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NEW CRITERIA FOR MEROMORPHIC P-VALENT CONVEX

FUNCTIONS

M.K. AOUF, F.M. AL-OBOUDI and M.M. HAIDAN

Abstract. Let Gn (α) be the class of functions of the form f (z) =
a−p

zp
+

∞P
k=0

akzk (a−p 6= 0, p ∈ N = {1, 2, ...}) which are regular in the punctured

disc U∗ = {z : 0 < |z| < 1} and satisfying Re

(�
Dn+1f (z)

�
′

(Dnf (z))′
− (p + 1)

)
< −α

(n ∈ N0 = {0, 1, 2, ...} , |z| < 1, 0 ≤ α < p), where Dnf (z) =
a−p

zp
+

∞P
m=1

(p + m)n

am−1z
m−1. It is proved that Gn+1 (α) ⊂ Gn (α). Since G0 (α) is the class of

meromorphically p-valent convex functions of order α, 0 ≤ α < p, all functions
in Gn (α) are p-valent convex. A property preserving integrals is also considered.
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1. INTRODUCTION

Let Σp denote the class of functions of the form

f (z) =
a−p

zp
+

∞
∑

k=0

akz
k (a−p 6= 0, p ∈ N = {1, 2, ...})(1.1)

which are regular in the punctured disc U∗ = {z : 0 < |z| < 1}. Define

D0f (z) = f (z) ,(1.2)

D1f (z) =
a−p

zp
+ (p + 1) a0 + (p + 2) a1z + (p + 3) a2z

2 + ...

=

(

zp+1f (z)
)

′

zp
,

(1.3)

(1.4) D2f (z) = D
(

D1f (z)
)

,

and for n = 1, 2, ...

Dnf (z) = D
(

Dn−1f (z)
)

=
a−p

zp
+

∞
∑

m=1

(p + m)n
am−1z

m−1

=

(

zp+1Dn−1f (z)
)

′

zp
.

(1.5)
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In this paper, we shall show that a function f (z) in
∑

p, which satisfies the
conditions

Re

{

(

Dn+1f (z)
)

′

(Dnf (z))′
− (p + 1)

}

< −α (z ∈ U = {z : |z| < 1}) ,(1.6)

for some α (0 ≤ α < p) and n ∈ N0 = {0, 1, 2, ...}, is meromorphically p-valent
convex in U∗. More precisely, it is proved that, for the classes Gn (α) of
functions in

∑

p satisfying (1.6),

Gn+1 (α) ⊂ Gn (α)(1.7)

holds. Since G0 (α) equals
∑

∗

k (α) (the class of meromorphically p-valent
convex functions of order α, 0 ≤ α < p ), the convexity of members of Gn (α)
is a consequence of (1.7). Further for c > 0, let

F (z) =
c

zc+p

z
∫

0

tc+p−1f (t) dt.(1.8)

It is shown that F (z) ∈ Gn (α) whenever f (z) ∈ Gn (α). Some known
results of Bajpai [2], Goel and Sohi [3] and Uralegaddi and Somanatha [6] are
extended. In [5] Rusheweyh obtained the new criteria for univalent functions.

In [1] Aouf and Hossen obtained a new criteria for meromorphic p-valent
starlike functions via the basic inclusion relationship Bn+1 (α) ⊂ Bn (α) , 0 ≤
α < p and n ∈ N0, where Bn (α) is the class of functions f (z) ∈

∑

p satisfying

Re

{

Dn+1f (z)

Dnf (z)
− (p + 1)

}

< −α,

0 ≤ α < p, n ∈ N0 and |z| < 1.

2. PROPERTIES OF THE CLASS Gn (α)

In proving our main results [ Theorem 2 and Theorem 3 below], we shall
need the following lemma due to Jack [4].

Lemma 1. Let w (z) be non-constant regular in U = {z : |z| < 1} , w (0) = 0.
If |w (z)| attains its maximum value on the circle |z| = r < 1 at z0, we have

z0w
′ (z0) = kw (z0), where k is a real number, k ≥ 1.

Theorem 2. Gn+1 (α) ⊂ Gn (α) for each integer n ∈ N0.

Proof. Let f (z) ∈ Gn+1 (α). Then

Re

{

(

Dn+2f (z)
)

′

(Dn+1f (z))′
− (p + 1)

}

< −α, |z| < 1.(2.1)

We have to show that (2.1) implies the inequality

Re

{

(

Dn+1f (z)
)

′

(Dnf (z))′
− (p + 1)

}

< −α.(2.2)
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Define a regular function w (z) in U by
(

Dn+1f (z)
)

′

(Dnf (z))′
− (p + 1) = −

p + (2α − p)w (z)

1 + w (z)
.(2.3)

Clearly w (0) = 0. Equation (2.3) may be written as
(

Dn+1f (z)
)

′

(Dnf (z))′
=

1 + (2p + 1 − 2α) w (z)

1 + w (z)
.(2.4)

Differentiating (2.4) logarithmically and using the identity (easy to verify)

z (Dnf (z))′ = Dn+1f (z) − (p + 1) Dnf (z) ,(2.5)

and

z (Dnf (z))′′ =
(

Dn+1f (z)
)

′

− (p + 2) (Dnf (z))′ ,(2.6)

we obtain

(Dn+2f(z))
′

(Dn+1f(z))′
− (p + 1) + α

p − α

=
2zw′ (z)

(1 + w (z)) [1 + (2p + 1 − 2α) w (z)]
−

1 − w (z)

1 + w (z)
.

(2.7)

We claim that |w (z)| < 1 in U . For otherwise (by Jack’s lemma) there exists
a point zo in U such that

zow
′ (zo) = kw (zo) ,(2.8)

where |w (zo)| = 1 and k ≥ 1. From (2.7) and (2.8), we obtain

(Dn+2f(zo))
′

(Dn+1f(zo))′
− (p + 1) + α

p − α

=
2kw (z0)

(1 + w (z0)) [1 + (2p + 1 − 2α) w (z0)]
−

1 − w (z0)

1 + w (z0)
.

(2.9)

Thus

Re











(Dn+2f(z0))
′

(Dn+1f(z0))′
− (p + 1) + α

p − α











≥
1

2 (1 + p − α)
> 0,(2.10)

which contradicts (2.1). Hence |w (z)| < 1 in U and from (2.3) it follows that
f (z) ∈ Gn (α). �

Theorem 3. Let f (z) ∈
∑

p satisfy the condition

(2.11) Re

{

(

Dn+1f (z)
)

′

(Dnf (z))′
− (p + 1)

}

< −α +
p − α

2 (p − α + c)
(z ∈ U) ,
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for a given n ∈ N0 and c > 0.Then

F (z) =
c

zc+p

z
∫

0

tc+p−1f (t) dt,

belongs to Gn (α).

Proof. From the definition of F (z), we have

z (DnF (z))′′ = c (Dnf (z))′ − (c + p + 1) (DnF (z))′ ,(2.12)

and also

z (DnF (z))′′ =
(

Dn+1F (z)
)

′

− (p + 2) (DnF (z))′ .(2.13)

Using (2.12) and (2.13), the condition (2.11) may be written as

Re



















(

Dn+2F (z)
)

′

(Dn+1F (z))′
+ c − 1

1 + (c − 1)
(DnF (z))′

(Dn+1F (z))′

− (p + 1)



















< −α +
p − α

2 (p − α + c)
.(2.14)

We have to prove that (2.14) implies the inequality

Re

{

(

Dn+1F (z)
)

′

(DnF (z))′
− (p + 1)

}

< −α.(2.15)

Define w (z) in U by
(

Dn+1F (z)
)

′

(DnF (z))′
− (p + 1) = −

p + (2α − p)w (z)

1 + w (z)
.(2.16)

Clearly w (z) is regular and w (0) = 0. The equation (2.16) may be written as
(

Dn+1F (z)
)

′

(DnF (z))′
=

1 + (2p + 1 − 2α) w (z)

1 + w (z)
.(2.17)

Differentiating (2.17) logarithmically and using (2.12), we obtain

(2.18)

(

Dn+2F (z)
)

′

(Dn+1F (z))′
−

(

Dn+1F (z)
)

′

(DnF (z))′
=

2 (p − α) zw′ (z)

(1 + w (z)) [1 + (2p + 1 − 2α) w (z)]
.

The above equation may be written as

(Dn+2F (z))
′

(Dn+1F (z))′
+ (c − 1)

1 + (c − 1) (DnF (z))′

(Dn+1F (z))′

− (p + 1) =

(

Dn+1F (z)
)

′

(DnF (z))′
− (p + 1)

+

[

2 (p − α) zw′ (z)

(1 + w (z)) [1 + (2p + 1 − 2α) w (z)]

]





1

1 + (c − 1) (DnF (z))′

(Dn+1F (z))′



 ,
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which by using (2.16) and (2.17) reduces to

(Dn+2F (z))
′

(Dn+1F (z))′
+ (c − 1)

1 + (c − 1) (DnF (z))′

(Dn+1F (z))′

− (p + 1) = −

[

α + (p − α)
1 − w (z)

1 + w (z)

]

+
2 (p − α) zw′ (z)

(1 + w (z)) [c + (c + 2 (p − α))w (z)]
.

The remaining part of the proof is similar to that of Theorem 2. �

Remark 1. (i) Putting p = 1, a−1 = 1, n = 0 and α = 0 in Theorem 3, we
get the result of Goel and Sohi [3,Corollary 2].

(ii) For p = 1, a−1 = 1, n = 0, α = 0 and c = 1 the above theorem extends
a result of Bajpai [2, Theorem 1].

Theorem 4. f (z) ∈ Gn (α) if and only if

F (z) =
1

z1+p

z
∫

0

tpf (t) dt ∈ Gn+1 (α) .

Proof. From the definition of F (z), we have

Dn
(

zF ′ (z)
)

+ (1 + p)DnF (z) = Dnf (z) ,

that is

z (DnF (z))′′ + (2 + p) (DnF (z))′ = (Dnf (z))′ .(2.19)

By using the identity (2.13), (2.19) reduces to

(Dnf (z))′ =
(

Dn+1F (z)
)

′

.

Hence
(

Dn+1f (z)
)

′

=
(

Dn+2F (z)
)

′

.

Therefore
(

Dn+1f (z)
)

′

(Dnf (z))′
=

(

Dn+2F (z)
)

′

(Dn+1F (z))′

and the result follows. �
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