MATHEMATICA, Tome 48 (71), N° 1, 2006, pp. 111-118

NEW CLASSES OF SALAGEAN-TYPE MULTIVALENT
HARMONIC FUNCTIONS

SIBEL YALCIN, HAKAN BOSTANCI and METIN OZTURK

Abstract. New classes of Salagean-type multivalent harmonic functions are in-
troduced. We give sufficient coefficient conditions for these classes. These co-
efficient conditions are shown to be also necessary if certain restrictions are
imposed on the coefficients of these harmonic functions. Furthermore, we de-
termine a representation theorem, inclusion relations, and distortion bounds for
these functions.
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1. INTRODUCTION

A continuous function f = w +iv is a complex valued harmonic function in
a complex domain C if both u and v are real harmonic in D. In any simply
connected domain D C C we can write f = h + g, where h and g are analytic
in D. A necessary and sufficient condition for f to be locally univalent and
sense preserving in D is that |h/(z)| > |¢'(2)| in D (see Clunie and Sheil-Small
3).

Denote by H the family of functions f = h+ g which are harmonic univalent
and sense-preserving in the open unit disk U = {z : |z| < 1} so that f = h+g is
normalized by f(0) = h(0) = f,(0) — 1 =0.

Recently, Ahuja and Jahangiri [2] defined the class Hp(n) (p,n € N =
{1,2,3,...}) consisting of all p-valent harmonic functions f = h + g that are
sense-preserving in U, and h, g are of the form

[e o] e}

1) h)=2"+ > as®,  gle)= D> bpiF, byl <L

k=n+p k=n+p—1

For f = h + g given by (1), the modified Salagean operator of f is defined as:

D™ f(z) = D™h(z) + (=1)"D™g(z); p>m, meNy=1{0,1,2,...},

where
o oo
D™h(z) =p™m2P + Z k™apz* and D™g(z) = Z k™ by, 2
k=n-+p k=n+p—1

(see [4], [5]).
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Also, the subclasses denote by H'(n) consist of harmonic functions f,,, =
h +G,,, so that h and g, are of the form

00 0
(2) W) == 3 @t gn(x) = ()" S bk,
k=n+p k=n+p—1

for ag, by > 0, |byyp—1] < 1. A function fin H,(n) is said to be in the class
HJ'(n; A, ) if

D™f(z)  D™Lf(2) o
Req (1 —A)—5m - + A g > —
d0m # agmrT Y p

where 0 < <p, A\>0,p>mand z =re € U.

As A\ changes from 0 to 1, the family H;”(n;)\,oz) provides a passage
from the class of Salagean-type multivalent harmonic functions H)"P(n; o) =
H}'(n;0, ) consisting of functions f where

D™ f(z o
Re amf =) o
267 2" p
to the class of Salagean-type multivalent harmonic functions H;’%Q(n;a) =
H}'(n; 1, ) consisting of functions f where

Derlf(Z) Q
Re{ omtl g > pm—H'

oom+1 z

Finally, we define the subclass F;n(n; Aa) = Hi'(n; A a) N H(n). The
class H)'(n; A, ) includes a variety of well-known subclasses of Hp(n). For
example, Hg(n; A, @) is studied in [1].

We obtain sufficient coefficient bounds for functions in H}"(n; A, ). These
sufficient coefficient conditions are shown to be also necessary for functions in
ﬁ?(n; A, ). A representation theorem, inclusion properties, and distortion

bounds for the class F:(n; A, «) are also obtained.

2. REPRESENTATION THEOREM
We begin with a sufficient condition for functions in H}"(n; A, ).

THEOREM 1. Let f = h+ g be given by (1). Then f € HJ'(n; A, «) if

3) Y M+ =NplE™ arl+ Y M= (1= Np| k" by < p" T —a
k=n+p k=n+p—1

Proof. Using the fact that Re¢ > 0 if and only if [1 + (| > |1 — (| in U, it
suffices to show that

}pm—l—l —a—i—pmﬂw‘ > ‘pm—i—l _{_a_pm—i-lw"
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where
Dmf P Dm+1f 2
o7 © a1

Substituting for h and ¢ in w, we obtain

e}
[ ey ] 22 s 3 Ak = p)l K™ a2

k=n-+p
=S o AG ) R
k=n+p—1

and

[e.e]
PP ra—p el < at Y o+ Ak =) K7 a2
k=n+p

oo
k—
+ D P = Ak +p) Kby |27
k=n+p—1
These two inequalities in conjunction with the required condition (3) yield

}perl _ a+pm+1w‘ _ ‘perl +a_pm+1w’

> 2[pm+1—a— S Nk (1= A)pl ™ fa
k=n+p

- |Ak—<1—A>p|k’“|bk]zo.
k=n+p—1

The coefficient bound (3) gave in Theorem 1 is sharp for the function

> Lk k . Yk -k
f(z) =2+ E — 2"+ E — Z,
il A+ (1= MNp| k it IAk+ (1= XNp|k
where ZZo:ner |zk| + Zzozn—i-p—l lyk| = pm+1 - Q. O

THEOREM 2. Let f,, = h+g,, be given by (2). Then f,, € H;l(n;)\, a) if
and only if

(4) Z Ak + (1 — Np| k™ay, + Z Mk — (1= A)p| K™y, < p™+! — a.
k=n+p k=ntp—1

Proof. In view of Theorem 1, we only need to prove the only if part of the
theorem, since H;l(n; A a) CH(n; A ).
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If fr, € }__[;”(n; A, a) then, for z = rel? in U we get

D™ fn(2) D™HLf L (2)
Re {(1—)\) oy + A
90m HomFI?
~ Re (1=X) [ D™h(z) + (=1)™"D™g,,(z)
pm 1M 2P
A (D7) — (1) D g ()
- ke
> ~ > Ak + (1= N)p| Emagrt?
k=n+p
1 = _
— Y M= (1= N)p| KT
p k=n+p—1
[0
pm+1'

This inequality must hold for all z € U. In particular, letting z = r — 1, it
yields the required condition (4). O

As special cases of Theorem 2, we obtain the following two corollaries:

COROLLARY 1. f, =h+g,, € FZP(n; a) = H'P(n;a) N H(n) if and
only if

o0

pk™ _ pk™
TR DR )
k=n-+p k=n+p— 1

COROLLARY 2. f,, =h+7,, € Hp Q(n; ) = Hy'Q(n; o) N HM(n) if and

only if
& km—l—l km—l—l

me+1 ay, + Z g <L

k=n+p k=n+p— 1

Now, we determine a representation theorem for functions in H,, (n; A, ).

THEOREM 3. f,, =h+3g,, € Hzl(n; A\, ) if and only if fn, can be expressed

as
fm(2) = Xphp(2) + Z Xihi(2) + Z YiGk,n (2)
k=n+p k=n+p—1
where hy(z) = 2P, hy(z) = 2P — m%, (k=n+pn+p+1,...),
m—+1 a

Gk (2) = Zp“‘(_l)mwgp(lw ok =n+p-1n+p..), X, >

0, Yn+p_1 Z 0, Xp+zzozn+pXk+Zk:n+p_1 Yk = 1, and Xk Z 0, Yk Z 0, fO?"
k=n+4+pn+p+1,...
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Proof. For functions f, of the form (5) we have

fm(2) = Xphp(2)+ > Xphp(2)+ Y Yigr,(2)

k=n+p k=n+p—1
o m+1
p -G k
= Zp— Z XkZ
o A (1= A)pl R
oo m+1
p - —k
-1 Y.z".
HEU" D e e
k=n+p—1

Consequently, f, € le(n; A, ), since by (4), we have

S e+ (L= NplEMar+ Y [Me— (1= N)pl k"
k=n+p k=n—+p—1
d m+1

P —
= E Ak 4+ (1 — Np| E™ X

k=n+p
o m—+1
p -«
Ak — (1 — X)p| k™ Y;
k=n+p—1
(o) o
= " =) (Y X+ Y W= -l - X,)
k=n+p k=n+p—1
< ptl—a
Conversely, suppose f,, € ﬁ;n(n;)\, a). Letting X, = 1 — ZZO:ner X, —
> henip_1 Yi, where Xj = WC;(,}%)ZUC%, and Y}, = %bk, we
obtain the required representation, since
oo oo
fm(z) = 2P — Z apz® 4+ (—=1)™ Z by 2"
k=n-+p k=n+p—1
— P i (™ — )X, Sk
—_ m
My Ak + (1= Np| k
+H(=1)™ i A0 (et
— Z
Ak — (1 — X)p| k™
k=n+p—1
o0 o
= 2= Y F-m@)Xe— Y (g ()
k=n+p k=n+p—1

oo

= 1-— iXk— Z Yk Zp

k=n+p k=n+p—1
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+ > @)X+ Y gk (YR

k=n+p k=n+p—1
o0 o0
= Xphp(2)+ Y Xehe(2)+ D Yigr,(2). O
k=n+p k=n+p—1

The inclusion relations between the classes for the different values of \ are
not so obvious. Now we discuss the inclusion relations between the above
mentioned classes.

THEOREM 4. Forn € N and 0 < a < p, we have:
(i) H, Q(n;a) € Hy, P(n; ),
(ii) ﬁ?@(n;a) C ﬁzl(n; Aa), 0 <A <1,

-Fm

(iii) H, (n; A, a) C Hy Q(n;a), A > 1.

Proof. (i) In view of Corollaries 1 and 2, since

[o¢] o0 o0 o0
D T S S o S e S S
k=n+p k=n+p—1 k=n+p k=n+p—1

the result follows.

(ii) For 0 < A < 1, we have
> k4 (1= NplEMa+ > M= (1= N)p| Kby
k=n+p k=n+p—1

= > Mh—p)+plkmac+ > [A(k+p)—plE"by
k=n-+p k=n+p—1

00
< Z k™l + Z Em iy, < pmtt—a
k=n+p k=n+p—1

by Corollary 2. Thus, (ii) is obtained from Theorem 2.
(iii) If A > 1, then, by Theorem 2,

0o )
Z km+1ak+ Z km+lbk

k=n+p k=n+p—1

< > ME-p)+pkTar+ D [AEk+p) - plE" b
k=n+p k=n+p—1

< D M@= NplEar+ Y [Me— (1= N)pl Kby
k=n+p k=n+p—1

S pm+1 — a.

Therefore, (iii) is obtained from Corollary 2. O
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Finally, we give a distortion theorem for functions in F;n(n; A, &), which
leads to a covering result for this family.

THEOREM 5. If f, € ﬁ;(n')\ a), A\>1and |z| =7 <1, then
|fm(2)] < (1 +bn+p T l)rp

[)\(n+2p—1)—p}(n+p—1)mb > n—+p
n+p—1 | T
/\n—i—p n+p) (An+p)(n+p)™

+

|fm<z>r > (1= bpgpar™ )r?
Pt — An+2p—1)—pl(n+p—1)" ntp
—_ ( bn+p—l T .

An +p)(n +p)™ (An +p)(n+p)m

Proof. We prove the left hand side inequality for |f,,|. The proof for the
right hand side inequality can be done using similar arguments.
Let f,, € F;n(n; A, @), then by Theorem 2, we obtain:

()| = [ + (1) "bpypr 2"+ D (akzk+(—1)mbk2k)
k=n+p

Z Tp _ bn+p_1rn+p71

pm+ p—i-/\n p+ An .k

> rP bn+p_1rn+p71

mtl _ Ak Mk -
p lp o ( +1p) Py ek
()\n—i—p n—l—pm ptl — pmtl — o

k=n+p
> (1= bpypar"™H)r?
mtl _ A 2p—1) — —1Hm
p a [1_[ (n+2p—1)—pl(n+p—1) bn+p_1] e

~ Gn+p)n+p) prtt—a
Z (1 — bn+p—1rn_1)rp
(An+p)(n +p)” (An+p)n +p)” ’

The following covering result follows from the left hand side inequality in
Theorem 5.

COROLLARY 3. If fi, € F;n(n; A, a), A > 1, then the set

. (An+p) (n+p)™ —p™ M +a—[(p+n) (n+p) " +[A(n+2p—1)—p](n+p—1)"|bnip—
{ lw| < ) (n+p)™ . 1}

is included in f,(U).
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Using arguments similar to those given in the proof of Theorem 5, we obtain
the following two theorems.

THEOREM 6. If f,, € H, P(n;a), then
Pttt —a  (ntp-1)"
pln+p)™  (n+p)m

n @ < (0 b )

and

[fn(2)] = (1= b )P — <§(n n p)i (n(Zip)}n)

THEOREM 7. If fm € H, Q(n; ), then

m+1 _

bn+p—1> Tner.

_ pmt — (n+p—1)"*
[fm(2)] < (L bpgprr™ P + (n+p)y™t1  (n+p)ntl bngp-1 | TP,

and

_ pmt — (n+p—1)"*
| fm(2)] = (1= b prr™ )P = (n+p)™  (n+p)ymtl bpgp—1 | TP
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