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GROUPS OF INFINITE UNITRIANGULAR MATRICES

DANIEL ARNOLD MOLDOVAN

Abstract. In this paper we define the group of unitriangular matrices over any
well-ordered set and we study their properties. We prove that for any ordinal α
there is a nilpotent group having its nilpotency class exactly α.
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1. INTRODUCTION

Let R be an associative ring with unity and n ≥ 1 a natural number. We
denote, as usually, by Mn(R) the set of all n× n matrices over R, by NTn(R)
the set of n × n matrices over R which have only zero elements below the
main diagonal and by UTn(R) we denote the set In,R + NTn(R) (where In,R

is the n × n unity matrix over R). The last two sets are called the nilpotent
group of order n over R, respectively the unitriangular group of order n over
R (one can easily check that these are indeed groups with respect to the usual
multiplication of matrices). For every two natural numbers 1 ≤ i, j ≤ n we
denote by eij(a) the matrix in Mn(R) that has only zero entries, except for the
intersection of the ith row and the jth column, where it has an a, and by tij(a)
we denote the matrix In,R + eij(a). The matrices eij are called elementary
matrices, whereas the tij matrices are called transvections (we omitted the n
and the R from the above notations in order to improve the readability of the
text).

Furthermore, for every natural number 1 ≤ m ≤ n we denote by UTm
n (R)

the set of matrices from UTn(R) whose first m − 1 diagonals above the first
diagonal contain only zeroes, hence for every 1 ≤ m ≤ n we have

UTm
n (R) = {M ∈ UTn(R) | ∀1 ≤ i < j ≤ n, i < j + m : M(i, j) = 0}.

We notice that the group UTn(R) is generated by the family of transvections
tij with i ≤ j and for every natural number 1 ≤ m ≤ n the set UTm

n (R) is
generated by the family of transvections tij with j ≥ i+m. From this it follows
immediately that the sets UTm

n (R), 1 ≤ m ≤ n are subgroups of (UTn(R), ·).
These groups have been investigated by A.J. Weir [8] and V.M. Levchuk [2],
[3], [4] and [5]. It can be proved (see [1, p. 35, 128–130]) that

UTn(R) = UT1
n(R) � · · ·� UTn

n(R) = In,

so the group UTn(R) is nilpotent, and its nilpotency class is exactly n − 1.
The lower and the upper central series coincide (see the same reference) and
they consist of the sets UTi

n(R), where i = 1, . . . , n. We conclude that for
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every natural number n there exists a nilpotent group having the nilpotency
class exactly n, namely UTn+1(R).

Now we proceed to generalize the above notions and results to the case of
matrices indexed by well-ordered sets.

2. THE UNITRIANGULAR GROUP FOR INFINITE INDEX SETS

Let (R,+, ·) be an associative ring with unity and (A,≤) a well-ordered set,
whose ordinal will be denoted by α.

Definition 2.1. The set

MA(R) = {M : A×A → R | {(i, j) ∈ A×A | i 6= j and M(i, j) 6= 0}| < ∞}

is called the set of all α× α matrices over R.

Remark 2.2. From the definition above it follows that the set MA(R) con-
sists of all the α × α matrices over R that have a finite number of nonzero
elements except the first diagonal. This restriction was caused by the impos-
sibility of introducing certain notions in less restrictive conditions.

We define the addition as follows. For M, N ∈ MA(R) define P = M +N ∈
MA(R) by

P (i, j) = M(i, j) + N(i, j),

for all i, j ∈ A. For the same two elements, we define their product Q ∈ MA(R)
by

Q(i, j) =
∑
k∈A

M(i, k)N(k, j)

for all i, j ∈ A, or, equivalently,

Q(i, j) =
∑
k<α

M(i, k)N(k, j),

for all i, j ∈ A, since A = {k | k < α}. Note that the above sums are finite.
It is clear that (MA(R),+, ·) is an associative ring with unity.

Definition 2.3. The set

NTA(R) = {M ∈ MA(R) | ∀i, j ∈ A, j ≤ i : M(i, j) = 0}

is called the set of α× α superior triangular matrices over R.

Remark 2.4. NTA(R) consists of all the α × α matrices on R that have
only zeroes on and below the first diagonal and a finite number of nonzero
entries above it.

Lemma 2.5. The set NTA(R) is a ring with the induced operations, and it
is a subring of MA(R).
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Proof. We notice that IA,R ∈ NTA(R). Let M and N be two elements of
NTA(R). We prove that M −N ∈ NTA(R) and MN ∈ NTA(R). Indeed, for
every i, j ∈ A, j ≤ i we have

(M −N)(i, j) = M(i, j)−N(i, j) = 0,

and
(MN)(i, j) =

∑
k∈A

M(i, k)N(k, j) = 0,

because if k ≤ i then M(i, k) = 0 and if i < k then j < k, so N(k, j) = 0. �

Remark 2.6. NTA(R) is neither a right nor a left ideal of the ring MA(R).
For example e21

A (R) ∈ MA(R) and e12
A (R) ∈ NTA(R), where α ≥ 2, but

e21
A (R) · e12

A (R) has a 1 at the intersection of the second row and the second
column, hence it is not an element of NTA(R).

Definition 2.7. The set UTA(R) = IA,R + NTA(R) is called the set of
α× α unitriangular matrices over R.

Remark 2.8. The set UTA(R) consists of all the α × α matrices over R
that have zero entries below the first diagonal, 1 on the first diagonal and a
finite number of nonzero entries above it.

Theorem 2.9. The set UTA(R) forms a group with respect to the multipli-
cation of the infinite matrices.

Proof. We notice that IA,R ∈ UTA(R). Let P and Q be two elements in
UTA(R). Then we can find two matrices M and N in MA(R) such that
P = 1 + M and Q = 1 + N . Then we can write

PQ = 1 + (M + N + MN),

where M + N + MN ∈ UTA(R), so PQ ∈ UTA(R). Hence it suffices to show
that every matrix in UTA(R) is invertible and its inverse belongs to UTA(R).
Now let P be an element of UTA(R) and it is straightforward to prove that
there exists a matrix Q in UTA(R) such that PQ = IA,R = QP (actually we
prove that the infinite system of linear equations that follow from the equality
of the entries of the matrices PQ and IA,R has a unique solution). Or, likewise
in the finite case, we can define the determinant of an α × α matrix as a
multilinear alternating operator, and consequently, the algebraic complement
of its entries. Clearly, det(P ) = 1, so P is invertible. For every i, j ∈ A, j < i
we notice that the algebraic complement of P (i, j) is zero, hence P−1(i, j) = 0
and if i = j, then the algebraic complement of P (i, j) is 1, hence P−1(i, j) = 1.
Thus we deduce that the inverse of P belongs to UTA(R). �

Remark 2.10. UTA(R) is not a subgroup of (MA(R),+). Indeed, for ex-
ample IA,R ∈ UTA(R) and IA,R + e21

A (R) ∈ UTA(R), but

IA,R + e21
A (R)− IA,R = e21

A (R)

does not belong to UTA(R).
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Theorem 2.11. The set UTA(R) is the subgroup of (MA(R), ·) generated
by the transvections tij(a) with i < j and a ∈ R, a 6= 0.

Proof. It can be easily checked that multiplying the matrix M ∈ UTA(R)
on the right with the transvection tij(a), i < j, a ∈ R, a 6= 0 we add the ith

column multiplied with a to the jth column, whereas multiplying the same
matrix on the left by the transvection tij(a), i < j, a ∈ R, a 6= 0, we add
the jth row multiplied with a to the ith row (here by the “ith” column we
mean the {M(i, β) | β ∈ A} set and by the “ith” column we mean the set
{M(β, i) | β ∈ A}.

The product of two transvections tij(a) and tkl(b) with i < j, k < l and
a, b ∈ R is clearly in UTA(R) (because adding a row multiplied with an element
in R to a previous row or performing a similar operation on the columns of a
matrix from UTA(R) we obtain a element from UTA(R)). Hence the subgroup
of MA(R) generated by the transvections tij(a) with i < j and a ∈ R is
included in the set UTA(R) (we also have to notice that the inverse of the
transvection tij(a) is the transvection tij(−a)).

Now we prove that the set UTA(R) is included in the subgroup of MA(R)
generated by the transvections tij(a) with i < j and a ∈ R, in other words that
every element of the set UTA(R) can be written as a finite product of such
transvections. But since every element of the above set has a finite number
of nonzero elements above the first diagonal, after multiplying with a finite
number of transvections either on the right or on the left we transform the
initial matrix to the unity matrix. Then the inverses of the above transvections
(in reverse order) yield a decomposition of the initial matrix in transvections
with the required property. �

Definition 2.12. For every ordinal 1 ≤ β ≤ α we denote by UTβ
A(R) the

set
{M ∈ UTA(R) | ∀i, j ∈ A, i < j < i + β : M(i, j) = 0}

and for every limit ordinal 1 ≤ β ≤ α we define

UTβ
A(R) =

⋂
γ<β

UTγ
A(R).

Remark 2.13. The set UTβ
A(R) consists of the α×α matrices over R with

the property that all their diagonals above the first diagonal and at the left of
the “β diagonal” are completely zero ( by the “β diagonal” we mean the set
{(i, i + β) | i ∈ A} ). If β is not a limit ordinal, then we can say that the set
UTβ

A(R) consists of the α × α matrices over R with the property that their
first β− 1 diagonals above the first diagonal are completely zero, whereas if β
is a limit ordinal the last sentence does not make sense.

Theorem 2.14. We have that UT1
A(R) = UTA(R) and UTα

A = IA,R. In
addition, UTβ

A(R) = UTA(R) if and only if β = 1, and UTβ
A = IA,R if and

only if β = α.
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Proof. Clearly,

UT1
A(R) = {M ∈ UTA(R) | ∀i, j ∈ A, i < j < i + 1 : M(i, j) = 0}

= UTA(R),

because the condition i < j < i + 1 is not fulfilled by any ordinals i, j ∈ A.
Now suppose that UTβ

A(R) = UTA(R) and we prove that β = 1.
If β is not a limit ordinal, then we consider the matrix M ∈ UTA(R) with

the property that for every i ∈ A, M(i, i+1) = 1. Then M belongs to UTβ
A(R).

If we suppose that β > 1, then we have i < i + 1 < i + β, but M(i, i + 1) 6= 0,
which contradicts the definition of the set UTβ

A(R) and therefore we deduce
that β = 1.

If β is a limit ordinal, then from the equality⋂
γ<β

UTβ
A(R) = UTA(R)

we obtain that for every γ < β, UTγ
A(R) = UTA(R). Since β is a limit ordinal,

we have β > 2, so there exists an ordinal γ < β such that γ > 1, for which
we have already seen that UTγ

A 6= UTA(R). Hence in this case the equality
UTβ

A(R) = UTA(R) is impossible.
We prove that UTα

A(R) = IA,R. If α is not a limit ordinal, then UTα
A consists

of the α×α matrices over R with the property that for every i, j ∈ A, i < j <
i + α, we have M(i, j) = 0. But the condition i < j < i + α is satisfied by
every ordinals i, j ∈ A, i < j (since i, j < α), so indeed UTα

A(R) = IA,R.
If α is a limit ordinal, then

UTα
A =

⋂
β<α

UTβ
A(R).

It is clear that IA,R ∈ UTα
A(R). Consider an element M of the set UTα

A(R)
and i, j ∈ A, i < j. Then i < j < i + j and M ∈ UTj

A(R) because UTα
A(R) ⊆

UTj
A(R), from where we deduce that M(i, j) = 0. Therefore UTα

A(R) = IA,R.
Now let us suppose that UTβ

A = IA,R and β < α. If β is not a limit ordinal,
consider the matrix M ∈ UTA(R) with the property that for every i ∈ A,
M(i, i + β + 1) = 0, and which is zero elsewhere. Then for every i, j ∈ A,
i < j < i + β, we have that M(i, j) = 0. Hence according to the definition of
the set UTβ

A(R), we have that M ∈ UTβ
A(R). It follows that M = IA,R, which

is a contradiction and therefore β = α.
If β is a limit ordinal, then consider the matrix M ∈ UTA(R) with the

property that for every i ∈ A, M(i, i+1) = 1, and which is zero elsewhere. We
have that for every γ < β, M ∈ UTγ

A(R), therefore M ∈ UTβ
A(R). But M 6=

IA,R, a contradiction. So in this case UTβ
A(R) cannot be equal to IA,R. �
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Lemma 2.15. For every non-limit ordinal β ≤ α the set UTβ
A(R) is the

subgroup of UTA(R) generated by the transvections tij(a), where i, j ∈ A,
j ≥ i + β, a ∈ R, a 6= 0.

Proof. It can be easily checked that the product of two such transvections
belongs to UTβ

A(R), so the subgroup of UTA(R) generated by the transvections
tij(a), where i, j ∈ A, j ≥ i + β, a ∈ R, a 6= 0 is included in UTβ

A(R).
As above, we prove that every element of the set UTβ

A(R) can be written
as a product of a finite number of transvections with the required property
(it is esential that every element of UTβ

A(R) has a finite number of nonzero
elements above the first diagonal). �

Theorem 2.16. For every β ≤ α, UTβ
A(R) is a subgroup of UTA(R).

Proof. If β is not a limit ordinal this proposition follows immediately from
the previous one. However, we present here an alternative proof of the inclu-
sion

UTβ
A(R) ·UTβ

A(R) ⊆ UTβ
A(R)

for every non-limit ordinal β. For β = 1 the conclusion is immediate. We
suppose now that β ≥ 2 and let M,N be two elements of UTβ

A(R). Then
clearly M,N ∈ UTA(R), hence we also have have that MN ∈ UTA(R). It
suffices to show that for every i, j ∈ A, i < j < i + β we have (MN)(i, j) = 0.
Let i, j be ordinals in A such that i < j < i+β. For k < i we have M(i, k) = 0
(because M ∈ UTA(R)), for i < k < i + β we also have M(i, k) = 0 (because
M ∈ UTβ

A(R)) and, finally, for k > j we obtain N(k, j) = 0 from N ∈ UTA(R).
Hence

(MN)(i, j) =
∑
k∈A

M(i, k)N(k, j) = N(i, j) = 0

since N ∈ UTβ
A(R).

Now let us consider the case in which β is a limit ordinal. If β = ω, then

UTω
A(R) =

⋂
n∈(N)

UTn(R)

is a subgroup of UTA(R) (being an intersection of subgroups). We suppose
that UTγ

A(R) is a subgroup of the group UTA(R) for every limit ordinal γ < β.
Then

UTβ
A(R) = (

⋂
γ∈I1

UTγ
A(R)) ∩ (

⋂
γ∈I2

UTγ
A(R)),

where I1 denotes the set of all non-limit ordinals smaller than β and I2 denotes
the set of all limit ordinals smaller than β. Using the inductive hypothesis and
the conclusion of the theorem already proven for non-limit ordinals, we deduce
that UTβ

A(R) is a subgroup of UTA(R), being an intersection of subgroups. �
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3. THE NILPOTENCY OF THE UNITRIANGULAR GROUP

Theorem 3.1. For every ordinal β < α the following equality holds:

[UTA(R),UTβ
A(R)] = UTβ+1

A (R).

Proof. If β is not a limit ordinal, then it is enough to use the fact that
UTβ

A(R) is generated by the transvections tij(a), where i, j ∈ A, j ≥ i + β,
a ∈ R, a 6= 0, and that

[tik(a), tkj(b)] = tij(ab).

for all i, j, k ∈ A and a, b ∈ R. Indeed, [UTA(R),UTβ
A(R)] consists of finite

products of commutators [x, y], where x ∈ UTA(R) and y ∈ UTβ
A(R). But

both x can be written as finite products of transvections tij(a), where i, j ∈ A,
j > i, a ∈ T , a 6= 0, and y can be written as finite products of transvections
tij(a), where i, j ∈ A, j ≥ i + β, a ∈ R, a 6= 0, so [x, y] can be written as a
finite product of transvections tij(a), where i, j ∈ A, j ≥ i + β + 1, a ∈ R,
a 6= 0. Therefore all the elements of the set [UTA(R),UTβ

A(R)] will belong to
UTβ+1

A (R).
Conversely, every element of the set UTβ+1

A (R) can be written as a product
of transvections tij(a), where i, j ∈ A, j ≥ i + β + 1, a ∈ R, a 6= 0. Then each
such transvection can be written as the commutator of two other transvections
(by using the above formula). It follows that the product of the obtained
commutators be an element of [UTA(R),UTβ

A(R)].
Now let β be a limit ordinal. We suppose that the conclusion holds for

every limit ordinal smaller than β. Then

[UTA(R),UTβ
A(R)] = 〈[x, y] | x ∈ UTA(R), y ∈ UTβ

A(R)〉

= 〈[x, y] | x ∈ UTA(R), y ∈
⋂
γ<β

UTγ
A(R)〉

= 〈
⋂
γ<β

[x, y] | x ∈ UTA(R), y ∈ UTγ
A(R)〉

=
⋂
γ<β

〈[x, y] | x ∈ UTA(R), y ∈ UTγ
A(R)〉

=
⋂
γ<β

[UTA(R),UTγ
A(R)]

=
⋂
γ<β

UTγ+1
A (R) = UTβ+1

A (R),

so the conclusion holds for every ordinal β. �

Remark 3.2. From the theorem above it follows that the lower central
series of the group UTα

A(R) consists of the sets UTβ
A(R), where β ≤ α.



182 D.A. Moldovan 8

Analogously, the group UTα
A(R) is nilpotent because its upper central series

is

UTA(R) = UT1
A(R) � · · ·� UTα

A(R) = IA,R.

It is sufficient to prove that the subgroups UTβ
A(R) are normal and that the

above series is central, in other words that for each ordinal β < α we have

UTβ
A(R)/UTβ+1

A (R) ≤ Z(UTA(R)/UTβ+1
A (R)).

Theorem 3.3. For every ordinal β the subgroup UTβ
A(R) is normal in

UTA(R).

Proof. Suppose that β is not a limit ordinal. Than we have to prove that
for every N ∈ UTA(R), for every M ∈ UTβ

A(R) and for every i, j ∈ A,
i < j < i + β, (N−1MN)(i, j) = 0. After performing all the necessary
computations we will obtain that for every i, j ∈ A, i < j < i + β :

(N−1MN)(i, j) =
∑

i≤k≤j

N(i, k)N−1(k, j),

which is zero, being exactly (NN−1)(i, j).
If β is a limit ordinal we prove the conclusion by transfinite induction after

β. If β = ω than for every natural number n ∈ N, for every N ∈ UTA(R)
and for every M ∈ UTβ

A(R) we have N−1MN ∈ UTn
A(R) (because we have

already proven that the subgroups UTn
A(R) are normal), so

N−1MN ∈
⋂
n∈N

UTn
A(R) = UTω

A(R).

Now we suppose that for every ordinal number γ < β, for every M ∈ UTβ
A(R)

and for every N ∈ UTA(R) we have N−1MN ∈ UTγ
A(R). But we know that

this property also holds for non-limit ordinals γ, therefore we deduce that for
every M ∈ UTβ

A(R) and for every N ∈ UTA(R)

N−1MN ∈
⋂
γ<β

UTγ
A(R),

so N−1MN ∈ UTβ
A(R). �

Corollary 3.4. Consider the group UTB(R), where the ordinal of A is the
predecessor of B. Then α is the smallest ordinal for which UTα

B(R) = IB,R,
so the nilpotency class of UTB(R) is exactly α.
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