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MAXWELL EQUATIONS ON THE SECOND ORDER TANGENT
BUNDLE

GHEORGHE ATANASIU and NICOLETA BRINZEI

Abstract. We generalize the geometrical theory of electromagnetic fields in [7]
to the second order tangent bundle T?M endowed with an arbitrary N-linear
connection and, by defining the current density J, we give an analoguous of the
charge conservation law in the second order differential geometry.
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1. INTRODUCTION

Starting from the tensorial form of the first Maxwell equations (Gauss’
law for magnetism and Faraday’s law of induction), in [7], R. Miron and Gh.
Atanasiu constructed an electromagnetic field theory on the k-tangent (or
k-osculator) bundle endowed with a particular nonlinear connection N and
a particular linear connection CT'(N). On the other hand, in [14] there is
defined the current density and studied its divergence on the tangent bundle
of order 1, T'M, also endowed with a particular linear connection.

In the following, we first aim to generalize the construction in [7] in the case
of an arbitrary nonlinear connection N on the second order tangent bundle
and an arbitrary metrical linear connection which preserves the distributions
generated by N. Then, we define a notion of current density on the second
order tangent bundle 72M which generalizes the one in [14], write the sec-
ond Maxwell equations (the analoguous of Gauss’ law for magnetism and of
Ampere’s law) and the charge conservation law in our geometrical context.

2. THE 2-TANGENT BUNDLE T2 M

Let M be a real n-dimensional manifold of class C*, (T M, 7%, M ) its
second order jet bundle, called in the subsequent, as in [1], the second order

tangent bundle, and let TQM _be the space T?M without its null section. For
a point u € T?M, let (z*, (M7, 4(2?) be its coordinates in a local chart.

Let N be a nonlinear connection, [5], [8]-[13], and let <J¥;,]¥;>, i, j =
1,...,n be its coefficients. Then, N determines the direct decomposition

(1) T, T*M = No(u) ® Ni(u) ® Va(u), Vu € T2M.
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We denote the adapted basis to (1) by (d;,d14,d2;) and its dual basis with
(dz', 6y, 6y?)). We have

o i 0 Nk 0 Nk 0
S 7 N e oyWk "2 ¢ oy2)k
1) 0 v 0
2) 010 = syi — gyi i dy(@k
09; = 0
21 8y(2)z7
respectively,

Sy = qy(Wi 4 J\lﬁd;c’f
(3) Syt = gy 4 ]\ﬁ{dy(l)k + J\Qﬂ;dazk,

where ]\14 2, ]\2/1 }C are the dual coefficients of the nonlinear connection .

Then, a vector field X € X (TQM ) is represented in the local adapted basis
as

(4) X = XxWig; + xWigy; + X@igy,;,
with the three right terms,
(5) hX =XH=XxO5 X =x" = XWig, v, X = xV2 = x@isy,,

called d-vector fields, belonging to the distributions N, N7 and V5, respec-
tively.
A 1-form w € X* (T2M) will be decomposed as

w = wi(o)dxi + wz(l)éy(l)i + wi@)éy@)i.

The terms
JH = LL)l(O)d‘,Ez‘le _ wl(l)&y(l)i’wVQ _ wi(2)5y(2)i
are called d-covector fields.
A d-tensor field is a tensor field of type (r,s) on T?M which acts on r

d-covector fields and s d-vector fields, in the following manner:
1 s 1 s
T(ulj, ey, X, X) = T(ule, w2 XXV,
T T

Any tensor field T' € 7 (T?M) can be split with respect to (1) into a sum
of d-tensor fields.

The F (TQM)—linear mapping J : X (TQM) - X (TQM) given by
(6) J (6i) = 014, J (01:) = d2:, J (21) =0,
is called the 2-tangent structure on 72M, [8]-[13].

The Liouville vector field, [1], [5],

C =y

+ 2y

0 i
8y(1)Z 8y(2)i’
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can be written in the adapted basis (2) as
2 . ,
C = Z(l)l(sli + 22(2)2(522'.

Its components

AW (i @) (@) iy (1)
(7) =y +21\14J :

define two d-vector fields, called the Liouville d-vector fields.

3. N-LINEAR CONNECTIONS

An N-linear connection D, [1], is a linear connection on T?M, which
preserves by parallelism the distributions N, N1 and V5. An N-linear connec-
tion which is also compatible to J (DJ = 0) is called, [1], a JN-linear con-
nection.

An N-linear connection is locally given by its nine coefficients

(8)
DF(N)—(le L k sz. C’Lk Clk Cljk7cljk7cljk70i.k>7

00) 7% (10) 777 20) 777 (01) 777 (11) 777 (21) 777 (02) 77 (12) TV (22)
where
Day0j = L k00 D01y = L5 Doyd2j = L5y
9) Dsi0j = Gl Dodry = Cieoris Doyd2j = G0

D;,, 05 = (C) “k0is Dy 015 = (g)ijkéliv Dy, 025 = (g)’;kém

In the particular case when D is J-compatible, we have only three essential
coeflicients:

(00) 7 (10) 7% 7 20) I 3k
ct, = C',=C", = C°

(01) 7 an eyt @) I
Ci. = Cil,=Ci, =(Cl,.
(02) ¥ (12) 7% T @)k T gy F

Let
T =T (m,y(l),y(2)> 8y ® ... ® 69, @ dz?' @ ... @ 6yPs

Ji--Js

be a d-tensor field of type (r,s) and X € X(T?°M), X = X" 4+ X1 + XV2 as
in (4). Then, the covariant derivative of 1" writes as

DxT = DYT + DYT + DYT,

where the h-, v1- and vo- covariant derivatives D)I}[T, D}? T, D}/(?T are given
by:
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1 s 1 S
(D)f}’T)(ule, w2 XXV = XH(T(cfH, Low2 XH XV
T T
1 S 1 S
—T(D)I}’%;H, ...,UﬁVaXH, IUND () R T(ulJH, ...,C;)VZ,XH, ., DEXV2),

1 s 1 s
(D)‘?T)(Li}H, e XM LX) = XD 0 X XY
I8 T

1 s 1 S
—T(DPWH, W XP XYY T w2 X DY X)
1 r 1 r
(ﬁ = 17 2)

By a straightforward calculus, one obtains the local writing;:

DYT = XOm Tt 65 @ .. @6y, @ da? @ .. @ 5y,

J1---Js|m
where
T7,17,T — (5 Tlllr+ Lil Th12’5r+_+_ L’ir T?l---'l:r—lh_
J1~-~]s|m Mm=71...Js (Oo)hm J1---Js (20)hm J1---Js
o h o oqineir 7 h i
(b[(/))jlmThh---js (2'%)]3771 J1---Js—1h°
Similarly,
()]
v . .
DT =XOmTitr |65, @ ... @ 63, @ da?! @ ... @ yPe,
where
1.0 i1 0 i1 hig...ip i i1...00—1h
J1---Js | m 5ﬁm,‘rj1...js + (OC'B) hmtrjl...js +o Tt (g@) hm,I‘jl...jS -
h 21 0p h 1.0y _
7((%)]1mThj2j5 T T (%)jsmtz—jjl...js_lh (’8 - 1’2)

4. d-TENSORS OF TORSION AND CURVATURE
The torsion
T(X,Y)=DxY — Dy X — [X,Y]
of the N-linear connection D is well determined by its components which are

d-tensors of (1,2)-type ([1], [7], [8]):

() .
U’YT((S/Bk7 504.7) = (3;3)ij5’7Z (Oé, ﬂa 7 = 17 2)
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In the notations in the cited papers, we have

(0) . . (). .
hT (03, 0;) = T %0, = T *..0;, T(0p,0;) = T %0 = T "1 004,
(0K, 65) (Oo)jk (00) jk vy T (0, 65) (Oo)jk‘ " o) kO
hT (651, 0 (%)1'5 Pi.§ T(dgk, 0 (%)ié P .6
(6K ])_(Oﬂ)jk Z_(ﬁo)jk 2 vy T (Opk ])_(Oﬁ)jk w—(m)jk i

() . .
U T (09g,0145) = T %10 = v O
ol (2k 13) (12)]k7 (g)]kzv

(O 4
v T (0gk,08;) = T *100i = S %00+
vy (Bk ﬁy) (Bﬂ)gkv (m)gkzw

) .
(8,7 =1,2). The detailed expressions of (Z;)’jk (o, 8,7 =0,1,2) can be found

in [1].
The curvature of the N-linear connection D,
R(X,Y)Z = DxDyZ — DyDxZ — Dix y\Z,
is completely determined by its components (which are d-tensors)

R (5'yla 6,3]6) 6&] = (a],;’y);:kléai (Oé, ﬁa v=0,1, 2)

Namely, the 2-forms of curvature of an N-linear connection are, [1],

| . . .
0t == K k l K k (1) K k 2)1
1 . . 1 ]
2§ i (MK AS (1) i d (MK AS 2) - s (2)k AS 2)
2 (1)’ Yy Yy +(2%sz Yy Yyt 2(25&)31@1 Yy Yy

a = 0,1,2), where the coefficients R .%,, P 2 Q %, S .t (a=0,1,2;
( ) (Oa)]kl (Ba)]kl (ﬁa)ﬂkl (6a)jk‘l (

B = 1,2) are d-tensors, named the d-tensors of curvature of the N-linear
connection D. For a JN-linear connection, there holds
Q.= QL. = Q..

o’ 0 @’

The detailed expressions of the d-tensors of curvature can be found in [1].

5. METRIC STRUCTURES ON T2M

A Riemannian metric on T?M is a tensor field G of type (0,2),
which is nondegenerate in each u € T?M and is positively defined on T2M.
In this paper, we shall consider metrics in the form

(10) G=gijdi'®da? + g ij5y(1)i ® 6y 4 g ij5y(2)i ® 6y,
(0) (1) 2)
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where g4 = g4j(x, y1), y(2)); this is, so that the distributions N, N; and V5
(a) (a
generated by the nonlinear connection N be orthogonal with respect to G.
An N-linear connection D is called a metrical N-linear connection if

DxG =0,VX € X(T?M), this is

B
9ijlk = 9ij |k:0 (Oﬁ:O,l,Q; B: 172)'
() (a)
The existence of metrical N-linear connections is proved in [1]. Remember
that a metrical JN-linear connection is the one used by R. Miron and Gh.
Atanasiu in [7], namely CT(N) = (L', (10)ij’ (%’jk), given by

gih(59jh L Ognk 59;'1@)’

; 1
L'y, = = i
i 2 oxk Sxd Szh
/ L ing 99;n OGnk 39k
? _ — _ih 7 B i _
S = 39 G o T 5ms gy P=LY)
where g = gij = g4 = gij (9ij being a Riemannian metric on M) and g*/

(0) (1) (2)
are the elements of the inverse matrix of (g;;).

6. MAXWELL EQUATIONS

Let T?M be endowed with a nonlinear connection N, a Riemannian
metric G and a metrical N-linear connection D.
Let 27, 2(2) the Liouville vector fields (7). We denote by

(a). (af). (8)
D 7

L Z(a)i d? i= Z(a)z |

j=2 (a=0,1,2 f=1,2),

J
the deflection tensor fields of the N-linear connection D. By lowering and
raising indices, we obtain the covariant deflection tensors

(@) (@, (af) (aB),
Dij= ginD"}, dij=gmd"; (@=0,1,2;6=1,2),
(o) (o)
and the contravariant deflection tensors
(o). P (af). . COp
DY = g™ D", dY=g"d"'", («a=0,1,2;8=12).
(a) (@)
By means of the deflection tensors constructed above, we can define the
electromagnetic tensor fields by

() 1 [ () (@) (af) 1 [ (eB) (af)
Fij=5\Dji—Dij |, fij:§ dji— dij

(a=0,1,2, =1,2).
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In the particular case when the connection D is CT'(NV), the electromagnetic
tensors look as those in [7], that is,

A MG R B P O
= 5( St Sxd )7 vy 5(5y(ﬂ)i - 5y(ﬁ)j)
(a=0,1,2, 5 =1,2).

The corresponding contravariant tensors are

(). 1 ((@. (o). (@8).. 1 (@B, . (aB).
Fl]zi DIt — D ’ fz]:§ dIt— g 7

(a)

or,
@ ih_(a)j h_(0)i
(11) 2FY = g¢g'"z " g’z n
(o) (o)
(af) 4 ( . )
2 f iy g zhz(a)] | - g]hz(a)z |
(o) (o)

(a=0,1,2, 5 =1,2).

By applying the Ricci identities (see [1]) of the N-linear connection D to
the covariant electromagnetic tensor fields, there follows a generalization of
the first Maxwell equations in the case of the 2-tangent bundle:

(@) (aB)

THEOREM 1. The covariant electromagnetic tensors F;, [ i satisfy the

following identities:

(@) (2) (2) @h =9, @)
o A Fjip+ Frjit Fuyt= > { R pjuz ™" =D "T 7 d im},
(78 (200) 5=0(00)

(@) (B) (@ B) (o) B) (aB) (aB) (aB)
o HF | y+Fujl i+ Fal;+ fauwt frgpt [y} =

SR e R == (T~ )
= igk — ikj )% - ik — j imJs
Sy eon)" T a0s) R GO MM GOLY

(@) () (@) () (@) (N () B (ay) B) (o) B)
e 2 fyilet fuglit fawl;+ Fgilp+ folit falyt =

2.0 @) ()

= R i'—R Z“Z(a)h— '_Tm'dima
Z B i = B i) Z(ww’“ (k) d i}
(4,5,k) 5=0
(@) B  (aB) B (aB) B) 2 ) (a0)
o 2{ fiilet Frilit Fald=D { R e "= " T " din}
G @) £=(68)
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(¢ =0,1,2, 3 =1,2), where Y. means cyclic sum with respect to the indices
(i.5,k)
i,7, k.
In the particular case when D is the canonical JN-linear connection CT'(NV),
the relations above are identical to those given in [7].

In the following, by generalizing to T?2M the construction in [14], let us
(aB)

consider the vector fields J given by their v,-components (vg = h):
(12)

(a0) (a)l ™ (aB) (af) (7)
vy J = FY | Oyji, vy J =1 f ]|j dyj (a,=1,2; v=0,1,2),

where in the right terms above there is no sum after 7.
The equalities 12 formally generalize the second Maxwell equations. We

()
thus can call J , current densities.

We can obtain a generalization to T2M of the charge conservation law by

(af)
computing the divergence of J . More precisely, we have

THEOREM 2. The followmg equalities hold:
(20) ()

. a) 2 ®) (@) ()
vy J U], = *Z ji)FJ_Z(T)ijF]‘m )

('w (rv) P}
(@B) (7) 1 (@) 2 @) (aB) (9)
vy J ! . = = % Y- T n;b “ m
K K Z{(w ’Y)J)f %(VV)JJC | }
1 2
(o, 3 = 1,2), where R;; = > R im (v = 0,1,2) are the Ricci tensors
() 5=0(077)

attached to D, and in the left terms above we mean sum after v (and ).

In the equations above, for each pair of distributions (a, 3), the right terms
play the role of the variation of the charge density p from the classical theory
(up to a multiplication by —2).
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