
MATHEMATICA, Tome 50 (73), No 1, 2008, pp. 39–49

SOME SUFFICIENT CONDITIONS FOR UNIVALENCE AND
SUBORDINATION RESULTS OF CERTAIN ANALYTIC AND

UNIVALENT FUNCTIONS
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Abstract. Very recently, Frasin and Darus [2] introduced the class B(α) of
analytic functions and gave some properties for this class. The aim of this paper
is to obtain some sufficient conditions for univalence and subordination results
for functions of the class B(α).
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1. INTRODUCTION AND DEFINITIONS

Let A denote the class of functions of the form

(1) f(z) = z +
∞∑

n=2

anzn,

which are analytic in the open unit disk U = {z : |z| < 1}. Further, by S
we shall denote the class of all functions in A which are univalent in U . A
function f belonging to S is said to be starlike of order α if it satisfies

(2) Re
(

zf ′(z)
f(z)

)
> α (z ∈ U)

for some α (0 ≤ α < 1). We denote by S∗
α

the subclass of A consisting of
functions which are starlike of order α in U . Also, a function f belonging to
S is said to be convex of order α if it satisfies

(3) Re
(

1 +
zf ′′(z)
f ′(z)

)
> α (z ∈ U)

for some α (0 ≤ α < 1). We denote by Kα the subclass of A consisting of
functions which are convex of order α in U .

A function f belonging to S is said to be close-to-convex of order α if there
exists a function g belonging to S∗

α
such that

(4) Re
(

zf ′(z)
g(z)

)
> α (z ∈ U)

for some α (0 ≤ α < 1). We denote by Cα the subclass of A consisting of
functions which are close-to-convex of order α in U . Let the functions f and
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g be analytic in U . Then we say that the function f is subordinate to g in U
if there exists an analytic function w in U with w(0) = 0 and |w| < 1 (z ∈ U)
such that f(z) = g(w(z)). We denote this subordination by f(z) ≺ g(z) or,
shortly, f ≺ g.

A function f ∈ A is said to be a member of the class B(α) if and only if

(5)
∣∣∣∣z2f ′(z)

f2(z)
− 1
∣∣∣∣ < 1− α.

Note that the condition (5) implies

(6) Re
{

z2f ′(z)
f2(z)

}
> α.

for some α (0 ≤ α < 1) and for all z ∈ U .
Frasin and Darus [2] have defined the class B(α) and investigated some

interesting properties for this class. In this paper we shall give new additional
results for functions of the class B(α).

2. SOME PROPERTIES OF THE CLASS B(α)

In order to prove our main results, we recall the following lemmas:

Lemma 1. ([3]) Let w be analytic in U and such that w(0) = 0. If the map
z ∈ U 7→ |w(z)| ∈ R attains its maximum value on the circle |z| = r < 1 at a
point z0 ∈ U , then we have

(7) z0w
′(z0) = kw(z0),

where k ≥ 1 is a real number.

Lemma 2. ([8]) Let f ∈ A satisfy the condition

(8)
∣∣∣∣z2f ′(z)

f2(z)
− 1
∣∣∣∣ < 1 (z ∈ U).

Then f is univalent in U .

Lemma 3. ([6]) Let p be an analytic function in U with p(0) = 1 and
p(z) 6= 0 (z ∈ U). If there exists a point z0 ∈ U such that

(9) |arg p(z)| < π

2
η for |z| < |z0|

and
|arg p(z0)| =

π

2
η

with 0 < η ≤ 1, then we have

z0p
′(z0)

p(z0)
= ikη,

where
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k ≥ 1
2

(
a +

1
a

)
≥ 1, when arg p(z0) =

π

2
η,

k ≤ −1
2

(
a +

1
a

)
≤ −1, when arg p(z0) = −π

2
η,

and

p(z0)
1
η = ±ai, (a > 0).

Lemma 4. ([7]) If f ∈ A satisfies the condition

(10) Re
{

1 +
zf ′′(z)
f ′(z)

}
> α− β (z ∈ U)

for α ≥ 0, 0 < β ≤ 1/2(1− γ), and γ = α/(1 + β), then f belongs to the class
Cρ, where ρ = (1 + β)/[(1 + β)(1 + 2β)− 2αβ]. Therefore f is close-to-convex
of order ρ in U .

Applying Lemma 1, we prove

Theorem 1. Let f ∈ A. If

(11)

∣∣∣∣∣z2f ′(z)
f2(z)

+
zf ′′(z)
f ′(z)

− 2zf ′(z)
f(z)

+ 1

∣∣∣∣∣ < 1− α

2α
(z ∈ U),

where 1
2 ≤ α < 1, then f ∈ B(α).

Proof. We define w(z) by

(12)
z2f ′(z)
f2(z)

=
1 + (1− 2α)w(z)

1− w(z)
(w(z) 6= 1),

and note that w is regular in U and w(0) = 0. By logarithmic differentiation
we get from (12) that

(13)
zf ′′(z)
f ′(z)

− 2zf ′(z)
f(z)

+ 2 =
(1− 2α)zw′(z)

1 + (1− 2α)w(z)
+

zw′(z)
1− w(z)

.

It follows from (12) and (13) that

z2f ′(z)
f2(z)

+
zf ′′(z)
f ′(z)

− 2zf ′(z)
f(z)

+ 2 =

=
1 + (1− 2α)w(z)

1− w(z)
+

(1− 2α)zw′(z)
1 + (1− 2α)w(z)

+
zw′(z)

1− w(z)
,

or, equivalently,

z2f ′(z)
f2(z)

+
zf ′′(z)
f ′(z)

− 2zf ′(z)
f(z)

+ 1 =

=
2(1− α)w(z)

1− w(z)

(
1 +

zw′(z)
[1 + (1− 2α)w(z)]w(z)

)
.

(14)
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Suppose there exists zo ∈ U such that

max
|z|<|zo|

|w(z)| = |w(zo)| = 1 (w(zo) 6= −1).

Then, by Lemma 1, we have

zow
′(z) = kw(zo),

where k ≥ 1 is a real number. From (14) we get∣∣∣∣∣z2
of ′(zo)
f2(zo)

+
zof

′′(zo)
f ′(zo)

− 2zof
′(zo)

f(zo)
+ 1

∣∣∣∣∣ =
=

∣∣∣∣∣2(1− α)w(zo)
1− w(zo)

(
1 +

zow
′(zo)

[1 + (1− 2α)w(zo)]w(zo)

)∣∣∣∣∣ ≥
≥

∣∣∣∣∣2(1− α)w(zo)
1− w(zo)

∣∣∣∣∣
∣∣∣∣∣ zow

′(zo)
[1 + (1− 2α)w(zo)]w(zo)

∣∣∣∣∣ ≥
≥ (1− α)k

2α
≥

≥ 1− α

2α
,

which contradicts our assumption (11). Therefore |w(z)| < 1 holds for all
z ∈ U . We finally conclude that f ∈ B(α). �

Putting α = 1
2 in Theorem 1, we get

Corollary 2.1. Let f ∈ A. If

(15)

∣∣∣∣∣z2f ′(z)
f2(z)

+
zf ′′(z)
f ′(z)

− 2zf ′(z)
f(z)

+ 1

∣∣∣∣∣ < 1
2

(z ∈ U).

then f ∈ B(1
2).

Next, we prove

Theorem 2. Let f ∈ B(α) for some 0 ≤ α ≤ 1
2 such that f ∈ K

β
for some

0 ≤ β < 1. Then the following inequality holds for every z ∈ U

(16) Re
{

zf ′(z)
f(z)

}
≥ (β + 1)− 4(1− α)(β + 1) |z|+ (β + 1)(1− α) |z|2

2(1− |z|)(1− (1− 2α) |z|)
.

Proof. Since f ∈ B(α), we can write

(17)
z2f ′(z)
f2(z)

=
1 + (1− 2α)w(z)

1− w(z)
for some analytic map w in U with w(0) = 0 and |w(z)| < 1 (z ∈ U). Applying
the Schwarz Lemma, (17) can be written as

(18)
z2f ′(z)
f2(z)

=
1 + (1− 2α)zΦ(z)

1− Φ(z)
(z ∈ U),
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where Φ is analytic in U and satisfies |Φ(z)| ≤ 1 for z ∈ U . Differentiating
both sides of (18) logarithmically, we obtain

(19)
zf ′(z)
f(z)

=
zf ′′(z)
2f ′(z)

+ 1− (1− α)(zΦ′(z) + zΦ(z))
(1− zΦ(z))(1 + (1− 2α)zΦ(z))

,

or, equivalently,

(20)
zf ′(z)
f(z)

=
1
2

{
zf ′′(z)
f ′(z)

+ 1
}

+
1
2
− (1− α)(zΦ′(z) + zΦ(z))

(1− zΦ(z))(1 + (1− 2α)zΦ(z))
.

From [5, p. 168] we see that

(21)
∣∣Φ′(z)

∣∣ ≤ 1− |Φ(z)|2

1− |z|2
(z ∈ U).

Therefore, from (20) and (21), it follows that

Re
{

zf ′(z)
f(z)

}
≥

≥ 1
2
Re
{

zf ′′(z)
f ′(z)

+ 1
}

+
1
2
− (1− α)(|zΦ′(z)|+ |zΦ(z)|)

(1− |zΦ(z)|)(1− (1− 2α) |zΦ(z)|)
≥

≥ β + 1
2

− (1− α) |z| (|z|+ |Φ(z)|)
(1− |z|2)(1− (1− 2α) |zΦ(z)|)

≥

≥ β + 1
2

− (1− α) |z|
(1− |z|)(1− (1− 2α) |z|)

=

=
(β + 1)(1− |z|)(1− (1− 2α) |z|)− 2(1− α) |z|

2(1− |z|)(1− (1− 2α) |z|)
=

=
(β + 1)− 4(1− α)(β + 1) |z|+ (β + 1)(1− α) |z|2

2(1− |z|)(1− (1− 2α) |z|)
which completes the proof of Theorem 2. �

Corollary 1. Let 0 ≤ α ≤ 1
2 and suppose that f ∈ B(α) is a convex

function. Then, for every z ∈ U ,

(22) Re
{

zf ′(z)
f(z)

}
≥ 1− 4(1− α) |z|+ (1− α) |z|2

2(1− |z|)(1− (1− 2α) |z|)
.

Next, we prove

Theorem 3. Let f ∈ A and suppose that z2f ′(z)/f2(z) 6= δ in U . If

(23)
∣∣∣∣arg

{
z2f ′(z)
f2(z)

(
zf ′′(z)
f ′(z)

+ 2
zf ′(z)
f(z)

)}∣∣∣∣ < πξ

2
(0 < ξ ≤ 1),

then

(24) arg
∣∣∣∣(z2f ′(z)

f2(z)
− δ

)∣∣∣∣ < πη

2
(0 ≤ δ ≤ 1),
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where η (0 < η ≤ 1) is the solution of the equation

(25) ξ = η +
2
π

tan−1

(
η − 2δ(1− δ) |a| sin π

2 η

2 + 2δ(1− δ) |a| cos π
2 η

)
.

Proof. Put

(26) p(z) =
1

1− δ

(
z2f ′(z)
f2(z)

− δ

)
.

Then p is analytic U with p(0) = 1 and p(z) 6= 0 in U . By logarithmic
differentiations of both sides of (26), we get

(27)
zf ′′(z)
f ′(z)

+ 2
zf ′(z)
f(z)

=
(1− δ)zp′(z)

δ + (1− δ)p(z)
+ 2.

Therefore we obtain

(28)
z2f ′(z)
f2(z)

(
zf ′′(z)
f ′(z)

+ 2
zf ′(z)
f(z)

)
= (1− δ)p(z)

(
zp′(z)
p(z)

+
2δ(1− δ)

p(z)
+ 2
)

.

Suppose there exists a point z0 ∈ U such that

|arg p(z)| < π

2
η, for |z| < |z0| ,

and

|arg p(z0)| =
π

2
η.

Then, applying Lemma 3, we can write that

z0p
′(z0)

p(z0)
= ikη,

where

k ≥ 1
2

(
a +

1
a

)
≥ 1, when arg p(z0) =

π

2
η,

k ≤ −1
2

(
a +

1
a

)
≤ −1, when arg p(z0) = −π

2
η,

and

p(z0)
1
η = ±ai (a > 0).
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Suppose first that p(z0)
1
η = ai (a > 0). Then we obtain

arg
{

z2
0f

′(z0)
f2(z0)

(
z0f

′′(z0)
f ′(z0)

+ 2
z0f

′(z0)
f(z0)

)}
=

= arg
{

(1− δ)p(z0)
(

z0p
′(z0)

p(z0)
+

2δ(1− δ)
p(z0)

+ 2
)}

=

= arg p(z0) + arg
(

z0p
′(z0)

p(z0)
+

2δ(1− δ)
p(z0)

+ 2
)

=

= arg p(z0) + arg
(
iηk + 2δ(1− δ)(ia)−η + 2

)
=

=
πη

2
+ tan−1

(
ηk − 2δ(1− δ) |a| sin π

2 η

2 + 2δ(1− δ) |a| cos π
2 η

)
≥

≥ πη

2
+ tan−1

(
η − 2δ(1− δ) |a| sin π

2 η

2 + 2δ(1− δ) |a| cos π
2 η

)
=

=
π

2
ξ,

where ξ is given by (25). This contradicts assumption (24) of our theorem.
Next suppose that p(z0)

1
η = −ai (a > 0). Applying the same method as

above, we obtain

arg
{

z2
0f

′(z0)
f2(z0)

(
z0f

′′(z0)
f ′(z0)

+ 2
z0f

′(z0)
f(z0)

)}
≤

≤ −πη

2
− tan−1

(
η − 2δ(1− δ) |a| sin π

2 η

2 + 2δ(1− δ) |a| cos π
2 η

)
=

= −π

2
ξ,

where ξ is given by (25). This contradicts assumption (24). This finishes the
proof of Theorem 3. �

Putting δ = 0 in Theorem 3, we get

Corollary 2. Let f ∈ A and suppose that z2f ′(z)/f2(z) 6= 0 in U . If

(29)
∣∣∣∣arg

{
z2f ′(z)
f2(z)

(
zf ′′(z)
f ′(z)

+ 2
zf ′(z)
f(z)

)}∣∣∣∣ < πξ

2
(0 < ξ ≤ 1),

then f ∈ B(η), where η(0 < η ≤ 1) is the solution of the equation

(30) ξ = η +
2
π

tan−1 η

2
.

Applying Lemma 4, we next prove

Theorem 4. Let the function f be in the class B(α). If f ∈ S∗
α

and

(31)
∣∣w′(z)

∣∣ ≤ α(β + α− 3)
1− α

,
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where w is analytic in U with w(0) = 0, |w(z)| < 1 (z ∈ U), α > 0, 0 <
β ≤ 1/2(1 − γ), and γ = α/(1 + β), then f belongs to the class C

δ
, where

δ = (1 + β)/[(1 + β)(1 + 2β)− 2αβ]. Therefore f is close-to-convex of order δ
in U .

Proof. Let f ∈ B(α), then

(32)
z2f ′(z)
f2(z)

= 1 + (1− α)w(z) (z ∈ U),

where w is analytic in U with w(0) = 0 and |w(z)| < 1 (z ∈ U). By logarithmic
differentiation we get from (32) that

(33) 1 + z
f ′′(z)
f ′(z)

=
(1− α)zw′(z)

1 + (1− α)w(z)
+ 2

(
zf ′(z)
f(z)

− 1
)

+ 1.

From (33), we obtain∣∣∣∣1 + z
f ′′(z)
f ′(z)

∣∣∣∣ ≤
∣∣∣∣ (1− α)zw′(z)
1 + (1− α)w(z)

∣∣∣∣+ 2
∣∣∣∣zf ′(z)

f(z)
− 1
∣∣∣∣+ 1

≤ (1− α)
α

∣∣w′(z)
∣∣+ 2(1− α) + 1

≤ β − α

and so

(34) Re
{

1 +
zf ′′(z)
f ′(z)

}
> α− β (z ∈ U).

Lemma 4 yields that f ∈ C
δ
, where δ = (1 + β)/[(1 + β)(1 + 2β)− 2αβ]. �

Now, we prove

Theorem 5. Let f ∈ B(α). If f ∈ Kα , then

(35)
∣∣zw′(z)

∣∣ < { 6(1− α), if 0 ≤ α ≤ 1
2

6α, if 1
2 ≤ α < 1,

where w is analytic in U with w(0) = 0 and |w(z)| < 1.

Proof. We define w(z) by

(36)
z2f ′(z)
f2(z)

=
1 + (1− 2α)w(z)

1− w(z)
.

Then w is analytic in U with w(0) = 0 and |w(z)| < 1. By logarithmic differ-
entiation we get from (36) that

(37)
zf ′′(z)
f ′(z)

− 2zf ′(z)
f(z)

+ 2 =
2(1− α)zw′(z)

(1− w(z))(1 + (1− 2α)w(z))
,

hence

(38)
∣∣∣∣ 2(1− α)zw′(z)
(1− w(z))(1 + (1− 2α)w(z))

∣∣∣∣ ≤ ∣∣∣∣zf ′′(z)
f ′(z)

∣∣∣∣+ 2
∣∣∣∣zf ′(z)

f(z)
− 1
∣∣∣∣ .
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Since f ∈ Kα ⊂ S∗
α
, relation (38) implies

(39)
∣∣∣∣ 2(1− α)zw′(z)
(1− w(z))(1 + (1− 2α)w(z))

∣∣∣∣ ≤ 1− α + 2(1− α),

or, equivalently,∣∣zw′(z)
∣∣ ≤ 3

2
|(1− w(z))| |1 + (1− 2α)w(z)|

≤ 3 |1 + (1− 2α)w(z)|

≤
{

6(1− α), if 0 ≤ α ≤ 1
2

6α, if 1
2 ≤ α < 1.

�

3. SUBORDINATION RESULTS

In order to prove our subordination results, we shall make use of the fol-
lowing results given in [1].

Lemma 5. Let p and h be analytic functions in U such that p(0) = h(0) = 1.
Assume that h is convex and univalent in U satisfying the condition Re{βh(z)+
γ} > 0 for complex numbers β, γ and for all z ∈ U . If p, h, β and γ satisfy
the Briot-Bouquet differential equation

(40) p(z) +
zp′(z)

βp(z) + γ
= h(z),

then p(z) ≺ h(z) (z ∈ U).

Lemma 6. Under the hypothesis of Lemma 5, if the Briot-Bouquet differ-
ential equation

(41) q(z) +
zq′(z)

βq(z) + γ
= h(z) (q(0) = 1)

has a univalent solution q, then p(z) ≺ q(z) ≺ h(z). Furthermore, q is the best
dominant.

We prove first the following subordination result.

Theorem 6. Let h be a convex and univalent function in U such that h(0) =
1 and Re {h(z)} > 0 for z ∈ U . If f ∈ A satisfies

(42)
z2f ′(z)
f2(z)

− z2

(
z

f(z)

)′′
≺ h(z) (z ∈ U),

then

(43)
z2f ′(z)
f2(z)

≺ h(z) (z ∈ U).
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Proof. Define the function p by

(44)
z2f ′(z)
f2(z)

= p(z) (z ∈ U).

Then p is analytic in U with p(0) = 1. Differentiating both sides in (44), we
obtain

(45) −z2

(
z

f(z)

)′′
= zp′(z).

From (44) and (45) we get

(46)
z2f ′(z)
f2(z)

− z2

(
z

f(z)

)′′
= p(z) + zp′(z).

Taking β = 0 and γ = 1 in Lemma 5, we finish the proof of Theorem 6. �

Putting h(z) = [1 + (1− 2α)z]/(1− z) in Theorem 6, we obtain

Corollary 3. If f ∈ A satisfies

(47)
z2f ′(z)
f2(z)

− z2

(
z

f(z)

)′′
≺ 1 + (1− 2α)z

1− z
(z ∈ U),

then f ∈ B(α).

By making use of Corollary 5 and Lemma 2, we have

Corollary 4. If f ∈ A satisfies

(48)
z2f ′(z)
f2(z)

− z2

(
z

f(z)

)′′
≺ 1 + z

1− z
(z ∈ U),

then f is univalent in U .

By replacing p(z) by z2f ′(z)/f2(z) and taking β = 0 and γ = 1 in Lemma
5 and Lemma 6, we can easily obtain

Theorem 7. Under the hypothesis of Theorem 6, if the Briot-Bouquet dif-
ferential equation

q(z) + zq′(z) = h(z) (q(0) = 1)

has a univalent solution, then

(49)
z2f ′(z)
f2(z)

≺ q(z) ≺ h(z).

Furthermore, q is the best dominant.
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