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SOME INTEGRAL OPERATORS DEFINED ON p-VALENT
FUNCTIONS BY USING HYPERGEOMETRIC FUNCTIONS

A. TEHRANCHI and S. R. KULKARNI

Abstract. In the present paper we introduce some integral operators and verify
the effect of these operators on p-valent functions and find radii of starlikeness
and convexity for these operators, finally we introduce the concept of neighbor-
hood.
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1. INTRODUCTION AND DEFINITIONS

Let A be class of functions f(z) of the form

2p—1
f(z) = mzP + Z tn_p+1z”_p+1 — oFi(a,b;c;2), |2 <1,
n=p—1
where o Fi(a,b;c;2) =Y 00 %z”, c>b>0,c>a+b,
T'(a+n a,n—p+1)(b,n—p+1
(a,m) = S = ala+ Ln = 1), tupia = GRS and
m = DAL+ Pl +p) + N@L O (c+p)l(n +1)

T(a)T(5)T(c + p)T(n + 1)

These functions are analytic in the punctured unit disk A = {z € C: |z| < 1}.
For more details on hypergeometric functions 2F}(a,b;c; z) see [4] and [7].

Let f € A, we denote by UCVP the class of uniformly convex p-valent
function in A and a — ST the class of a - starlike functions also denote by
a — UCVP the class of a-uniformly convex p-valent function in A which are
introduced and investigated by Kanas, Wisniwoska [6] and Silverman [10] for
p=1.

The function f(z) in A can be expressed in the form

00
fz)=2"— ) k2", peN (1)
n=p+1
_ D(a4+n)T(b+n)T'(c)

DEFINITION 1. Let f € Aand 0 < a < co. Then f € a — UCV? if and

onlyifRe{p—i-%N}>a %ﬂ , 2 € A.
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DEFINITION 2. Let f € A. The class « - uniformly starlike functions o —
US AP is defined as

/ /
a—U&M:{feAI{<f>>aEL—p,
f f
DEFINITION 3. (see [7], [11] and [12]). Let the function f be of the form (1)
and be analytic in A. The fractional derivative of f of order ¢ is defined by

a >0, zEA}

where the multiplicity of (z — €)% is removed by requiring log(z — £) to be real
when z — ¢ > 0 and so we have

D2f(=) = r(z— Z T ni;p 5) o (3)

Making use of (2) and its known extensions involving fractional derivatives
and fractional integrals, Owa and Srivastava [11] introduced the operator

D f(z):=T(2-8§)2D2f(z), 0<d<1 (4)
and for § = 0 we have QVf(z) = f(2).

DEFINITION 4. Let f(z) € A is said to be a member of the a —UCV(n, ¢)
if f(z) satisfies the inequality

S ()Y + 02 (=)
e (( — QN + nz(ﬂzﬂz))')

- 0L (2)) + (9"
(A= n)QLf(2) +n2(Q2f(2))
where 0 <n<1,0<¢< F,peN,a>0and 0<d < 1.

—1‘ + sin ¢, (5)

We note that by specializing the parameters «, ¢, 1, § we obtain the following
subclasses studied by various authors (by putting sin¢ = § and f(z) = 2P —

o
> anz", an > 0).

n=0

MHIfs=0,d=0andp=1=a—UCV(x,0) = pi(1, A, 3) was studied by
Altintas [1].

M) Ifn=0,06=0,a=0p=1=a—-UCV(0,¢) = T*(B) was studied by
Silverman [10].

(IlI) If n=1,0 =0,a =0,p=1= a—UCV(1,¢) = C(B) was studied by
Silverman [10].

(IV)Ifn=0,0=,0,p=1=a—-UCV(0,¢) = UCT(k, 5) was studied by R.
Bharati, R. Parvatham and A. Swaminathan [5].

(V)Ifp=1,n=0and =0 and § = 0, that is k — sT introduced by Kanas
and Wisniowska [6].
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(V) If n=1,8=0and 6 = 0,p = 1 that is « — UCV introduced and studied
by Kanas and Wisniowska [6].

(VII) If p = 1,6 = 0 that is « — UCV (7, 8) introduced and studied by E.
Aqlan [3].

REMARK 1. o — SAP C o — UCV}(n,3) when n = 0 and f = 0 and
a—UCVP Ca—-UCV{(n,B) whenn=1,06=0.

LEMMA 1. (Coefficient Bound) [13] The function f(z) defined by (1) is in
the class a — UCVY (0, ¢) if and only if

> AP, 0)[(1=n+nmm)(n(l + a) — (a + sin ¢))]kn

n=p+1

< (p—sing)(1—n+np) +alp—1)(1—n) (6)
where AP (n,d) = %ﬁ:ﬁgm and 0 < ¢ < 5,0 > 0,0 <n <1,p € N and

0<d< 1.

2. SPECIAL FUNCTIONS AND INTEGRAL OPERATORS ON « — UC’V(SP(U, <;5)

DEFINITION 5. Let ¢ be a real number such that ¢ > —p. For f € a —
UCVY(n, $), we define F, by

Fu(z) = <2 / T f(s)ds (7)

ZC

THEOREM 1. F,(z) defined by (7) belongs to o — UCV{ (n, ¢).

Proof. Let f(z) =22 — > kpz" € a« —UCVP(n, $) then
n=p+1

C%’p N c—1+p G n+c—1 p . 047p n
F.(z) = s — Z kns ds = 2P — Z k2"
0

z¢ n+c
n=p+1 n=p+1 +

oo
Hence F.(z) = 2P — Z C+pk:nz".

w1 c+n
Therefore
= . c+p
S AP0 =1+ nn)(n(1 +a) — (a +sin )| <L,
n=p+1
< 3 70,91 =+ nn)(n(l +a) — (@ +sin @)k,
n=p+1
<(p—sing)(1—n+np)+alp—1)(1-n) (by6). (8)

So Fo(z) € a —UCVL (1, ¢). O
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THEOREM 2. The function F.(z) defined in 5 is starlike of order A (0 <
A<p)in|z| <ri(n,¢,a,d,n,p,c,\), where
{ [(1 = n+,nn)(n(1 +a) — (a + sin @)]
(p—sing)(1 —n+np) + alp —1)(1 —n)

(55) (55 o)™

The bound for |z| is sharp for each n with extremal function being of the form

(p—sing)(1 —=n+np) +alp-1)(1-n)

1 (777 ¢a «, 57 n,p,c, )\) - n;IIIJS-l

z) = 2P — - tn>p+1.
I = S 0 - n (1 + @)~ (a+smg)] "
Proof. We must show that
2F!(2) ‘
2 pl<p-n 9
Fo) P <P (9)
But we have -
c+pk, _ n—p
p—n)lz
ZFC/(Z) n:zp:—i—l c+n n( )‘ ‘
G ST & g e
1= 3 Skl
Therefore (9) holds if >2 2 ., (Eifl) (2”;—")\_)‘> kn|z|" P < 1. Now in view of

(8) the last inequality holds if
(1 =n+nn)(n(1 +a) — (a+sing)]
(p—sing)(1 —n+np) +alp —1)(1 —n)

(3525) (£2) v

This gives the required result. U

277

COROLLARY 1. The function F.(z) defined in 5 is convex of order \ (0 <
A <p)in|z| <ran,¢,a,d,n,p,c, ), where
1-— 1 — i
nzp+1 | (p—sing)(1 —n+np) +alp—1)(1 —n)

<2pp—_nA—/\> (Zig) 7p(”’5)}ﬁ- (10)

FY(2)
Fi(2)

Proof. We must show that
But we have

<p—Afor |z] <ryand c> —p.

plo—1)+ > Shkan(n—1)]z[*P

ZF!(Z) n=p+1

Fe(2)

[e.°]

p— X Elknn|z|nr
n=p+1
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. 0o n(n—1+p—2X c n— . .
Therefore (10) holds if > 7 .4 ﬁ (Ciﬁ) kn|z|" 7P < 1. Now in view
of (10) the last inequality holds if

[(1—n+nn)(n(l+a)— (a+sing)]

(p—sing)(l —n+mnp) +ap@—1)(1-n)
p(2—p)— A c+ny ,
(n(n— 1+p—>\> <c+p> 7o)

This gives the required result. O

|27

DEFINITION 6. Let ¢ be a real number such that ¢ > —p. Let f € o —
UCVP(n, $), Komato operator in [8] is defined (for p = 1) by

_ [Pt 1y f(t2)
G(z)—/o G t(log;) t—pdtc>—1,§20.

THEOREM 3. G(z) defined in 6 belongs to a — UCV (n, ¢).

Proof. Since fol t¢(—logt)s~tdt = F(f)g and fol trreP(—logt)s1dt

(c+1)
= % n > p + 1. Therefore we obtain
(c+1)5 /1 D 15—1 = /t 15—1 _
= c 1 - _ 1 - n—p-+c n n
G(2) rE | s > | log() T k2t
n=p+1
> 3
= 2= L 11
2 23(6+n_p+1 nz (11)

n=p+1
Therefore and with use of (6) we have

> D . c+1 £
n§17 (n,0)[(1 —n+nn)(n(l+a) - (a+sing))] <m) kn

< (p—sing)(1—n+np) +alp—1)(1—n) (12)
So G(z) e a —UCV{(n, ¢).

THEOREM 4. The function G(z) defined in 6 is starlike of order A (0 < \ <
p) in |Z| <n (na ¢7 «, 67 n,p,c, f’ >\) where

{ (I—=n+nn)(n(l+«a)— (a+sing)
(p—sing)(1 —n+np)+alp-1)(1-mn)

(525) (525 o) <13>

Proof. We must show that

r;y = inf
n>p+1

2G'(t)
a) 7

‘<p_x (14)
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By (11) we have

o0 §
ctl —n)kp|z|"P
ZG/(t) B ' - n:sz—i—l <c+nfp+1> (p ) | ‘

G(t) _ S c+1 ¢ n—p
1 ZH <c+n—p+1> k2|

n=p

3
Therefore (14) holds if 72 ., (C+§f;+1> (2p;(_71;’\))kn|z|”_p < 1. Now in

view of (11) the last inequality holds if
Y (n,0)(1 —n+nn)(n(l + o) — (o +sing))
~ (p=sing)(I—n+mp) +alp-1)(1-n)

(i) ()

This gives the required result. O

27"

COROLLARY 2. The function G(z) defined in 6 is convex of order A (0 <
A< p) in ‘Z| < 7"2(7% ¢7 «, 67 n,p,c, 57 )‘); where
n = g ATl e - o g
2 = .
nzpt1 | (p = sind)(1 =7 +np) +alp —1)(1 —n)

1

(o) (g o)

Proof. We must show that
2G"(2)
G'(2)

By (11) we must show that

& 3
=17 = 3 () kanln - Dl
n=p

p—A, |z <re. (15)

<p—A

&)

3
prt = 5 () Rl
n=p

Therefore

i <c+;+;+ 1>g <”(p1—)(i\+:)_ 1)>kn|z|"1’<1. (16)

n=p+1
Therefore (16) holds if
VP (n,0)(1 —n+nn)(n(l + o) — (o +sing))
(p—sin@)(1 —n+np) +alp — (1 =)

() (),

2] 7*
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DEFINITION 7. Let f € a — UCV} (1, ¢). Function H,,(z) defined by
_ p i)
Hy(z) = (1—p)z" + up Tdt’ uw>0,z€A.
0

THEOREM 5. The function H,(z) defined in 7 belongs to oo — UCVY(n, §)
if0<pu<p+1.

Proof. Let f(z) € a — UCV{(n, ¢) and is of the form (1) so

H,(z) = zp—uzp+up(/z th=1 — Z Ent"™ 1| dt) = 2P — Z (ﬁkn) 2"
0 n=p+1 n=p+1 n
(17)
Therefore we have by (6)
> P8 —n+nn)(n(l+a) - (a+sing) =k,
n=p+1
" p . pp
< n:zp;lv (n, 6)[(1 = n+nn)(n(1+a) — (o +sin ¢))]mkn
< > AP0 =0+ m)(n(l+ @) = (a+sing))lkn
n=p+1
< (p—sing)(1 —n+np) +alp—1)(1 —n).
So H,(z) € a —UCVL(n, ¢). O

REMARK 2. By the similar method which we applied for theorem 4 we
obtain the radii of starlikeness and convexity of order A (0 < A < p) for H,(z)
respectively as following

rn = in {u—n+nmmu+ay4a+gn@hqm®
nzptt | (p—sing)(1—n+np) +alp—1)(1-n)

) ()
o —  inf {ﬂ—nfnmmﬂ+a%—w+$n@h%m®
n>p+1 | (p—sing)(1—n+np) +alp—1)(1—n)

(u@izﬁ%in>}f;’

where 0 < p <p+ 1.
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3. (n, A\)-NEIGHBORHOOD

DEFINITION 8. (cf. [9]) Let A > 0 and f(z) € A and f defined by (1).
Define the (n, A)-neighborhood of a function f(z) by

Nua(f) = {96«4:9(2)2” PN nknké</\}' (18)

n=p+1 n=p+1
For the identity function e(z) = z, we have

Npa(e) = {g € A:g(z) =2 — Z Kkl 2™ and Z nlkl| < )\} . (19)

n=p+1 n=p+1
THEOREM 6. Let

yo @t 1)(p—sing)(1 —n+np)+alp-1)1 -1
WP +1,6)(1+pn)(p(l+a)+1—sing)
T(2—&T(2p+1)

['(2p—9) )

where yP(p+1,0) =
Then

&~ UCV(1,6) C Noa(c).

Proof. For f € a — UCV}(n, ¢) we have from (6)

> @+ +a)+1—sing)yP(p+1,06)k,

n=p+1
)

< > [ =n+m)(n(1+a) — a+sin )]y (n, 8)k,
n=p+1

< (p—sing)(1 —n+np) +alp—1)(1—n).

Therefore
i o < p=sin@)(L —n+np) +alp—1)(1 —n) 0)
Wt T e+ L)+ pn)(p(l+ @) + 1= sing)
and on the other hand we have for |z| <r
()] < plalPh + 2P Z nk, < prP=t 4P Z nky
n=p+1 nept1

- +1)(p—sing)(1 —n+np) +al-1)1—n)

< oty 2P from (20)).
S L+ )L+ o)+ 1—sing) ™ (0
From above inequalities we conclude

(p+1)(p—sing)(1—n+np)+alp—1)(1-n)
D P F [T E e R
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O

REMARK 3. Special case of theorem 6 when (i) « = 0,7 =0,p =1, =0
was proved recently by Altintas and Owa [2], (ii) for p = 1,0 = 0 and with
putting sin ¢ = (3 we get a region that E. Aqlan has defined and studied in [3].

DEFINITION 9. The function f(z) defined by (1) is said to be a member of
the class o — UC’V(Sp’g(n, ¢) if there exists a function g € o — UCVY(n, ¢) such
that

9(2)
THEOREM 7. If g € « — UCVP(n, ¢) and
A
é- =p—- —//J(Tlv Qb, «, 67 p) (21)

p+1
such that

w(n, ¢, d,p)
= [P+ 16)A+pn)(pla+1)+1—sind)]/(p+1,6)(1+pn)
(pla+1)+1—sing) — (p —sing)(L —n+np) +a(p — 1)(1 —n)],
then N, x(g) C o — UCVP4(n, ¢).

o0

Proof. Let f € Ny (g), then we have from (18) that >~ nlk, — k| < A
n=p+1
which readily implies the coefficient inequality

o

A
S fh -kl < 2
W p+1

Also since g € a — UCV{ (1, ¢) we have from (6)

o0

;  (p—sing)(L—n+np)+alp—1)(1—n)
Z fin < Y(p+1,0)(1+pn)(pla+1)+1—sing)

n=p+1
so that
o0 o0 [ee]
22— N k2" —2P 4 Y k2" S |k — K|
’f(z) B 1‘ B n=p+1 n=p+1 n=p+1
- )
g(Z) P — § k;LG 1 - anp—l-l k;z

n=p+1

< (ﬁ) (P +1,8)(1+ pn)(plar + 1) + 1 — sin )/

Y+ 1,01 +pn)(pla+1) +1—sing) — (p—sing)(1 —n+np)
+al= 0= 0) = (52 ) ulndnasb) =p-¢
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Then ‘f(z) . 1‘ < p— €. Thus, by Definition 9, f € a — UCVP(y, ) for ¢

9(2)
given by (21). O
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