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A NOTE ON ANNIHILATORS AND INJECTIVITY

ROGER YUE CHI MING

Abstract. It is proved that every two-sided ideal of a ring A is generated by
a central idempotent if and only if every two-sided ideal of A is the left and
right annihilator of an element of A and the intersection of the Jacobson radical,
the left singular ideal and the right singular ideal of A is zero. The following
generalization of injective modules, distinct from p-injective modules, is studied:
a left A-module M is said to satisfy property (*) if, for any left submodule N of M
isomorphic to a complement left submodule C of M , every left A-monomorphism
of N into C extends to a left A-homomorphism of M into C.
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Throughout, A denotes an associative ring with identity and A-modules
are unital. J, Z, Y will stand respectively for the Jacobson radical, the left
singular ideal and the right singular ideal of A. An ideal of A will always
mean a two-sided ideal of A. Of course, J, Z, Y are ideals of A. For any left
A-module M , Z(M) = {y ∈ M | l(y) is an essential left ideal of A} is the left
singular submodule of M . The singular submodule Z(R) of a right A-module
R is similarly defined. Thus Z = Z(AA) and Y = Z(AA). AM is called
singular (respectively non-singular) if Z(M) = M (respectively Z(M) = 0).
A is called a left non-singular ring if Z = 0. As usual, a submodule N of M is
called a complement (or closed) submodule of M if N has no proper essential
extension in M [7]. For results on non-singular rings and modules, consult
Goodearl’s classic [7]. The concept of non-singular rings is fundamental in the
development of ring theory after the structure theory of N. Jacobson (cf. [6,
p. 180]).

Following [6], write “A is V NR” if A is a von Neumann regular ring. A is
V NR if and only if every left (right) A-module is p-injective ([1], [2], [12], [16],
[18]) if and only if every left (right) A-module is Y J-injective [23, Theorem 9].

A left A-module M is called (a) p-injective if, for every principal left ideal P
of A, any left A-homomorphism of P into M extends to one of A into M (cf.
[6, p. 122], [15, p. 340], [18]); (b) Y J-injective if, for every 0 6= a ∈ A, there
exist a positive integer n such that an 6= 0 and any left A-homomorphism
of Aan into M extends to one of A into M ([4], [16], [19], [20], [22], [23]).
P -injectivity and Y J-injectivity are similarly defined on the right side.
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A is called a left p-injective (respectively Y J-injective) ring if AA is p-
injective (respectively Y J-injective). Y J-injectivity is called GP -injectivity
in [3], [10], [11], [13]. It may be noted that A is left Y J-injective if and only if,
for every 0 6= a ∈ A, there exist a positive integer n such that anA is a non-zero
right annihilator [19, Lemma 3]. A left (right) ideal of A is called reduced if
it contains no non-zero nilpotent element. A is called fully (respectively (a)
fully left; (b) fully right) idempotent if every ideal (respectively (a) left ideal;
(b) right ideal) of A is idempotent.

Recall that A is a biregular ring if, for every a ∈ A, AaA is generated by a
central idempotent. This motivates the next result.

Theorem 1. The following conditions are equivalent:

(1) Every ideal of A is generated by a central idempotent;
(2) Every ideal of A is the left and right annihilator of an element of A

and J ∩ Z ∩ Y = 0.

Proof. Assume (1). Since J cannot contain a non-zero idempotent, J = 0.
Now for any ideal T of A, T = Ae, where e is a central idempotent in A. Since
T = l(1− e) = r(1− e), assertion (1) implies (2).

Assume (2). Suppose there exists a non-zero ideal T of A such that T 2 = 0.
If 0 6= t ∈ T , then l(AtA) is an essential right ideal of A and r(AtA) is an
essential left ideal of A. By hypothesis, AtA = l(b) = r(b), b ∈ A. Then
AtA = l(AbA) = r(AbA) and r(AtA) = r(l(AbA)) = AbA, which implies that
AbA is an essential left ideal of A. Similarly, AbA is an essential right ideal of A.
Now AbA = l(c) = r(c), c ∈ A, which implies that AbA = l(AcA) = r(AcA),
whence AcA ⊆ Z ∩ Y . Suppose that AcA 6= 0. Since AbA is essential in AA,
N = AcA ∩ AbA is a non-zero left ideal of A and N2 ⊆ AbAcA = 0, which
yields N ⊆ J , whence N ⊆ AcA∩J ⊆ Z∩Y ∩J = 0, which is a contradiction.
We have proved that A is a semi-prime ring.

Now for any z ∈ Z, AzA = l(AuA) = r(AuA), u ∈ A. Since A is semi-
prime, r(AzA) = l(AzA) = l(r(AuA)) = AuA. Then AzA + AuA = AzA +
r(AzA) is an essential left ideal of A and AzA+r(AzA) = l(w) = r(w), w ∈ A.
Since AzAw = 0 and l(AzA)w = r(AzA)w = 0, we have w ∈ r(l(AzA)) =
AzA. Therefore (AwA)2 ⊆ (AzA)(AwA) = 0 and since A is semi-prime,
w = 0. Now AzA + r(AzA) = A and since AzA ∩ r(AzA) = 0 (because A
is semi-prime), we have A = AzA ⊕ r(AzA). But Z cannot contain a non-
zero idempotent and hence z = 0, which yields Z = 0. For any ideal T of A,
T = l(d), d ∈ A, and if AE is an essential extension of AT , for any y ∈ E, there
exists an essential left ideal L of A such that Ly ⊆ T . Then Lyd = 0 implies
that yd ∈ Z = 0, whence y ∈ l(d) = T . Therefore T is a complement left ideal
of A. Now T ∩ r(T ) = 0 (A being semi-prime), and if K is a complement left
ideal of A such that S = (T ⊕ r(T )) ⊕K is an essential left ideal of A, then
TK ⊆ T ∩K = 0 implies that K ⊆ r(T ), whence K = 0 and S = T ⊕ r(T ) is
an essential left ideal of A. But S is a complement left ideal of A as above and
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hence A = S = T ⊕ r(T ). Therefore T is generated by a central idempotent
(in as much as A is semi-prime). Thus (2) implies (1). �

Corollary 1. If every ideal of A is the left and right annihilator of an
element of A and J ∩ Z ∩ Y = 0, then A is biregular.

Applying [21, Theorem 1.6] to Theorem 1, we get

Corollary 2. If every complement left ideal of A is an ideal of A and
every ideal of A is the left and right annihilator of an element of A with
J ∩ Z ∩ Y = 0, then A is a reduced fully left idempotent left Goldie ring.

Remark. In Theorem 1, the condition J ∩ Z ∩ Y = 0 is not superfluous in
(2) (otherwise, any principal left and right ideal quasi-Frobenius ring would
be semi-simple Artinian!).

We now turn to generalizations of injectivity. As usual, a left A-module M
is called continuous if (a) every complement left submodule of M is a direct
summand of M and (b) every left submodule of M which is isomorphic to a
direct summand of M is a direct summand of M . A is called a left continuous
ring (in the sense of Y. Utumi [14]) if AA is continuous. If A is left continuous,
then A/J is left continuous regular and Z = J [14, Lemma 4.1].

Here we introduce an effective generalization of injective modules, distinct
from p-injective modules.

Definition 1. A left A-module M satisfies property (*) if, for any left
submodule N of M which is isomorphic to a complement left submodule C of
M , every left A-monomorphism of N into C extends to a left A-homomorphism
of M into C.

Since any simple left A-module satisfies property (*), then a module satis-
fying property (*) needs not be p-injective (otherwise, any ring would be fully
left and right idempotent (cf. [1, p. 121] and [15, p. 340]). The converse is
not true either (otherwise, any V NR ring would be continuous (cf. Theorem
3 below)).

Theorem 2. Let M be a left A-module satisfying property (*), E = End(AM)
and J(E) the Jacobson radical of E. Then J(E) = {f ∈ E | ker f is essential
in AM} and E/J(E) is V NR.

Proof. Set T = {f ∈ E | ker f is essential in AM}. Then it is well-known
that T is an ideal of E. We show that T ⊆ J(E). Let f ∈ T , b ∈ E. With
u = 1 − bf , since ker f ∩ ker u = 0, we have keru = 0. If v : uM → M is the
inverse isomorphism of M → uM , then v extends to an endomorphism h of
AM . For any m ∈ M , hu(m) = h(um) = v(um) = vu(m) = m, which proves
that hu is the identity map on M . Therefore f ∈ J(E) and hence T ⊆ J(E).
Now if 0 6= ḡ ∈ E/J(E), g ∈ E, g /∈ J(E) implies that g /∈ T . Let C be a non-
zero complement left submodule of M such that L = ker g ⊕C is an essential
submodule of M . The restriction r of g to C is an isomorphism of C onto
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r(C). Let z : r(C) → C denote the inverse isomorphism of r. By hypothesis,
z extends to a left A-homomorphism t : M → C. If j : C → M is the inclusion
map, for every c ∈ C, jt ∈ E, jtg(c) = jtr(c) = jzr(c) = j(c) = c, which
yields L ⊆ ker (gjtg− g), whence ḡ(jt)ḡ = ḡ ∈ E/J(E), proving that E/J(E)
is a V NR ring. It remains to show that J(E) ⊆ T . If we suppose that there
exists w ∈ J(E) such that w /∈ T , the preceding argument shows that there
exist d ∈ E such that wdw − w ∈ T . Since dw ∈ J(E), there exists s ∈ E
such that (1 − dw)s = 1. Then w = w(1 − dw)s = (w − wdw)s ∈ T (in
as much as T is an ideal of E), which is a contradiction. Finally, we have
J(E) = T = {f ∈ E | ker f is essential in AM}. �

Lemma 1. Any continuous left A-module satisfies property (*).

Proof. If AM is continuous and N a submodule isomorphic to a complement
left submodule C of M , then both N and C are direct summands of M . In that
case, any left A-monomorphism of N into C extends to a left A-homomorphism
of M into C. Therefore M satisfies property (*). �

Combining Lemma 1 with Theorem 2, we get

Proposition 1. Let M be a continuous left A-module and E = End(AM).
Then the Jacobson radical of E is J(E) = {f ∈ E | ker f is essential in AM}
and E/J(E) is a V NR ring.

Lemma 2. Let M be a left A-module satisfying property (*). Then every
complement left submodule of M is a direct summand of M .

Proof. Let C be a complement left submodule of M . If i : C → C is the
identity map on C, then i extends to a left A-homomorphism of M into C.
If j : C → M is the inclusion map, then there exist a left A-homomorphism
h : M → C such that hj = i. This proves that C is a direct summand of
M . �

We say that “A satisfies property (*)” if AA satisfies property (*).

Theorem 3. The following conditions are equivalent:
(1) A is left continuous regular;
(2) A is a left p-injective left non-singular ring satisfying property (*).

Proof. (1) implies (2) by Lemma 1.
Assume (2). Then any left ideal of A isomorphic to a direct summand of

AA is a direct summand of AA (cf. [20, p. 439]). By Lemma 2, A is left
continuous. Since Z = 0, A is VNR by [14, Lemma 4.1]. Thus (2) implies
(1). �

As usual, for a left submodule N of a left A-module M , ClM (N) = {y ∈
M | Ly ⊆ N for some essential left ideal L of A} is the closure of N in M . A
theorem of I. Kaplansky asserts that a commutative ring A is V NR if and
only if every simple A-module is injective. This has motivated a large number
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of papers on generalizations of those rings in the non-commutative case. Rings
whose simple singular right modules are Y J-injective are studied in [4], [10],
[11].

Proposition 2. Let A be a semi-prime ring whose simple singular right
modules are Y J-injective. For any homomorphic image Q of a left A-module
satisfying property (*), Z(Q) is a direct summand of Q.

Proof. Let g : M → Q be an epimorphism of left A-modules M , Q with M
satisfying property (*). Then M/ker g ∼= Q. Since every simple singular right
A-module is Y J-injective and A is semi-prime, Z = 0 [22, Proposition 2]. Since
g is an epimorphism, g−1(Z(Q)) = ClM (ker g). Since Z = 0, ClM (ker g) is a
complement submodule of M by [17, Theorem 4]. By Lemma 2, ClM (ker g) is
a direct summand of M . Therefore M = g−1(Z(Q))⊕N for some submodule
N of M . This yields Q = g(M) = Z(Q)⊕ g(N), where g(N) ∼= N . �

Proposition 3. The following conditions are equivalent:
(1) A is a left Noetherian ring whose p-injective left modules are injective;
(2) Every p-injective left A-module is injective;
(3) Every p-injective left A-module satisfies property (*).

Proof. Clearly, (1) implies (2) while (2) implies (3).
Assume (3). Let M be a p-injective left A-module and AE the injective hull

of AM . Set Q = AM ⊕A E. Then AQ is p-injective, which therefore satisfies
property (*). Let u : M → E be the inclusion map and j : E → Q the natural
injection. Then ju : M → Q, and since AQ satisfies property (*), the identity
map i : M → M extends to a left A-homomorphism h : Q → M . Therefore
hju = i. Since u : M → E is the inclusion map and hj : E → M a map such
that (hj)u is the identity map on M , AM is a direct summand of AE, which
yields M = E injective. If S is a direct sum of injective left A-modules, since
a direct sum of p-injective left A-modules is p-injective, then S is p-injective
and hence injective. This proves that A is left Noetherian [5, Theorem 20.1].
Thus (3) implies (1). �

Y J-injectivity effectively generalizes p-injectivity, even for rings [3]. Since
a left and right Y J-injective left Noetherian ring is quasi-Frobenius, we get

Corollary 3. If A is a left and right Y J-injective ring whose p-injective
left modules satisfy property (*), then A is quasi-Frobenius.
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