditions are satisfied:

(1) {an} and
{
an
cn

}
are positive decreasing sequences that converge to 0,

(2)
{
cn−1

cn

}
and

{
1
an
− cn−1

cn
1

an−1

}
are bounded sequences for n ≥ 1.

Then M∗ is posinormal.

Proof. We define T = [tmn] by

tmn =


am
an

if n = 0;

am( 1
an
− cn−1

cn
1

an−1
) if 0 < n ≤ m;

− cn−1

cn
if n = m+ 1;

0 if n > m+ 1.

Since the sequence
{

1
an
− cn−1

cn
1

an−1

}
is bounded for n ≥ 1, the diagonal ma-

trix D with diagonal
{

1
a0
, 1
a1
− c0

c1
1
a0
, 1
a2
− c1

c2
1
a1
, 1
a3
− c2

c3
1
a2
, . . .

}
is bounded, so

MD is bounded. Also, the weighted shift W with weight sequence
{
cn−1

cn

}
is bounded for n ≥ 1. Therefore T = MD −W ∗ is a bounded operator. A
routine computation shows that M = TM∗. By [20, Theorem 2.1], M∗ is
posinormal. �

Corollary 2.8. Suppose M = M({an}, {cn}) acts as a bounded operator
on `2 and that the following conditions are satisfied:

(1) {an} and
{
an
cn

}
are positive decreasing sequences that converge to 0;

(2) {cn} is a decreasing sequence such that limn→∞ cn > 0;
(3) {nan} is an increasing sequence that converges to L < +∞.
Then M∗ is posinormal.

Corollary 2.9. If a = {an} is a positive decreasing sequence that con-
verges to 0 and {(n + 1)an} is an increasing sequence that converges to L <
+∞, then M∗ = M(a, 1)∗ is posinormal.

We note that Example 2.3 satisfies all the conditions in the hypothesis
of Corollary 2.8, so the associated factorable matrix is both posinormal and
coposinormal. In fact, any factorable matrix that satisfies all of the conditions
in the hypothesis of Corollary 2.8 will be both posinormal (see Corollary 2.2)
and coposinormal.

We close this section with a modified version of Theorem 2.7.

Theorem 2.10. Suppose M = M({an}, {cn}) is a factorable matrix that
acts as a bounded operator on `2 and that the following conditions are satisfied:

(1) {an} and
{
an
cn

}
are positive decreasing sequences that converge to 0;
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(2) the matrix T from the proof of Theorem 2.7 is a bounded operator on
`2.

Then M∗ is posinormal.

3. POSINORMAL FACTORABLE MATRICES WITH A DIAGONAL INTERRUPTER

In order to obtain the interrupter for M , we will use the matrix B mentioned
in Theorem 2.6 (and displayed in the proof of Theorem 2.1). For B bounded
and satisfying M*= BM , we now compute the interrupter P = B*B; the
entries of P = [pmn] are given by

pmn =


c2nc

2
n+1a

2
n+1+(

∑n
k=0 c

2
k)(cn+1an−cnan+1)2

c2nc
2
n+1a

2
n

if m = n;

(cmam+1−cm+1am)[cn(
∑n+1

k=0 c
2
k)an+1−cn+1(

∑n
k=0 c

2
k)an]

cmcm+1cncn+1aman
if m > n;

(cnan+1−cn+1an)[cm(
∑m+1

k=0 c2k)am+1−cm+1(
∑m

k=0 c
2
k)am]

cmcm+1cncn+1aman
if m < n.

Inspection of the entries reveals that P will be a diagonal matrix when the

sequence
{(∑n

k=0 c
2
k

)
an
cn

}
is constant or when the sequence

{
an
cn

}
is constant;

the latter possibility will not be useful because of condition (1) in Theorem
2.6, so we proceed with consideration of the former, and that leads to the
following results.

Theorem 3.1. For fixed α ≥ 1, take ai =
√

Γ(i+1)
Γ(i+α)

1
i+α and cj =

√
Γ(j+α)
Γ(j+1)

for each i, j. Then M = M({an}, {cn}) is a hyponormal bounded operator on
`2.

Proof. We note that M is bounded for α ≥ 1 since all of its entries are
nonnegative and dominated by the corresponding entries of C. Next we need
to show that the hypothesis of Theorem 2.6 is satisfied. It is straightforward

to verify that
{√

Γ(n+1)
Γ(n+α)

1
n+α

}
and

{
Γ(n+1)
Γ(n+α)

1
n+α

}
are positive decreasing se-

quences that converge to 0, so we leave that to the reader. To assist in showing

that B is bounded, we let W denote the weighted shift with weights
{
an+1

an

}
;

W is bounded since limn−>∞
an+1

an
= 1. Next we observe that all of the entries

of B+W are nonnegative and dominated by the corresponding entries of αC∗,
so B+W is bounded. Therefore B = (B+W )−W is bounded, and it follows
that P = B∗B is bounded also.

It can be shown by induction that
∑n

k=0 c
2
k = 1

α
Γ(α+n+1)

Γ(n+1) for all n. Therefore(∑n
k=0 c

2
k

)
an
cn

= 1
α for all n. It is easily verified that pnn = n+α

n+1+α for each n.
It follows that MM∗ = M∗PM and hence

〈[M∗,M ]f, f〉 ≡ 〈(M∗M −MM∗)f, f〉 = 〈(I − P )Mf,Mf〉 ≥ 0

for all f in `2, since I − P is a diagonal matrix with diagonal
{

1
n+1+α

}
;

therefore the factorable matrix M is a hyponormal operator on `2. �
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We observe that when α = 1, M is the Cesàro matrix C. Next we consider
the matrix M that occurs when α = 2; that is, when ai = 1√

i+1(i+2)
and cj =

√
j + 1 for all i,j. For this example, the interrupter P is the diagonal matrix

with diagonal
{

2
3 ,

3
4 , ...,

n+2
n+3 , . . .

}
satisfyingMM∗ = M∗PM , as required, and,

since I − P ≥ 0, this factorable matrix M is a hyponormal bounded operator
on `2. It is worth noting that the adjoint of this matrix was studied in [18],
and the techniques used there can be adapted to the more general situation
here to give a proof of the following theorem.

Theorem 3.2. If M is the matrix defined in Theorem 3.1, then M has
norm ‖M‖ = 2

α and spectrum σ(M) = {λ :
∣∣λ− 1

α

∣∣ ≤ 1
α}.

We note that although the factors of the nonzero matrix entries mij = aicj
in Theorem 3.1 are reminiscent of the factors in the operators of Kay, Soul,
and Trutt [7], those operators – other than the Cesàro matrix – do not satisfy

our requirement that the sequence
{(∑n

k=0 c
2
k

)
an
cn

}
be constant. For other

related information, see [8, Section 4.1.3].

Theorem 3.3. Let M denote the matrix defined in Theorem 3.1. For fixed

α ≥ 1 and for each n ≥ 0, choose qn in the interval
[

n+α
n+1+α , 1

)
. If Q is the di-

agonal matrix with diagonal {qn}, then T ≡
√
QM
√
Q is another hyponormal

factorable matrix.

Proof. To see that T is factorable, note that T = [tij ] where tij = risj with
ri = ai

√
qi depending only on i and sj = cj

√
qj depending only on j. To settle

the question of hyponormality, we note that I ≥ Q ≥ P and that reasoning
similar to that used in Proposition 1.1 shows that

[T ∗, T ] =
√
QM∗(Q− P )M

√
Q+

√
QM(I −Q)M∗

√
Q.

Therefore

〈[T ∗, T ]f, f〉 = 〈(Q− P )M
√
Qf,M

√
Qf〉+ 〈(I −Q)M∗

√
Qf,M∗

√
Qf〉 ≥ 0

for all f in `2, so T is hyponormal. �

We close with a theorem and corollary that will summarize the general situ-
ation encountered here. These results will be followed by some more examples,
whose details are left to the interested reader.

Theorem 3.4. Suppose M = M({an}, {cn}) is a factorable matrix that acts
as a bounded operator on `2 and that the following conditions are satisfied:

(1) {an} and
{
an
cn

}
are positive decreasing sequences that converge to 0;

(2) the matrix B = [bmn] from the proof of Theorem 2.1 is a bounded oper-
ator on `2;

(3) the sequence {(
∑n

k=0 c
2
k)
an
cn
} is constant;

(4) 1 ≥ pnn ≥ 0 for all n, where pnn =
c2nc

2
n+1a

2
n+1+(

∑n
k=0 c

2
k)(cn+1an−cnan+1)2

c2nc
2
n+1a

2
n

.
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Then M is posinormal with a diagonal interrupter, and, furthermore, M is
hyponormal.

Corollary 3.5. Suppose M is a factorable matrix that acts as a bounded
operator on `2 and satisfies conditions (1)–(4). If Q is the diagonal matrix
with diagonal {qn} where 1 ≥ qn ≥ pnn for all n, then T ≡

√
QM
√
Q is

another hyponormal factorable matrix.

Example 3.6. The factorable matrices M = M({an}, {cn}) defined below
are bounded on `2 and can be shown to satisfy conditions (1)–(4) of Theorem
3.4.

(a) M determined by ai = 1
(i+2)(2i+3) and cj = j + 1 for all i, j;

(b) M determined by ai = i+1
(i+2)(2i+3)(3i2+9i+5)

and cj = (j + 1)2 for all i, j;

(c) M determined by cj = βj and ai = βi∑i
k=o β

2k
, where β ≥ 2, for all i, j.
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(Szeged), 26 (1965), 125–137.

[2] Cha, H., Lee, K. and Kim, J., Superclasses of posinormal operator, Int. Math. J., 2
(2002), 543–550.

[3] Duggal, B.P. and Kubrusly, C., Weyl’s theorem for posinormal operators, J. Korean
Math. Soc., 42 (2005), 529–541.

[4] Halmos, P.R., A Hilbert space problem book, Second Edition, Springer-Verlag, Berlin,
1982.

[5] Itoh, M. Characterization of posinormal operators, Nihonkai Math. J., 11 (2000), 97–
101.

[6] Jeon, I.H., Kim, S.H., Ko, E. and Park, J.E., On positive-normal operators, Bull.
Korean Math. Soc., 39 (2002), 33–41.

[7] Kay, E., Soul, H. and Trutt, D., Some subnormal operators and hypergeometric
kernel functions, J. Math. Anal. Appl., 53 (1976), 237–242.

[8] Kriete, T.L., III, and Rhaly, H.C., Jr., Translation semigroups on reproducing
kernel Hilbert spaces, J. Operator Theory, 17 (1987), 33–83.

[9] Kubrusly, C. and Duggal, B., On posinormal operators, Adv. Math. Sci. Appl., 17
(2007), 131–147.

[10] Kubrusly, C., Tensor product of proper contractions, stable and posinormal operators,
Publ. Math. Debrecen, 71 (2007), 425–437.

[11] Leibowitz, G., Rhaly matrices, J. Math. Anal. Appl., 128 (1987), 272–286.
[12] Mecheri, S.. Generalized Weyl’s theorem for posinormal operators, Math. Proc. R. Ir.

Acad., 107 (2007), 81–89.
[13] Mecheri, S. and Seddik, M., Weyl type theorems for posinormal operators, Math.

Proc. R. Ir. Acad., 108 (2008), 69–79.
[14] Olmsted, J.M.H., Advanced calculus, Appleton-Century-Crofts, New York, 1961.
[15] Panayappan, S. and Radharamani, A., Posinormal composition and weighted com-

position operators, Int. J. Contemp. Math. Sci., 4 (2009), 1261–1264.
[16] Rhaly, H.C., Jr.,, Discrete generalized Cesàro operators, Proc. Amer. Math. Soc., 86
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