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INEQUALITIES FOR ONE MAXIMUM OF PARTIAL SUMS

OF RANDOM VARIABLES OBTAINED

BY USING SUBADDITIVE FUNCTIONS

LECH GRUSZECKI

Abstract. This note extends the Hájek-Rényi inequality by using a class of
subadditive functions. It also extends some results of Kounias and Weng (cf. [2])
and Szynal (cf. [3]).
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Key words. Hájek-Rényi inequality, non-decreasing function, random variable,
subbaditive function.

1. INTRODUCTION AND NOTATION

In this article we present some inequalities which generalize the well-known
Hájek-Rényi inequality and also generalize results obtained by Kounias and
Weng (cf. [2]) and Szynal (cf. [3]). We obtain our results by using a family of
subadditive functions.

Let us denote by N the class of all non-decreasing functions N : [0,∞) 7→
[0,∞), N(0) = 0 which are subadditive, i.e. N(a+ b) ≤ N(a)+N(b), a, b ≥ 0.
The class N contains, of course, functions x 7→ xr, 0 < r ≤ 1. However, N
includes also functions increasing slower than each power function.

Let {Xi, i ≥ 1} be a sequence of random variables and put Sn =
∑n

i=1 Xi.

2. RESULTS

First, we present a theorem which generalizes Theorem 1 of Kounias and
Weng (cf. [2]).

Theorem 1. Let {Xi, i ≥ 1} be a sequence of random variables such that

EN(|Xi|) < ∞ for some N ∈ N and all i ≥ 1. If {ci, i ≥ 1} is a non-

decreasing sequence of positive constants, then for every positive integers m, n
with m < n and arbitrary ǫ > 0.

P

(

max
m≤k≤n

ck|Sk| ≥ ǫ

)

≤
m
∑

i=1

EN(cm|Xi|) +
n
∑

i=m+1

EN(ci|Xi|))/N(ǫ).(1)

Proof. Let us put

Ai = {ω : cm|Sm(ω)| < ǫ, ..., ci−1|Si−1(ω)| < ǫ, ci|Si(ω)| ≥ ǫ},

i = m, m + 1, ..., n. Then Ai ∩ Aj = ∅ for i 6= j and A =
⋃n

i=m Ai, where
A = {w : max

m≤i≤n
ci|Si(ω)| ≥ ǫ}.
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Now write

Z = N(cn|Sn|) +
n−1
∑

k=m

(N(ck|Sk|) − N(ck+1|Sk|))

+
n−1
∑

k=m

IAk
(N(ck|Sk|) − N(cn|Sn|) −

n−1
∑

i=k

(N(ci|Si|) − N(ci+1|Si|)),

where IAk
is the indicator of the event Ak. Observe that Z ≥ 0 everywhere

and Z ≥ N(ǫ) in A. Furthermore, if F (x1, ..., xn) is the joint distribution of
X = (X1, ..., Xn), then

P

(

max
m≤i≤n

ci|Si| ≥ ǫ

)

= P (X ∈ A) =

∫

A

dF ≤

∫

A

ZdF/N(ǫ) ≤ EZ/N(ǫ).

It is easy to see that

Z = N(cm|Sm|) +
n
∑

k=m+1

(N(ck|Sk|) − N(ck|Sk−1|))(1 − IAk−1
− ... − IAm

).

As the events Ai are disjoint, then IAm
+ ... + IAn

≤ 1. Note that

N(ck|Sk|) ≤ N(ck|Sk−1| + ck|Xk|) ≤ N(ck|Sk−1|) + N(ck|Xk|).

Thus

Z ≤
m
∑

k=1

N(cm|Sk|) +
n
∑

k=m+1

N(ck|Xk|),

which completes the proof. �

Theorem 2. If {Xi, i ≥ 1} is a sequence of random variables and N ∈ N ,

then for every ǫ > 0

P

(

max
1≤i≤n

|Si| ≥ 2ǫ

)

≤ 2
n
∑

i=1

E[N(|Xi|)/(N(ǫ) + N(|Xi|))].(2)

Proof. Put X∗
i = XiI[|Xi|<ǫ], X

∗∗
i = XiI[|Xi|≥ǫ]. We have

P

(

max
1≤i≤n

|Si| ≥ 2ǫ

)

≤ P

(

max
1≤i≤n

|S∗
i | ≥ ǫ

)

+ P

(

max
1≤i≤n

|S∗∗
i ≥ ǫ

)

,(3)

where S∗
i =

∑i
j=1 X∗

j and S∗∗
i =

∑i
j=1 X∗∗

j .
By Theorem 1 we get

P

(

max
1≤i≤n

|S∗
i | ≥ ǫ

)

≤

(

n
∑

i=1

EN(|X∗
i |)

)

/N(ǫ).

Note that EN(|X∗
i |)/N(ǫ) ≤ 2E(N(|X∗

i |)/(N(ǫ) + N(|X∗
i |))). Thus

P

(

max
1≤i≤n

|S∗
i | ≥ ǫ

)

≤ 2
n
∑

i=1

E[(N(|Xi|)/(N(ǫ) + N(|Xi|))I[|Xi[<ǫ]].(4)
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On the other hand

P

(

max
1≤i≤n

|S∗∗
i | ≥ ǫ

)

≤
n
∑

i=1

P (|Xi| ≥ ǫ)

≤ 2
n
∑

i=1

E[N(|Xi|)/(N(ǫ) + N(|Xi|))I[|Xi|>ǫ]].

(5)

Taking into account (4) and (5) we get (2). �

If we put in Theorem 2 N(x) = xr, 0 < r ≤ 1, then we get [3, Lemma 1]
(in the case 0 < r ≤ 1 and s = 1).

Theorem 3. If {Xi, i ≥ 1} is a sequence of random variables and {ci, i ≥ 1}
is a non-decreasing sequence of positive integers, then for all m, n ∈ N with

m < n and every ǫ > 0

P

(

max
m≤i≤n

ci|Si| ≥ 3ǫ

)

≤ 2

( m
∑

i=1

E(N(cm|Xi|)/(N(ǫ) + N(cm|Xi|)))

+
n
∑

i=m+1

E(N(ci|Xi|)/(N(ǫ) + N(ci|Xi|)))

)

.

(6)

Proof. Let us put X∗
i = XiI[ci|Xi|<ǫ], X∗∗

i = XiI[ci|Xi|>ǫ], S∗
i =

∑i
j=1 X∗

j

and S∗∗
i =

∑i
j=1 X∗∗

j .

Define Yi = N(ci|Xi|)/(N(ǫ) + N(ci|Xi|)). Thus, by Theorem 1, we get

P

(

max
m≤i≤n

ci|S
∗
i | ≥ ǫ

)

≤ 2

( m
∑

i=1

E(N(cm|Xi|)/(N(ǫ) + N(cm|Xi|)))I[ci|Xi|<ǫ]

+
n
∑

i=m+1

EYiI[ci|Xi|<ǫ]

)

.

(7)

Furthermore, we have

P

(

max
m≤i≤n

ci|S
∗∗
i | ≥ 2ǫ

)

= P (cm|S∗∗
m | ≥ 2ǫ)

+
n
∑

i=m+1

P





i−1
⋂

j=m

([cj |S
∗∗
j | < 2ǫ] ∩ [ci|S

∗∗
i | ≥ 2ǫ])





≤ P (cm|S∗∗
m | ≥ 2ǫ) +

n
∑

i=m+1

P (ci|Xi| ≥ ǫ).

(8)



40 L. Gruszecki 4

By (2) we have

P (cm|S∗∗
m | ≥ 2ǫ) ≤ 2

(

m
∑

i=1

E[N(cm|Xi|)/(N(ǫ) + N(cm|Xi|))I[ci|Xi|≥ǫ]]

)

.

Thus, by (8) we get

P

(

max
m≤i≤n

ci|S
∗∗
i | ≥ 2ǫ

)

≤ 2

( m
∑

i=1

E[N(cm|Xi|)/(N(ǫ) + N(cm|Xi|)]I[ci|Xi|≥ǫ]

+
n
∑

i=m+1

EYiI[ci|Xi|≥ǫ]

)

.

(9)

Therefore, taking into account (7) and (9), we get (6). �

Theorem 3 is an extension of Lemma 3 in [3] (in the case 0 < r ≤ 1 and
s = 1).

Corollary 4. Under the assumptions of Theorem 3 we get

P

(

max
m≤i≤n

ci|Si| ≥ 3ǫ

)

≤ 2

(

n
∑

i=1

E[N(cm|Xi|)/(N(ǫ + N(cm|Xi|))]

)

.(10)

Corollary 5. Under the assumption of Theorem 2 we have

P (cn|Sn| ≥ 2ǫ) ≤ 2

(

n
∑

i=1

E[N(cn|Xi|)/(N(ǫ) + N(cn|Xi|))]

)

.(11)
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