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LOEWNER CHAINS AND A MODIFICATION OF THE
ROPER-SUFFRIDGE EXTENSION OPERATOR

GABRIELA KOHR

Abstract. In this paper we continue the study of the Roper-Suffridge extension
operator. Let f be a locally univalent function on the unit disc and let @ :
C" ! — C be a homogeneous polynomial of degree 2. We consider the family
of operators extending f to a holomorphic mapping from the unit ball B" in
C™ into C™ given by ®n,0(f)(2) = (f(21) + Q(2)f' (1), Z(f'(21))"/?), where Z =
(22,...,2n). This operator was recently introduced by Muir. In the case Q = 0,
this operator reduces to the well known Roper-Suffridge extension operator. We
prove that if f € S then ®, o(f) € S°(B™) whenever ||Q| < 1/4. Our proof
yields Muir’s result that if f € S* then ®,, o(f) is also starlike on B". Moreover,
if f € K is imbedded in a convex subordination chain f(z1,t) over [0,00) then
D, (f) is also imbedded in a c.s.c. over [0, 00) on B™ whenever ||Q| < 1/2.
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1. INTRODUCTION AND PRELIMINARIES

Let C" be the space of n complex variables z = (z1, ..., z,) with the Euclid-
n

ean inner product (z,w) = Z z;w; and the Euclidean norm [|z| = (z, z)1/2.
j=1

For n > 2, let Z = (22,...,2,) € C""! so that z = (21,%) € C". The unit ball
in C" is denoted by B". In the case of one variable, B! is denoted by U. The
ball in C" of radius > 0 and center 0 is denoted by B;".

Let L(C™,C™) denote the space of continuous linear mappings from C" into
C™ with the standard operator norm,

[All = sup{[[A(z)[| - []z] = 1}
and let I, be the identity in L(C™,C™). A mapping @ : C" — C is called a

k
homogeneous polynomial of degree k if there is a mapping A : H C" - C

j=1
which is continuous multilinear of degree k and
Q(z) =L(z,--- ,z), z€ C".
——
k-times

Then @Q € H(C™) and DQ(z)(z) = kQ(z) for z € C™.
If Q is a domain in C", let H(2) be the set of holomorphic mappings from
into C". Also let H(B",C) be the set of holomorphic functions from B™ into
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C. A mapping f € H(B") is called normalized if f(0) = 0 and Df(0) = I,,.
If f € H(B™) we say that f is locally biholomorphic on B™ if the complex
Jacobian matrix D f(z) is nonsingular at each z € B". Let J¢(z) = det Df(%)
for z € B™. Let LS, be the set of normalized locally biholomorphic mappings
on B™ and let S(B™) denote the set of normalized biholomorphic mappings
on B™. In the case of one variable, the set S(B') is denoted by S and LS is
denoted by £S. A mapping f € S(B") is called starlike (respectively convex)
if its image is a starlike domain with respect to the origin (respectively convex
domain). The classes of normalized starlike (respectively convex) mappings
on B™ will be denoted by S*(B™) (respectively K(B™)). In the case of one
variable, S*(B') (respectively K(B')) is denoted by S* (respectively K).

If f,g € H(B") we say that f is subordinate to g (and write f < g) if there
is a Schwarz mapping v (i.e. v € H(B™) and ||v(z)]| < ||z||, 2 € B™) such that
f(z) = g(v(z)), z € B™. 1If g is biholomorphic on B™, this is equivalent to
requiring that f(0) = ¢(0) and f(B™) C g(B").

We recall that a mapping f : B" x [0,00) — C" is called a Loewner chain
if f(-,t) is biholomorphic on B", f(0,t) = 0, Df(0,t) = eI, for t > 0, and
f(z,8) < f(z,t) whenever 0 < s <t < oo and z € B". We note that the
requirement f(z,s) < f(z,t) is equivalent to the condition that there is a
unique biholomorphic Schwarz mapping v = v(z,s,t), called the transition
mapping associated to f(z,t), such that

f(z,8) = f(v(z,s,t),t), ze€B", t>s>0.

We also note that the normalization of f(z,t) implies the normalization
Dv(0,s,t) = e, for 0 < s <t < o00.

Certain subclasses of S(B™) can be characterized in terms of Loewner
chains. In particular, f € S*(B") if and only if f(z,t) = e'f(z) is a Loewner
chain.

The authors [4], [10] (see also [8, Theorem 8.1.6]; cf. [16] and [17]) obtained
the following sufficient condition for a mapping to be a Loewner chain.

LEMMA 1.1. Let hy(z) = h(z,t) : B™ x [0,00) — C™ satisfy the following
conditions:

(i) h(-,t) is a normalized holomorphic mapping on B"™ and Re (h(z,t),z) >
0 for z € B", t > 0.

(ii) h(z,-) is measurable on [0,00) for z € B™.

Let f = f(z,t) : B" x [0,00) — C™ be a mapping such that f(-,t) € H(B"),
f(0,t) =0, Df(0,t) = e'I, fort >0, and f(z,) is locally absolutely continu-
ous on [0,00) locally uniformly with respect to z € B™. Assume that

of

ot
Further, assume that there exists an increasing sequence {ty,}men such that
tm >0, t,, — 00 and

(z,t) = Df(z,t)h(z,t) a.e. t>0,Vze B".

lim e '™ f(z,t,) = F(2)

m—00
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locally uniformly on B™. Then f(z,t) is a Loewner chain.

Graham, Hamada and Kohr [5] have recently introduced the notion of a
convex subordination chain in C". In the case of one variable, see [19].

DEFINITION 1.2. Let J be an interval in R. A mapping f = f(z,t) is called
a convex subordination chain (c.s.c.) over J if the following conditions hold:

(i) f(0,t) =0 and f(-,t) is convex for ¢t € J.

(ii) f(',tl) < f(',tg) for t1,to € J, t1 < to.

DEFINITION 1.3. (see [11], [4]) We say that a normalized mapping f €
H(B™) has parametric representation if there exists a mapping h : B™ X
[0,00) — C™ which satisfies the following conditions:

(i) h(-,t) € H(B™), h(0,t) =0, Dh(0,t) = I, t > 0, Re (h(z,t),z) > 0, for
z€ B™ t>0;

(ii) h(z,-) is measurable on [0, c0) for z € B",
such that f(z) = tliglo e'v(z,t) locally uniformly on B", where v = v(z,t) is

the unique solution of the initial value problem

0
8—: = —h(v,t) ae. t>0,v(z0) =z,
for all z € B™.

In [10] (see also [8]) it is proved that a mapping f € H(B"™) has parametric
representation if and only if there exists a Loewner chain f(z,t) such that
{e7tf(-,t) }+>0 is a normal family on B" and f = f(-,0).

Let S°(B") be the set of mappings which have parametric representation
on B™.

DEFINITION 1.4. (see [18]) The Roper-Suffridge extension operator ®,, :
LS — LS, is defined by

(M) = (FE).2VFE)), 2= (2.7 € B,

We choose the branch of the power function such that
f'(=1)

Roper and Suffridge [18] proved that if f is convex on U then &, (f) is also
convex on B". Graham and Kohr [7] proved that if f is starlike on U then
so is @,(f) on B™, and in [9] (see also [8]) it is shown that if f € S then
®,(f) € S°(B™). On the other hand, Gong and Liu (see [2] and [3]) studied
a number of properties of the Roper-Suffridge extension operator on some
Reinhardt domains in C”.

=1.
0

z1=

Motivated by recent results concerning extreme points of the family K (B"),
n > 2 (see [13] and [14]), Muir [12] introduced the following new extension
operator that under certain conditions takes extreme points of K into extreme
points of K (B").
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DEFINITION 1.5. Let @ : C"~! — C be a homogeneous polynomial of degree
2. The modification Roper-Suffridge extension operator ®, o : LS — LS, is
defined by

D,0(f)(2) = (f(zl) + Q) f'(z1), 2V f’(21)) , z=(21,2) € B".

We choose the branch of the power function such that
f'(=1)

Muir [12] proved that if ||@|| < 1/2 then the operator ®, g preserves con-
vexity and if ||Q| < 1/4 then ®,, ¢ preserves starlikeness. In this paper we
prove that if f € S and [|Q|| < 1/4 then ®,¢o € S°(B"). In particular, if
f € S* then @, o € S*(B") whenever ||Q| < 1/4. Moreover, if f € K is
imbedded in a convex subordination chain f(z1,t) over [0, 00) then ®, o(f) is
also imbedded in a convex subordination chain over [0,00) on B™ whenever

QI < 1/2.

=1.
0

zZ1=

2. LOEWNER CHAINS AND THE OPERATOR Py ¢

We begin this section with the following result. In the case @ = 0, see [8]
and [9].

THEOREM 2.1. Let Q : C"~! — C be a homogeneous polynomial of degree
2 such that ||Q|| < 1/4 and let f(z1,t) : U x [0,00) — C be a Loewner chain.
Also let F(z,t) : B" x [0,00) — C™ be the mapping given by
(2.1)

F(z,1) = (f(zl,t) n Q(E}f’(zl,t),Zet/Q(f'(zl,t))l/Q),z = (21,2) € B",t > 0.

We choose the branch of the power function such that (f'(z1,t))"?|.,—0 = e*/?
fort > 0. Then F(z,t) is a Loewner chain.

Proof. Clearly F'(0,t) = 0 and since @ is a homogeneous polynomial of
degree 2, it follows that DF(0,t) = e'l, for t > 0. It is easily seen that
e 'F(z,t) = @, (e f(-,1))(2) for z € B" and t > 0. Also it is not difficult to
deduce that F(-,t) is biholomorphic on B™. On the other hand, since f(z1,1)
is a Loewner chain, f(z1,-) is locally absolutely continuous on [0, c0), locally
uniformly with respect to z; € U, and there is a function p(z1,t) such that
p(-,t) € H{U), p(0,t) = 1, Re p(z1,t) > 0, |z1| < 1,t >0, and

of

a(zl,t) = 21f'(21,t)p(21,t) a.e. t>0,Vz €U.

Moreover, the limit
lim e ' f(21,t) = g(z1)
t—o0

exists locally uniformly on U (see e.g. [8]). Clearly g is a holomorphic function
on U and since g(0) = 0, ¢'(0) = 1, we deduce by Hurwitz’s theorem that
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g € S. Then F(z,-) is also locally absolutely continuous on [0, c0) locally
uniformly with respect to z € B™ and

lim e 'F(z,t) = &, 0(9)(2)

t—o00

locally uniformly on B".
z f"(z1,1)

Now, let
h(zt) = (zlpul,t) - Q). 5 (1 +p(at) + 29 (2, 8) + Q@f’(zl,t)» ’

for all z € B™ and t > 0. Then h(-,t) is a normalized holomorphic mapping
on B™ for t > 0 and h(z,-) is measurable on [0,00) for all z € B™. Using
elementary computations and the equality (see e.g. [8, Chapter 11])

0 <8f> (21,1) 0 <8f) (21,t) ae. t>0,Vz €U,

ot \ 91 T 0z \ ot
we obtain that
OF
E(z,t) = DF(z,t)h(z,t) ae. t>0,Vze B".

On the other hand, since e”!f(-,t) € S, t > 0, it is well known that
1—|z* f"(a1,)

2 f'(z1,1)
Next, using the fact that ||Q|| < 1/4, the above inequality and arguments sim-

ilar to those in the proof of [6, Theorem 2.1], we obtain that Re (h(z,t),z) > 0
for z € B™ and t > 0. Indeed, if z = 0 then

Re (h(z,t),2) = |21*Re p(21,t) > 0, |21]| < 1.

Next, we assume that z # 0. Then it is easy to see that A(-,t) is holomorphic
in a neighborhood of each point z = (21,2) € B" with Z # 0, and in view of
the minimum principle for harmonic functions, it suffices to prove that

Re (h(z,t),2z) >0, z = (21,2) € 0B", Z # 0, t > 0.
Since p(0,t) = 1 and Re p(z1,t) > 0, it follows that (see e.g. [8])

(2.2) —z| <2, || <1,t>0.

(2.3) Ip/(21,t)] < sRe p(z1,t), |z1] < 1,t > 0.

1-— |Zl|
Fix t > 0 and let z = (21,%2) € 0B™ with z # 0. In view of the relations (2.2)
and (2.3), we obtain

1 — |z

1 2 2
= MRe TRG [21p'(21,1)]

Re (h(z,1), z) 5

p(Zl, t) +

e o {1 £ )

1— |22
=l o0 ol 2o

1— |z
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whenever ||Q|| < 1/4. Taking into account Lemma 1.1, we deduce that F(z,t)
is a Loewner chain. This completes the proof. ]

We next obtain the following consequences of Theorem 2.1.

COROLLARY 2.2. Let Q : C"~1 — C be a homogeneous polynomial of degree
2 such that ||Q| < 1/4 and let f € S. Also let F = ®,o(f). Then F €
SY(B™).

Proof. Since f € S there is a Loewner chain f(z1,t) such that f = f(-,0).
In view of Theorem 2.1, F(z,t) given by (2.1) is a Loewner chain. Since
{e7'F(-,t)}+>0 is a normal family on B" by the proof of Theorem 2.1 and F =
F(-,0), we deduce that F = &, o(f) € S°(B"), as desired. This completes
the proof. O

The following result is due to Muir [12]. In the case @Q = 0, see [7]. We have

COROLLARY 2.3. Let f € S* and Q : C*~ ! — C be a homogeneous polyno-
mial of degree 2 such that ||Q| < 1/4. Then &, o(f) € S*(B").

Proof. Since f € S* it follows that f(z1,t) = e'f(z1) is a Loewner chain.
With this choice of f(z1,t), we deduce that F'(z,t) given by (2.1) is a Loewner
chain by Theorem 2.1 and the fact that |Q] < 1/4. On the other hand, since

P(et) = (¢ () + QR (). 5V Fian)) = 0u(f)(2). 2 € BT, £ 20,
we deduce that ®,,(f) € S*(B™). This completes the proof. O

Another consequence of Theorem 2.1 is given in the following growth result
for mappings in the class ®,, g(95).

COROLLARY 2.4. Let Q : C"~! — C be a homogeneous polynomial of degree
2 such that ||Q|| < 1/4. If f € S then

[E [El
L < @,0(N) ()] € o, 2 € B™
1+ 2] Q (1 — [I=])?

This result is sharp.

Proof. Tt suffices to apply Theorem 2.1 and [8, Corollary 8.3.9]. O

In the next result we prove that if f(z1,¢) is a c.s.c. over [0, 00) then F(z,t)
given by (2.1) is also a c.s.c. whenever ||Q| < 1/2. Muir [12] proved that
¢, o(K) C K(B") if and only if ||Q| < 1/2.

THEOREM 2.5. If f(z1,t) : U x [0,00) — C is a c.s.c. over [0,00) with
f1(0,t) =€, t >0, and if Q : C* ' — C is a homogeneous polynomial of
degree 2 such that ||Q|| < 1/2, then the mapping F(z,t) given by (2.1) is a
convex subordination chain over [0,00).
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Proof. Since f(z1,t) is a c.s.c. and ||Q| < 1/2, we may use similar argu-
ments to those in the proof of Theorem 2.1 and the fact that (see e.g. [8])

‘ 1—[z]* f"(21,0)
2 f/(217t)

to deduce that F(z,t) is also a Loewner chain. Next, let q;(21) = e~ fi(z1).
Then ¢; € K and since

e F () = (a1(21) + QE)ai (1), E(h(21) /) = Buglar) (=), = € B 1> 0,

we conclude by [12, Theorem 3.1] that e *F(-,t) € K(B"), t > 0. Hence
F(z,t) is a c.s.c. over [0,00), as desired. O

—Zl‘ S17 ’21| <17t207

REMARK 2.6. Let Q : C*! — C be a homogeneous polynomial of de-
gree 2. Also, let A[®,, o(K)] be the linear invariant family (L.I.F.) generated
by the set @, o(K) and ordA[®, (k)] be the order of this L.LF. (see for
details [15] and [8, Chapter 10]). Using arguments similar to those in the
proofs of [1, Theorem 1] and [8, Theorem 10.3.8], it is possible to prove that
ordA[®, o(K)] = (n+ 1)/2 which is the minimum order of L.I.F.’s in C". If
Q| > 1/2 then ®,, o(K) € K(B™), and thus the operator ®,, ¢ provides an
example of a L.ILF. in C" of minimum order which is not a subset of K(B")
for n > 2.
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