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QUASICONFORMAL EXTENSIONS AND ¢-SUBORDINATION
CHAINS IN C”

PAULA CURT and GABRIELA KOHR

Abstract. Let B be the unit ball with respect to Euclidean norm on C". In this
note we introduce the notion of a g-subordination chain defined on B x [0, o)
and we deduce conditions for the first element of a g-subordination chain to be
extended to a quasiconformal homeomorphism of R?" onto itself.
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1. INTRODUCTION AND PRELIMINARIES

Let C" denote the space of n complex variables z = (z1,...,2,). The
origin (0,0,...,0) is denoted by 0 and by £(C",C™) we denote the space of
continuous linear operators from C" into C™ with the standard operator norm.
Let I denote the identity in £(C", C™).

We consider C" with the usual inner product (-, -) and the Euclidean norm
|| - |I. By H(B) we denote the set of function

f(’z):(fl(z)v:fn(z))v Z:(Zl,...,Zn),

that are holomorphic in B = {z € C" : |z|| < 1} with values in C". If
f € H(B), we say that f is normalized if f(0) = 0 and Df(0) = I. Here
D f(z) means the first Fréchet derivative of f at z € B.

We say that f € H(B) is locally biholomorphic on B if f has a local
holomorphic inverse at each point in B.

If f,g € H(B), we say that f is subordinate to g if there is a Schwarz
mapping v such that f(z) = g(v(2)), z € B. We shall write f < ¢g to mean
that f is subordinate to g.

DEFINITION 1.1. The mapping L : B x [0,00) — C" is called a normalized
Loewner chain (normalized subordination chain) if

(i) L(-,t) is holomorphic and univalent on B, ¢t > 0;

(ii) L(0,t) =0, DL(0,t) = eI, t > 0;

(iii) L(-,s) < L(+,s) for 0 < s < t < o0;

The subordination condition (iii) is equivalent to the fact that
L(z,s) = L(v(z,s,t),t), 2z€B, 0<s<t<oo

where v = v(z, s,t) is a univalent Schwarz mapping, normalized by v(0, s,t) =
0 and Dv(0,s,t) = e**1.
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The mapping v is called the transition mapping associated to the Loewner
chain L.

An important role in our discussion is played by the n-dimensional version
of the Carathéodory set

M = {h e H(B): h(0) =0, Dh(0) = I, Re (h(2),z) >0, z € B).

Recently in [4] (see also [2] and [5]), the authors proved the following result,
which will be used in the next.

THEOREM 1.2. Let L : B x [0,00) — C" be a normalized Loewner chain.
Then f(z,-) is locally absolutely continuous on [0,00) locally uniformly with
respect to z € B, and there exists a set E C (0,00) of Lebesque measure zero
such that for all t € [0,00) \ E, there exists h = h(z,t) such that h(-,t) € M,
h(z,-) is Lebesgue measurable on [0,00) for each z € B, and

L
(1) %t(z,t) — DL(2t), te[0,00\E, ¥ zcB.
DEFINITION 1.3. Let G,G’ be domains in R™. Let || - || be the Euclidean

norm on R™. A homeomorphism f : Q — ' is said to be K-quasiconformal
if it is differentiable a.e., ACL (absolutely continuous on lines) and
IDf(x)||™ < K|det Df(z)| a.e. in €,
where D f(x) denotes the (real) Jacobian matrix of f, K is constant and
IDf(@)|| = sup{[[Df(z)(a)| : [la] = 1}.

In this note we deduce conditions for the first element of a g-subordination
chain to be extended to a quasiconformal homeomorphism of R?" onto itself.
Other results related to quasiconformal extension of the first element of a

Loewner chain were recently obtained by Hamada and Kohr ([7], [8]) and
Curt and Kohr [3].

2. MAIN RESULTS
DEFINITION 2.1. Let L : B x [0,00) — C" be a normalized subordination
chain and let ¢ € [0, 1).
We say that L is a ¢-normalized subordination chain if the mapping h
defined by Theorem 1.2 satisfies the following conditions:

(i) The following inequalities hold

1 1
@ IelP T < Re (b)) < PR 2 € By ae. te 0cc)
(ii) There is ¢; > 0 such that
(3) |h(z,t)]| < @1, z € B, ae. t €[0,00).

Next, we shall present some classes of mappings which satisfy the conditions
(2) and (3).
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REMARK 2.2. Let ¢ € [0,1) and h : B x [0,00) — C™ be defined by
(4) h(z,t) = [I = E(2,t)] 7' + B(2,1))(=)

where the mapping FE satisfies
(i) E(z,t) € L(C"), z€ B, t € [0,00)
(ii) E(-,t) : B — L(C"™) is an holomorphic mapping
(iii) E(0,2) =0, [|E(z, )] <g<1.

Then h satisfies (2) and (3).

Proof. By using the Schwarz lemma (see [9]) we easily obtain
IECG Il < dgllzll, =z€ B.
The previous inequality and Definition 2.1 imply that

(5) [A(z )|l = [I2[l] < Nh(2,t) = 2] = | E(z,t)(h(z,1) + 2)|
< qllzl[(Ia(z, )] + 1211
and hence
1+ q| 2| 1+q
[h(z, )] < || ||
—ql|=|l —q
We obtain that (3) holds with ¢; = }Jrg

The right inequality in (2) is an immediate consequence of the following
inequality
1+ qH z ||

In order to prove the left part of (2) we shall first prove that

1h(z Ol < Nlllg— v

©) T4 < Ihte 0l = € B,

From the definition of A we have
1h(z.t) = 212 < [l [1h(2, 1) + 2|2
and hence
1A (2, )2 +|2]1*=2Re (h(z, 1), 2) < @*|1z[P(1h(z, O +[|2]*+2Re (h(z,t), 2)).
By using the previous two inequalities we obtain that

1+ @*llz1*)Re (A(z, 1), 2) = (1 = @[l2]*)(Ih(z, )1 + [1]1%)

1—¢?|z|?
> W(l + 721?217

where from the left part (3) is an easily consequence. O

In the next remark we shall present a large class of mappings which satisfy

(3).
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REMARK 2.3. Let h: B x [0,00) — C" such that
(i) h(-,t) € H(B), h(0,t) =0, Dh(0,t) =1, t € [0,00).
(ii) There exists ¢ € [0,1) such that

(h(z,t),z) 1+ q>
") ' EEET:

Then h satisfies the inequality (3).

2q
S

, ZE€B,tel0,00).

Proof. Let z € B\ {0}, t >0 and let p: U — C be defined by

1 z z
— - T
P(c) <<h<grz\’t>’||zu>’ ¢#0

and
=1 .
p(0) = lim p(¢)
: 1+¢° 2q 1+¢¢
=1 — h d
Since p(0) and ‘p(() e we have p(¢) < T an
hence
1 —q|¢] 1+ q|¢]
< Re p(¢) < , Cevu.
Tl = RePO= T
If we take ¢ = ||z]| in the previous inequality we easily obtain that (3)
holds. O

We now are able to present our main result.

THEOREM 2.4. Let ¢ € [0,1) and L : B x [0,00) — C" be a normalized
q-subordination chain. Assume that the following conditions are satisfied:
(i) There exist M > 0 and o € [0,1) such that

e M
(8) |DL(z,t)|| < ————, z€ B, te0,00)
(1 =1zl

(ii) There exists K > 0 such that L(-,t) is K-quasiconformal for each t > 0.

Further, suppose that there ezist a sequence {tm}men, tm > 0, lim t,, =

m—0o0

o0, and a mapping F € H(B) such that
9) lim

locally uniformly on B. Then f(z) = L(z,0) extends to a quasiconformal
homeomorphism of R?™ onto itself.

The proof is based on several lemmas which will be first presented.

Lemma 2.5 (see [11]) is the n-dimensional version of Hardy’s and Little-
wood’s Theorem [6]. This result will be applied in order to extend to B the
mappings L(-,t) (t > 0) given in Theorem 2.4.
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LEMMA 2.5. Suppose that o € [0,1] and g is a complex valued holomorphic
function for z € B such that

w e

M;
(==l
Then g has a continuous extension to B and there is A > 0 such that

(11) l9(2) — g(w)| < Allz —w|'™%,  2,weB.

7=1,...,n, z€ B.

LEMMA 2.6. [11] Let f € H(B), M >0 and « € [0,1) be such that

M
(12) [Df(2)]l < a=J=n z € B.

Then f has a continuous extension to B (also denoted by f) and there exists

A > 0 such that
(13) 1f(z) = fw)]| < Allz —w|"™%, zwe B.

LEMMA 2.7. Let v : B x [0,00)2 — C" be the transition mapping associated
to a qg-normalized subordination chain. Then the following inequalities hold:

e'llv(z, s, 1) e®l|z]]
(14) ik > , zE€B, t>s,
(1 +gllo(z, s, 0)[)* — (1 +4ql=])?
e'fv(z, s, 1)l e’ =]
(15) — < , zEB, t>s.
(1 =gllv(z s, 0)1)* = (1 —qllz[)?
Also, for allt > s we have
(16) v(B,s,t) C B.
Proof. For all s > 0 and a.e. t > s we have (see [2])
g: (z,8,t) = —h(v(z,s,t)), z€B
and
d dv
G0 = poie (G 0.00).
di lv ()||

By using the previous inequahtles and (2) we obtain that
d

(1) GOl = ~rorRe (D). 0,0(0). . t> s
1+qm<w N 101 [
oL < IOl < —lol o e >

We may integrate the inequality (17) and make a change of variable to
obtain (14).
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In order to obtain (15) we use the inequality

d
POl 1—g@) _ 1-4
PO = Tralo@l = T+

We integrate the previous inequality and obtain that

a.e. T € [s,t].

1—
o(z, 5,8)] < ||2[|e” s )

which shows that (16) holds. O

LEMMA 2.8. Let L : Bx[0,00) — C" be a g-normalized subordination chain
and let {tm}men be a sequence with t,, > 0, lim ¢, = oo, F € H(B), such
m—00

that
. L(Zv tm)
L e e €
locally uniformly on B. Then the following inequalities hold:
(18)

S S
el r < —EL_ e s3>0

(1 + qll=[]) (1 —ql=l)*
Proof. The inequalities (18) are easily consequence of (14), (15) and of the
fact that (see [2])

L(z,s) = tliglo elv(z, s, 1)

locally uniformly on B. O

LEMMA 2.9. Let L : Bx[0,00) — C" be a g-normalized subordination chain
and let M >0 and « € [0,1) be such that

et M

(19) IDLG O < T 2 € By te o).

Then the following statements hold:

(i) For eacht > 0 the mapping L(-,t) has a continuous and univalent extension
to B (also denoted by L(,t)).

(ii) There exist K,L > 0 such that

(20) e Y|L(z,t) = L(w, )| < K[|z —w||'™*, zweB, t>0
and
(21) IL(z,t) = L(z,8)|| < Le'(t =)', 2€B, 0<s <t

Proof. By using Lemmas 2.5 and 2.6 and the assumption (19) we deduce
that the mapping e *L(-,t) has a continuous extension to B and

e UL (zt) — L(w, )]l < K|l —wl'™®, zweB, t>0.
Hence, the condition (21) is fulfilled.
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_ Since L(z,s) = L(v(z,s,t),t) for 0 < s < t and L(,s) is continuous on
B, by using (16) we have L(B,s) C L(B,t) for 0 < s < t. Then v(z,s,t) =
L7Y(L(z,5),t), z € B, defines a continuous extension of v to B.

For z € B, t > s > 0, we have
to
— d
/887_1)(2,3,7) T

/st h(v(z,s,T),7)dr

Since v is continuous on B, the previous relation holds for 2 € B. Next, we
shall prove that L(-, s) is univalent on B. Suppose that L(z1,s) = L(z2, s), for
21,22 € B. Then for t > s we have

L(v(z1,s,t),t) = L(v(22, s,t),t).

Since v(z1, 8,t),v(22, s,t) € B for 0 < s < t and L(-,t) is univalent on B, we
obtain v(z1, s,t) = v(z2, s,t). If we let t — s, v(z1,s,t) = v(z2,s,t) we obtain
that z; = 2. Here we also use (22).

From (22) and (19) we easily obtain that

IL(2,8) = L(z,8)|| = [|L(v(z, 5, 1),t) = Lz, t)|| < " M]|z = v(z,s,)['
Seth%_a(t—s)l_o‘, 2€B, t>s5>0,
which means that (21) holds with L = Mq; ™. O

(22) 2 — vz .| = ]

< q(t—s).

We are now able to prove the main result.
Proof of Theorem 2.4. Let
L(z,0), Izl <1

FO= L (Ftoglat). lel> 1
2]

First, we will show that F is a homeomorphism of R?” onto itself. Since
for every ¢ > 0, the mapping L(-,t) is univalent on B and for all 0 < s < t we
have L(B,s) C L(B,t) we obtain that F is univalent on C" (R?").

The continuity in C"* (R?") of the extension F follows since (20) and (21)
yield that L(z,t) is continuous in B x [0,00). The left-hand inequality (18)
shows that F'(z) — oo as z — oo and hence that F' is a homeomorphism of
R?". It remains to show that F is quasiconformal in R?". We shall do this by
using an approximation argument similar to Becker’s [1] and Pfaltzgraff [11].

Let » > 1 and let

(23) Lo(2,t) =L (;t) he(z,t) = rh (§t> t>0,

Ly(2,0), 2l <1

24 F.(z) = z
(24) &)=1 1, (M,lognzn), ol > 1.
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Clearly, L,(z,t) satisfies the differential equation
d
aLr(z,t) = DL,(z,t)h,(z,t) a.e. t >0, for all ||z|| <r

and hence ||z|| < 1.
On the other hand, since

(25)

1Er(z8) = Lz )l < ||rL (2,
;

() e o) -2

h\_/

l1—a
<a=n e o]t |7 -
r r
e - [l -
< g (L) M (1)
<1_qHZH>
r
T
er _
S Ow(l T)+MeTT1_a(1—T)1 04’
r

for all ||z|| < 1,0 <t < T, we deduce that L,(z,t) — L(z,t), uniformly in
Izl < 1,0 <t <T, asr decreases to 1. Hence F, converges to F' uniformly
in R?" as r decreases to 1.

Next, we shall show that F,. (as a mapping from R?" to R?") is ACL, differ-
entiable a.e., and has outer dilatation bounded a.e. by a bound independent
of r. Then it will follow [12] that F' is quasiconformal.

We show that e~ L,(z, t) satisfies a Lipschitz condition on B with exponent
1. Indeed, we have

SONE)

t
M _
26) [[Lr(=,t) = Ly (w,8)| € ——xwllz—wl = M)zl zweB.
(=)
r
By using (26) and the fact that L is a Loewner chain we get
|Ly(z,t) — Ly(2,s ]—THL( ) (f s)H
z
THL( t) =2 (o (Fat) )
M| —v[e)

M(r)rqi(t —s)
= etL(r)(t— 5), z€B,0<s<t.

HDL(th—wDL< )H_

and hence

| /\

| /\
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Next, we will show that F, satisfies a local Lipschitz condition (with expo-
nent one) on C". It is sufficient to prove this condition for z,w € C" with
Iz — w|| < 1. We prove this condition in the following 3 cases:

i) z,w € B;

ii) z,w e C"\ B, |z| < |lw] and ||lw — z|| < 1;

iii) z € B, we C"\ B.

i) If z,w € B we obtain by (26) that:

(28) 12 (2) — Fo(u)]| = | a(2,0) — Lu(w,0)]
< M)z w].
th;t) If z,w € C, |l2]| < w| and w — 2|| < 1 we obtain by (26) and (27)
HR@—RWM=L«KVMWD—MQ$M%WDH
L (g osliet) (ﬁwbﬂw0ﬂ+
(29) ‘L<HH““MO‘ <nnbgWDH
< ) |+ = 2o + polog )5 20

Tl
VHﬁmm—unum
< 2M () + L) — 2.

< qM(r)llz —w| +

iii) If 2 € B and w € C™\ B then there exists a real number 3 with 0 < 3 < 1
such that uw = (1 — )z + Bz € 0B. By using (28) and (29) we obtain that:

1E.(2) — E(w)]| < | Eo(2) — Fo()] + | (u) — Fr(w)|
mem—LngwmmeH

< M(r)|lu— z[| + 2[M (r) + L(r)][|u — w]|
< [BM(r)+ 2L(r)]||z — w].
Thus, F, satisfies a local Lipschitz condition. Hence F, is ACL in R?” and
so is (real) differentiable a.e. in R?".
It remains to prove that F,. has outer dilatation bounded a.e. by a bound
independent of 7.
Let r > 1 and let G(z) = F.(z) (in order to simplify notation).

We let z = (z,y) = (z1,Y1,---,%n,Yn), ||z]] = 1, be a point when the
mapping G = (U, V) = (U1, V1,Us, Va, ..., Uy, V,,) defined by

G((.’El,yl,...,xn,yn)):(Ul,Vl,...,Un,Vn)
Ur = Re Gi(z,y), Vi=Im Gg(z,y), k=1,...,n

= HLT(Z,O) - LT(U,O)H +
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is differentiable.
To compute the (real) derivative of (30) we use the chain rule on the com-
posed mappings.

By denoting ¢ = , t =log||z]|, ux = Re Lg((,t), vg = Im Lg((,t) we

obtain:
2 [ Re (h(G,1) Q)
30 D, Vir.y) = ||<uv5m{1+r[hnm“ﬁ_()ham}

If we denote by A = r? [ IITel Ezgg:g - 8 ] (&,m) by using a similar argu-

ment as in [11] we obtain that

1—¢q
det(l + A) > ——
et(l + )_1+q
and hence
D(U,V;z,y) = 7—D(u,v,&n)[l + A

Also, we have

1D, Viz,y)|| < 5 HDL(C I+ All.

Since

|mu§rwmaw—<M\HH\ LR 8) — ¢

<1+r[p@O)l<1+aq

and hence || + Al <2+ ¢.
By using the previous inequalities and the fact that L(z,t) is a quasicon-
formal mapping we get

ID(U, Via,y)lIP" < [l IDL(C, B (2 + a1)*"
1+¢

<

T2t DI, V2, ).
This inequality completes the proof. O
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