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DIFFERENTTAL SANDWICH THEOREMS FOR ANALYTIC
FUNCTIONS DEFINED BY THE DZIOK-SRIVASTAVA LINEAR
OPERATOR
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Abstract. In this paper we extend previously known results and obtain two
sandwich theorems for analytic functions in the unit disk defined with the Dziok-
Srivastava linear operator.
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1. INTRODUCTION

Let H = H (U) denote the class of functions analyticinU = {z € C: |z| < 1}.
For n a positive integer and a € C, let

Hla,n]={feH: : f(z)=a+anz"+...}.
We also consider the class
A={feH : f(z)=z+a*+...}.

_ We denote by Q the set of functions f that are analytic and injective on
U\ E (f), where

E<f>={<eaU:;;néf<z>=oo},

and are such that f’(¢) # 0 for € U \ E (f).

Since most of the functions considered in this paper and conditions on them
are defined uniformly in the unit disk U, we shall omit the requirement “z €
U”.

We use the terms of subordination and superordination, so we review here
these definitions. Let f, F' € H. The function f is said to be subordinate to
F, or F is said to be superordinate to f, if there exists a function w analytic
in U, with w (0) =0 and |w ()| < 1, and such that f (2) = F (w (2)). In such
a case we write f < F or f(z) < F (z). If F is univalent, then f < F' if and
only if f(0) = F (0) and f(U) C F (U).
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Let ¢: C3 x U — C, let h be univalent in U and ¢ € Q. In [4], the authors
considered the problem of determining conditions on admissible functions
such that

(1) U (p(2), 20 (2),2°0" (2):2) < h(2)

implies p (z) < ¢ (z) for all functions p € H [a,n| that satisfy the differential
subordination (1). Moreover, they found conditions so that the function ¢ is
the “smallest” function with this property, called the best dominant of the
subordination (1).

Let ¢: C3xU — C, let h € H and q € H [a,n]. Recently, in [5], the authors
studied the dual problem and determined conditions on ¢ such that

(2) h(z)<¢(p(z), 20 (2),2°D" (2);2)

implies ¢ (2) < p(2), for all functions p € Q that satisfy the above differential
superordination. Moreover, they found conditions so that the function ¢ is
the “largest” function with this property, called the best subordinant of the
superodination (2).

For two functions f(z) = z+ > o2 5a,2" and g (2) = z + > o2, b, 2", the
Hadamard product (or convolution) of f and g is defined by

(f*xg)(2):=2+ Zanbnz”.
n=2

ForimeN,I<m+1,0;€C,j=1,2,...,l,and §; € C\ {0,-1,-2,...},
j=1,2,...,m, the generalized hypergeometric function

1Fm (01, 00581, - Bmi 2)

is given by the infinite series

. e (), e (), 2"
lFm(alu"'7al7/617'”7ﬂm,2) _nz:;)(ﬂl)n(ﬁm)nn'

(I<m+1;l,meN)

where (a), is the Pochhammer symbol defined by

_T(a+n) (1 ifn=20
(a), '_F(a)_{ ala+1)(a+2)...(a+n—1) ifneN*.

Corresponding to the function

h(alw")al;ﬁl""uﬁm;z) = ZlFm(Oél,...,O[l;ﬂl,...,ﬂm;Z)



3 Differential sandwich theorems 87

the Dziok-Srivastava operator H!, (ay,...,a; B4, ..., Bm) is given in [3] by the
Hadamard product

Hy, (ar,. a1, ) f(2)
::h(alv"'aal;/@h"'aﬁm;z)*f(z)

L () () e
R YA

Bm)y, n!

For brevity, we write
an [a1] f (2) :== an(al,...,al;ﬂl,...,ﬂm)f(z).

In this paper we will determine some properties on admissible functions
defined with the Dziok-Srivastava linear operator.

2. PRELIMINARIES
In our present investigation we shall need the folllowing results.

THEOREM 2.1 ([4], Theorem 3.4h., p. 132). Let q be univalent in U and
let 6 and ¢ be analytic in a domain D containing q (U), with ¢ (w) # 0, when

w € qU). Set Q(z) = zq'(2) - ¢la(2)], h(z) =0[q(2)] + Q(z) and suppose
that either

(i) h is convex
or

(ii) @ is starlike.
In addition, assume that

2h (2)

iii) Re > 0.

T
If p is analytic in U, with p(0) = ¢ (0), p(U) C D and

Olp(2)] + 20" (2) - 9P (2)] < Olg(2)] + 20" (2) - b g (2)] = h(2),

then p < q, and q is the best dominant.

By taking 6 (w) := w and ¢ (w) := 7 in Theorem 2.1, we get
COROLLARY 2.2. Let q be univalent in U, v € C* and suppose
! 1
Re [1 + zq/ (Z)] > max {O,Re} .
¢ (2) gl
If p is analytic in U, with p (0) = ¢ (0) and
p(z) + 720 (2) < q(2) + 724 (2),
then p < q, and q is the best dominant.

THEOREM 2.3 ([6]). Let 6 and ¢ be analytic in a domain D and let q be
ungvalent in U, with ¢(0) = a, ¢(U) C D. Set Q(z) = z¢' (2) - ¢[q(2)],
h(z) =0q(2)] +Q () and suppose that
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and
(ii) Q (z) is starlike.

IfpeH[a,1]NQ, p(U) C D and §[p(z)] + 20" (2) - ¢ [p(2)] is univalent in U,
then

0la ()] + 20" (2) - ¢la(2)] < O[p ()] + 20/ (2) & [p(2)] = a < p
and q is the best subordinant.
By taking 6 (w) := w and ¢ (w) := 7 in Theorem 2.3, we get

COROLLARY 2.4 ([1]). Let q be convex in U, q(0) = a and v € C, Rey > 0.
Ifpe Hla,1]N Q and p(2) + vzp' (2) is univalent in U, then

q(2) +72q (2) = p(2) +72p' (2) = g < p
and q is the best subordinant.
3. MAIN RESULTS

THEOREM 3.1. Let q be univalent in U with ¢ (0) =1, v € C* and suppose

i 1
Re [1 + =4 (z)] > max {0,—Re} .

q (2) gl
If fe A and
! (6 z
el
3 m
B H, o1 +2] f (2) - HL, [ea] £ (2) )
v (a1 +1) (HL [on - 11 £ (o)) =q(2) +vzq (2),
then

an laa] f (2)
H}, [eq +1] f (2)
and q is the best dominant.

Proof. We define the function p by
__H ] f ()
W P L o 117 ()
We calculate the derivative of p(z) and we get
(5)
p(z) =
_ {Hh ] f ()} Hyloa + 1] £ (2) = {Hp o1 + 1] f ()} H, [01] £ (2)
{HL, loa +1] f (2)} .
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By using the identity
©) = {Hloa) F(2)} = ol fon +1)f (2) — (oa — 1) Hly [ou) £ ()
we obtain from (5) that

H!, [a1] f (2)
Hl oy +1] f (2)

Hiy [o1 +2] £ (2) - Hyy [oa] £ (2)
{H}, o1 + 1] f ())°

2p' (2) = a1 + — (a1 +1)

and l
/ Hy, lea] f
p(Z) +vzp (Z) =yo1 + (1 +’Y) H';n [Oé[laﬂ 1]30222)_
Hyy lon + 2] f (2) - Hyy [a] f (2).
{Hl [on +1]f (2)}
The subordination (3) from the hypothesis becomes
p(2) + 720’ (2) < q(2) + 724 (2).

We obtain the conclusion of our theorem by applying now Corrolary 2.2. [

=y (a1 +1)

For a,c € C, ¢ # 0,-1,-2,....0l =2, m =1, a1 = a, ag = 1, f1 =
¢, the Dziok-Srivastava linear oparator H! [a1] f (2) becomes the Carlson-
Shaffer linear operator L (a,c) f (z) introduced in [2]. By taking these values
in Theorem 3.1, we obtain the following corollary.

COROLLARY 3.2 ([7]). Let q be univalent in U with ¢ (0) =1, v € C* and

suppose that
/! 1
Re [1 + =4 (z)] > max {O,—Re} .

q (2) gl
If fe A and
L(a,c) f (2) L(a+2¢)f(2)-Lac)f(2)
7ajL(H’y)L(aH,c)f(@_’Y(GH) {L(a+1,¢)f(2)}? A
< q(2) +724 (2),
then

L(a,c) f(2)
L(a+1,¢) f(2) <a(z)
and q is the best dominant.

By taking [ = 1, m = 0 and «; = 1 in Theorem 3.1, we get the following
result.

COROLLARY 3.3 ([7]). Let q be univalent in U with ¢ (0) =1, v € C* and

suppose that
! 1
Re [1 + zq, (Z>] > max {(),—Re} .
¢ (2) gl
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If f e A and
Y0 DN IC
1= L -0 JES <o o)
then
STERLLS

and q is the best dominant.
We give an application of Theorem 3.1 for a particular convex function gq.

COROLLARY 3.4. Let AAB € C, A # B, |B| <1 and v € C such that
Rey>0. If f € A and

Hy, [oa] £ (2) N Hy, loa + 2] f (2) - Hy, [oa] f (2)
e+ 107G T w07 (F
1+42  (A—B)z
1B 1 B

~yar+ (14 7) =<

then
H! [oq] f (2) - 1+ Az
H!l [on+1]f(2) 1+ Bz
1+ A
and q(z) = + ® s the best dominant.

+ Bz

We next give a result concerning superordinations.

THEOREM 3.5. Let q be convex in U, q(0) =1 and v € C, Rey > 0. If

H}, o ] f(2)
feA, HL jon + 1] f ()G'H[l 11N Q,
Hl, o ] (2) H. [a1+2] f (2) - H), [o1] f (2)
L T o TS B I T AU

is univalent in U and

l a 2
q(2) + 724 (2) < yor + (1+7) HH[a[l E{J(fzz)_

H. [on +2) f (2) - HY ad] £ (2)
(HL, [0y +1] f (2)}2

an [ca] £ (2)
Hl o +1] f (2)

-y (a1 +1)

)

then

q(z) <
and q is the best subordinant.

Proof. The conclusion follows immediately by applying Corollary 2.4 to the
function p defined in (4). O



7 Differential sandwich theorems 91

We can combine the results of Theorem 3.1 and Theorem 3.5 to obtain the
following “sandwich theorem”.

COROLLARY 3.6. Let q1,q2 be convex in U, ¢1(0) = ¢2(0) = 1, v € C,

H}, [ea] f (2)
Rey > 0. If f € A, HL jor + 1] £ (2) eHI[L,1]NQ,
ou+(1479) 5 Enlolf(8) _ (g, 4 1) Enlea 22 S () A o] f (o)

HL lor+ 1] f (2) {H, Jo1 + 1] f (2)}
is univalent in U and

! 0] z
(J1(Z)+vzfé(2)<7a1+(1+7)Hf{?;Ef{]Sczz)_
Hy, [on +2) f (2) - Hy, [oa] £ (2)

f

{H [ +1]f (2)°

Hy, loa] f(2)
=<

B o+ 11 G
and the functions q1 and qo are respectively the best subordinant and the best
dominant.

—y (o1 +1) < q2(2) +72¢5 (2),

then

) < g2 (Z)

THEOREM 3.7. Let q be univalent in U with ¢ (0) =1, v € C* and suppose

Re [1+ 2 ()] >Inax{(),—Re1}.

¢ (2) v
If fe A and
[ +1] f (2) 2H,, la1 +2] f (2)
1 ap —1 o 1 _
(7) Lo ”{thﬂ O i e oF

z{Hl [an + 1] f( 2}2
{H}, [n] f ()

— 2a17y q(z) +vzq (2),

then
szn [ +1] f(2)
{(H ] f ()}

and q is the best dominant.

Proof. Let

(8) p(z) =z

=< q(2)

HYy [ + 1 £ (2)
{H, [oa] f (2)}

A simple computation shows that

()| a0 @) {6

(9) p(z) HY lon +1] f (2) H}, [on] £ (2)
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By using the identity (6), we obtain from (9) that

2 (2) Hylo1+2f(2) _, Hpylon+1]/(2)
p(2) Hylar+1f () " HLea] f(2)
and

= (a1 — 1)+ (a1 +1)

2H,, [on +1] f (2)
{H], [en] £ (2)}
zH,ln a1 4+ 2] f (2) B 2a172 {H,ln [an + 1] f (z)}Z'
{H, [on] f (2)}° {Hh, [on] f (2))°
Hence the hypothesis (7) yields the subordination.
p(2) + 920’ (2) < q(2) + 724 (2).

Now the conclusion of our theorem follows by simply applying Corollary 2.2.
O

p(2) +72p" (2) = 1 + 7 (1 = 1)]

+’Y (Oél + 1)

Whenl =2, m=1, a; =a, as =1, 81 = ¢ Theorem 3.7 becomes

COROLLARY 3.8 ([7]). Let q be univalent in U with ¢ (0) =1, v € C* and

suppose that
/! 1
Re [1 + =4 (Z>] > max {(),—Re 7} .

¢ (2)
If fe Aand
zL(a+1,¢) f (2) zL(a+2,¢) f(2)
1 a—1 a+1 —
e e arey T L @)
Lo ALt Lo fEY
2ay TATEIACI < q(2) + 724 (),
then

ZL(CL—I-l,c)f(z)

Laarmy 1@

and q is the best dominant.
By taking [ =1, m = 0 and a7 = 1 in Theorem 3.7, we obtain:
COROLLARY 3.9 ([7]). Let q be univalent in U with q(0) =1, v € C* and

suppose that
/!
Re {1 + =4 (Z)] > max {O,—Rel} .
Y

q (2)
If fe A and
Z2f/(2) g2 z \" > 20 (2
IEE ot <f(z)> =q(2) +vzq (2),
then
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and q is the best dominant.

B 1+ Az
1+ Bz

We consider ¢ (z)
3.7.

COROLLARY 3.10. Let A,B € C, A # B, |B| <1 and v € C such that
Rey>0. If f € A and

and give the following application of Theorem

2H;, [o1 +1] f () o4 1y FHmlen+21f ()
el rF T T e oF

S{HL [ +1]f ()} 1+42  (A-B)z

[+ (1 —1)]

—2a17y < + ,
Ll f @Y B (14 B
then
ZH%[m—i—l]f(z) - 14+ Az
{Hl o] £ (2)) 1+ Bz
14+ Az | .
and q(z) = B the best dominant.

We apply Corollary 2.4 to the function p given by (8) in the proof of Theorem
3.7 to obtain the following result.

THEOREM 3.11. Let q be convex in U, q(0) =1 and v € C, Rey > 0. If

! (6% z
eA o SHmIne

zHL [ay +1] f (Z)Jr
{HL, [a1] f ()}
zH [ag +2] f (2) z{H. [o1 +1] f(2)}

o 1 — 2«
O i el r @y T H el ()

(147 (a1 —1)]

2

is unwwalent in U and
szn [an + 1] f (2) N
{HL, [o1] f ()}
2HL oy + 2] f (2) Z{HL [on + 1] f (2)}°
« 1 — 2«
e e s @ ol ] ()
H},lon +1] f (2)
{HY, [oa] f (2)}

q(2) +72¢ (2) < [1 +7 (o1 = 1)]

then
q(z) =z

and q is the best subordinant.

By combining the results of Theorem 3.7 and Theorem 3.11 we finally get
the following “sandwich theorem”.
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COROLLARY 3.12. Let q1,q2 be convex in U, q1 (0) = ¢2(0) = 1, v € C,

Hl, o1 +1] f (2)
R 0. [ A, z H[1,1] N Q,
0T EA S oy ST

2Hy, [on +1] f (2)

2y, [on +2] f ()

e e or Y T w0y
z ! « z 2

e e

is unwwalent in U and | . Tln o 1) £ ()
1 (2% () < [y (e = 1) "
l z L oy z

;Z:Lal o Z{Ii;na[?otjf%?) e {ff}nii [;I f1 ]<f>(}3)} e ()

o) < Ml T UFG)

2
{H), [ea] f(2)}
and the functions q1 and qs are respectively the best subordinant and the best
dominant.

REFERENCES

[1] BULBOACA, T., Classes of first order differential superordinations, Demonstr. Math., 35,
No. 2 (2002), 287-292.

[2] CaRrLSON, B.C. and SHAFFER, D.B., Starlike and prestarlike hypergeometric functions,
SIAM J. Math. Anal., 15, No. 4 (1984), 737-745.

[3] Dziok, J. and SRIVASTAVA, H.M., Certain subclasses of analytic functions associated
with the generalized hypergeometric function, Integral Transform. Spec. Funct., 14 (2003),
7-18.

[4] MILLER, S.S. and MocaNu, P.T., Differential Subordinations. Theory and Applications,
Marcel Dekker, Inc., New York, Basel, 1999.

[5] MILLER, S.S. and MocaNu, P.T., Subordinants of differential superordinations, Complex
Variables, 48, No. 10 (2003), 815-826.

[6] MILLER, S.S. and MoCANU, P.T., Briot-Bouquet differential superordinations and sand-
wich theorems, J. Math. Anal. Appl., 329, No. 1 (2007), 327-335.

[7] SHANMUGAM, T.N., RAVICHANDRAN, V. and SIVASUBRAMANIAN, S., Differential sand-
wich theorems for some subclasses of analytic functions, Aust. J. Math. Anal. Appl., 3,
No. 1 (2006), Art. 8.

Received December 20, 2007 “Babes-Bolyai” University
Faculty of Mathematics and Computer Science
Str. Mihail Kogalniceanu nr. 1
400084 Cluj-Napoca, Romania
E-mail: nechita@math.ubbcluj.ro



