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GEOMETRIC PROPERTIES OF GENERALIZED

BESSEL FUNCTIONS OF COMPLEX ORDER

ÁRPÁD BARICZ

Abstract. In this paper we obtain conditions of univalence and convexity for
the generalized and normalized Bessel functions of the first kind of complex order
using the technique of differential subordinations. A condition of starlikeness of
zup(z) is given, where by definition
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, b, p, c, z ∈ C.
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1. INTRODUCTION AND PRELIMINARIES

A function f , analytic in the unit disk U = {z ∈ C : |z| < 1}, is said to be
convex if it is univalent and f(U) is a convex domain. It is well known that f
is convex [4] if and only if f ′(0) 6= 0 and

Re
[

1 + zf ′′(z)/f ′(z)
]

> 0, z ∈ U.

A function g, analytic in U , with g(0) = 0, is said to be starlike if it is univalent
and g(U) is starlike with respect to the origin. The function g with g(0) = 0
and g′(0) 6= 0 is starlike [4] if and only if

Re
[

zg′(z)/g(z)
]

> 0, z ∈ U.

If in addition
Re

[

zg′(z)/g(z)
]

> α, z ∈ U,

where 0 ≤ α < 1, then g is called starlike of order α. We remark that,
according to the Alexander duality Theorem [1], the function f is convex if
and only if zf ′ is starlike.

The next lemmas will be used to prove several theorems.

Lemma 1.1. [6] Let Ω be a set in the complex plane C and ψ : C
3×U 7→ C a

function, that satisfies the admissibility condition ψ(ρi, σ, µ+νi; z) /∈ Ω, where

z ∈ U , ρ, σ, µ, ν ∈ R with µ+ σ ≤ 0 and σ ≤ −(1 + ρ2)/2. If H is analytic in
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the unit disk U , with H(0) = 1 and ψ
(

H(z), zH ′(z), z2H ′′(z); z
)

∈ Ω, z ∈ U,
then Re[H(z)] > 0,∀ z ∈ U .

This lemma is a special case of [6, Theorem 2.3b], obtained by taking q(z) =
(1 + z)/(1 − z). If we only have ψ : C

2 × U 7→ C, the admissibility condition

reduces to ψ(ρi, σ; z) /∈ Ω, z ∈ U and ρ, σ ∈ R with σ ≤ −(1 + ρ2)/2. We
continue these preliminaries with the next conditions of univalence (close-to-
convexity [4]) due to Ozaki [7].

Lemma 1.2. [7] Let D be a simply connected domain and let f an analytic

function in D. If there exists a function ϕ, univalent in D such that ϕ(D) is

a convex domain and Re[f ′(z)/ϕ′(z)] > 0, for all z ∈ D, i.e. f is close-to-

convex, then f is univalent in D.

We recall that the generalized Bessel function vp of real order [3] is defined
as a particular solution of the linear differential equation

(1.1) z2v′′(z) + bzv′(z) +
[

cz2 − p2 + (1 − b)p
]

v(z) = 0,

where b, p, c ∈ R. The analytic function vp has the form

(1.2) vp(z) =
∞

∑

n=0

(−1)ncn

n!Γ
(

p+ n+ b+1

2

) ·
(z

2

)2n+p
, z ∈ C.

Let us consider now b, p, c ∈ C in (1.1).

Definition 1.3. Any solution of the linear differential equation (1.1) is
called a generalized Bessel function of complex order p and the particular
solution vp defined by (1.2) is called the generalized Bessel function of the first

kind of complex order p.

Now, the generalized and normalized Bessel function up is defined with the

transformation up(z) = [a0(p)]
−1z−p/2vp(z

1/2), where

a0 =

[

2pΓ

(

p+
b+ 1

2

)]−1

≡ a0(p).

Using the Pochhammer symbol, defined, in terms of Γ-functions, by (κ)n =
Γ(κ + n)/Γ(κ) = κ(κ + 1) . . . (κ + n − 1) and (κ)

0
= 1, we obtain for the

function up the following form

(1.3) up(z) =
∑

n≥0

(−1)ncn

4n(κ)n

zn

n!
=

∑

n≥0

(

−
c

4

)n
[(κ)n]−1 z

n

n!
,

where κ = p + (b + 1)/2 6= 0,−1,−2, . . . . The function up is called the gen-
eralized and normalized Bessel function of the first kind of complex order p,
this function is analytic in C and satisfies the differential equation

(1.4) 4z2u′′(z) + 2(2p+ 1 + b)zu′(z) + czu(z) = 0.
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Remark 1.4. By Proposition 2.17, [3] we know that 2(2p + b + 1)u′p(z) =
−cup+1(z), or 4κu′p(z) = −cup+1(z), with κ = p+(b+1)/2 and for all b, p, c ∈
R. Clearly this recursive relation remains true for b, p, c ∈ C.

2. UNIVALENCE, CONVEXITY AND STAR-LIKENESS OF BESSEL FUNCTIONS

Theorem 2.1. For b, p, c = c1 + ic2 ∈ C and κ = p + (b + 1)/2 the Bessel

functions, vp and up, satisfy the following properties in the unit disk U :

(i) If Reκ ≥ |c|/4 + 1, then Reup(z) > 0;
(ii) For Reκ ≥ |c|/4 we have that up is univalent;

(iii) For Reκ ≥ |c|/4 + (2 Imκ− 1)2/24 + 1/2 we have that up is convex;

(iv) If Reκ ≥ |c|/4 + (2 Imκ− 1)2/24 + 3/2, then zup(z) is starlike;

(v) If Reκ ≥ |c|/2 + (2 Imκ− 1)2/16 + 1, then zup(z) is starlike of order

1/2;

(vi) For Reκ ≥ |c|/2+ (2 Imκ− 1)2/16+1 we have that z1−pvp(z) is star-

like.

Proof. (i) Denoting H(z) = up(z), since H satisfies (1.4), it will also satisfy
the following differential equation

(2.1) 4z2H ′′(z) + 4κzH ′(z) + czH(z) = 0.

Letting ψ(r, s, t; z) = 4t+4κs+czr and Ω = {0}, equation (2.1) can be written
as ψ

(

H(z), zH ′(z), z2H ′′(z); z
)

∈ Ω. Now we will use Lemma 1.1 to prove that
Re[H(z)] > 0. If we let z = x+ iy, then

Reψ (ρi, σ, µ+ νi;x+ iy) = 4(µ+ σ) + 4(Reκ− 1)σ − (c1y + c2x)ρ.

For Reκ > 1 we have that

Reψ (ρi, σ, µ+ νi;x+ iy) ≤ −2(Reκ− 1)ρ2 − (c1y + c2x)ρ− 2(Reκ− 1),

and denoting

Q1(ρ) = −2(Reκ− 1)ρ2 − (c1y + c2x)ρ− 2(Reκ− 1),

this will be negative for all real ρ, because the discriminant ∆1 ofQ1(ρ) satisfies

∆1 = (c1y + c2x)
2 − 16(Reκ− 1)2 < 0,

whenever x, y ∈ (−1, 1) and Reκ ≥ |c|/4 + 1. Suppose that ∆1 ≥ 0. This
is equivalent to 4(Reκ − 1) ≤ |c1y + c2x|, but using the Cauchy-Schwarz-
Buniakowski inequality and the hypothesis we have that

4(Reκ− 1) ≤ |c1y + c2x| ≤
√

c2
1
+ c2

2

√

x2 + y2 < |c| ≤ 4(Reκ− 1),

and this is contradiction, therefore ∆1 < 0. Hence by Lemma 1.1 we conclude
that Re[H(z)] = Re[up(z)] > 0, for all z ∈ U.
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(ii) If we apply (i) and Lemma 1.2 for the special case D = U, ϕ(z) =
−(cz)/(4κ), we obtain the univalence condition. Therefore, if Reκ ≥ |c|/4, we
obtain that Reup+1(z) > 0, for all z ∈ U. Using Remark 1.4 we conclude that

(2.2) Reup+1(z) = Re

[

−
4κ

c
u′p(z)

]

> 0,∀ z ∈ U,

which means that up is close-to-convex of order 0, i.e. it is univalent in U .
(iii) Denoting by

(2.3) H(z) = 1 +
zu′′p(z)

u′p(z)
,

for 2(2 Reκ − 1) ≥ |c| + (2 Imκ− 1)2/6 > |c| − 2, the condition of (ii) holds,
hence u′p(z) 6= 0 and H is analytic in U with H(0) = 1. Combining (2.3) with
(1.4), we obtain that H satisfies the next differential equation

(2.4) 4zH ′(z) + 4H2(z) + 4(κ− 2)H(z) + cz − 4(κ− 1) = 0.

If we let ψ(r, s; z) = 4s + 4r2 + 4(κ − 2)r + cz − 4(κ − 1) and Ω = {0}, then
(2.4) can be written as ψ (H(z), zH ′(z); z) ∈ Ω. Now we will use Lemma 1.1
to prove that ReH(z) > 0. Letting z = x+ iy and c = c1 + ic2, we obtain

Reψ(ρi, σ;x+ iy) = 4σ − 4ρ2 − 2ρ(2 Imκ− 1) + (c1x− c2y) − 4(Reκ− 1)

≤ −6ρ2 − 2(2 Imκ− 1)ρ+ (c1x− c2y) − 2(2 Reκ− 1) = Q2(ρ),

for σ ≤ −(1 + ρ2)/2, for all real ρ and for x, y ∈ (−1, 1). The discriminant ∆2

of the quadratic form Q2(ρ), is the following:

(2.5) ∆2 = 4[(2 Imκ− 1)2 + 6(c1x− c2y) − 12(2 Reκ− 1)].

It is easy to check that c1x − c2y ≤ |c1| + |c2|, for any x, y ∈ (−1, 1) and
for c1, c2 ∈ R. Otherwise by the Cauchy-Schwarz-Buniakowski inequality we

have that c1x − c2y ≤ |c1x − c2y| ≤
√

c2
1
+ c2

2

√

x2 + y2 < |c| and clearly
|c| ≤ |c1| + |c2|. Therefore we have that

(2.6) ∆2/4 < (2 Imκ− 1)2 + 6|c| − 12(2 Reκ− 1),

which, by hypothesis, is negative. Thus, the quadratic form Q2(ρ) is also
negative, which means that Reψ(ρi, σ;x+ iy) < 0. Then we conclude that

(2.7) ReH(z) = Re

[

1 +
zu′′p(z)

u′p(z)

]

> 0,∀ z ∈ U,

which shows that up is convex in U .
(iv) We have czup(z) = −4κzu′p−1(z) by Remark 1.4 for p−1 and the result

follows immediately by applying (iii) and Alexander’s duality Theorem [1].

Since Reκ− 1 ≥ |c|/4 + 1/2 + (2 Imκ− 1)2/24 and using the fact that up−1 is
convex, it follows that zu′p−1 is starlike in the unit disk.
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(v) Let denote Gp(z) = zup(z). Since the condition of the first part holds,
i.e.

Reκ ≥ |c|/2 + (2 Imκ− 1)2/16 + 1 > |c|/4 + 1,

we deduce that Gp(z) 6= 0, ∀z ∈ U . If we set

(2.8) H(z) = 2
zG′

p(z)

Gp(z)
− 1 = 1 + 2

zu′p(z)

up(z)
,

then H is analytic in U, with H(0) = 1. Combining (2.8) with (1.4) we obtain
the equation

(2.9) 2zH ′(z) +H2(z) + 2(κ− 2)H(z) + cz − (2κ− 3) = 0.

If we let

ψ(r, s; z) = 2s+ r2 + 2(κ− 2)r + cz − (2κ− 3)

and Ω = {0}, then (2.9) can be written as ψ (H(z), zH ′(z); z) ∈ Ω. We will
use Lemma 1.1 to prove that ReH(z) > 0, z ∈ U . Letting z = x + iy and
c = c1 + ic2, we obtain

Reψ(ρi, σ;x+ iy) = 2σ − ρ2 − (2 Imκ− 1)ρ+ (c1x− c2y) − (2 Reκ− 3)

≤ −2ρ2 − (2 Imκ− 1)ρ+ (c1x− c2y) − (2 Reκ− 2) = Q3(ρ),

for σ ≤ −(1 + ρ2)/2, for all real ρ and for x, y ∈ (−1, 1). An analogous
procedure gives the proof of Q3(ρ) < 0 under the assumptions. We obtain
that the discriminant ∆3 of the quadratic form Q3(ρ) is

(2.10) ∆3 = (2 Imκ− 1)2 + 8(c1x− c2y) − 8(2 Reκ− 2).

We know, by Cauchy’s inequality, that c1x−c2y < |c|, therefore by hypothesis
we have that ∆3 < (2 Imκ− 1)2 + 8|c| − 8(2 Reκ− 2) ≤ 0. Hence we conclude
that

(2.11) ReH(z) = Re

[

2
zG′

p(z)

Gp(z)
− 1

]

> 0,∀ z ∈ U,

which shows that Gp(z) = zup(z) is starlike of order 1/2.

(vi) If we let Hp(z) = z1−pvp(z), then Hp(z) = Gp(z
2)/z = zup(z

2). Since
Gp(z) = zup(z) is starlike of order 1/2 and

(2.12) Re

[

zH ′
p(z)

Hp(z)

]

= Re

[

2
z2G′

p(z
2)

Gp(z2)
− 1

]

> 0,∀ z ∈ U,

we deduce that Hp is starlike in U . �

Remark 2.2. Note that similar results as in Theorem 2.1 for confluent
hypergeometric functions was obtained by S. Kanas and J. Stankiewicz [5]. In
the case of real b, p, c, we obtain that 2 Imκ − 1 = 0, therefore Theorem 2.1
reduces to the results in [2] (see also [3, Theorem 3.1]).
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