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TOTALLY REFLEXIVE, TOTALLY SYMMETRIC PATTERN
ALGEBRAS

ENDRE VÁRMONOSTORY

Abstract. A k-ary relation ρ on a set A induces a partition of each power
An into “patterns” in a natural way. An operation on A is called a ρ-pattern
operation if its restriction to each pattern is a projection. We examine functional
completeness of algebras with ρ-pattern fundamental operations in the case when
ρ is the totally reflexive, totally symmetric relation of A.
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1. PRELIMINARIES

A finite algebra A = (A; F ) is called functionally complete if every (finitary)
operation on A is a polynomial operation of A. A n-ary operation f on A is
conservative if f(x1, . . . , xn) ∈ {x1, . . . , xn} for all x1, . . . , xn ∈ A. An algebra
is conservative if its all fundamental operations are conservative.

A possible approach to conservative operations is to consider them as re-
lational pattern functions or ρ-pattern functions. Given a k-ary relation
ρ ⊆ Ak, two n-tuples (x1, . . . , xn), (y1, . . . , yn) ∈ An are of the same pat-
tern with respect to ρ if for all i1, . . . , ik ∈ {1, . . . , n}, (xi1 , . . . , xik) ∈ ρ and
(yi1 , . . . , yik) ∈ ρ mutually imply each other. An operation f : An → A is a
ρ-pattern function if f(x1, . . . , xn) always equals some xi, i ∈ {1, . . . , n} where
i depends only on the ρ-pattern of (x1, . . . , xn). In fact, any conservative oper-
ation is a ρ-pattern function for some ρ — see [11]. If ρ is the equality relation
on A, then the pattern functions whose notion was introduced by Quacken-
bush [5] are ρ-pattern functions. The maximum and minimum operations on
chains, and the ternary discriminator, the dual discriminator studied in [2]
and [4] are examples for ρ-pattern functions. An algebra is called a ρ-pattern
algebra if its operations (or equivalently its term operations) are ρ-pattern
functions for the same relation ρ on A. Specifically, if ρ is a totally reflexive,
totally symmetric relation then the ρ-pattern algebras are called totally re-
flexive, totally symmetric pattern algebras. B. Csákány [1] proved that every
finite ρ-pattern algebra (A; f) with |A| ≥ 3 is functionally complete if f is an
arbitrary nontrivial ρ-pattern function where ρ is the equality relation on A.

The aim of this paper is to continue research on the functional completeness
of finite totally reflexive, totally symmetric pattern algebras. We have already
proved a series of facts concerning functional completeness, for the cases when
ρ is an equivalence [14], a central relation [10], a graph of a permutation [11],
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[13], a bounded partial order [12], and a regular relation [9] on A. These
relations are occurring in Rosenberg’s primality criterion [7]. We will use the
following definitions and results.

An n-ary relation ρ on A is called central if ρ 6= An and there exists a
nonvoid proper subset C of A such that

(a) (a1, . . . , an) ∈ ρ whenever at least one aj ∈ C (1 ≤ j ≤ n);
(b) ρ is totally reflexive, i.e. (a1, . . . , an) ∈ ρ if ai = aj for some i 6= j,

(1 ≤ i, j ≤ n),
(c) ρ is totally symmetric, i.e. (a1, . . . , an) ∈ ρ implies (a1π, . . . , anπ) ∈ ρ

for every permutation π of the indices 1, . . . , n.

Note that every unary relation C distinct form ∅ and A is central. A n-ary
central relation ρ on A is called minimal central relation if (a1, . . . , an) 6∈ ρ
with all pairwise different noncentral elements a1, . . . , an ∈ A. The com-
patible binary reflexive symmetric relations of A are called tolerance rela-
tions of A. If A has no nontrivial tolerance then A is a tolerance-free alge-
bra. A ternary operation f on A is a majority function if for all x, y ∈ A
f(x, x, y) = f(x, y, x) = f(y, x, x) = x holds. By an n-ary i-th semiprojection
on A(n ≥ 3, 1 ≤ i ≤ n) we mean an operation f with the following property
f(x1, . . . , xn) = xi whenever at least two elements among x1, . . . , xn are equal.

The following proposition was got in [13] from Rosenberg’s fundamental
theorem [6].

Proposition 1. The clone of term operations of every nontrivial finite ρ-
pattern algebra A with at least three elements contains a nontrivial binary
ρ-pattern function or a ternary majority ρ-pattern function, or a nontrivial
ρ-pattern function which is a semiprojection.

Now we formulate the following theorem (see [13, Proposition 4]) which also
will be used.

Theorem 2. Let A be an at least three element finite simple conservative
algebra. A is functionally complete iff

(1) A has no compatible binary central relation preserved by every automor-
phism,

(2) A has no compatible bounded partial order ρ, such that for every auto-
morphism π of A the relation

ρπ = {(xπ, yπ) : (x, y) ∈ ρ}
equals ρ or ρ−1.

We need the following observation.

Remark 3. Let ρ be compatible binary central relation of A preserved by
an automorphism π of A. If π has a central element of ρ in one of its cycles,
then this cycle only contains central elements of ρ.
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2. RESULTS

If ρ is a unary relation on A, then the ρ pattern algebra A is not functionally
complete see [14].

Proposition 4. Let ρ be an at least 3-ary totally reflexive relation on an
at least three element finite set A. The ρ-pattern algebra A is functionally
complete iff A is tolerance-free.

Proof. The functionally complete algebras are tolerance-free. If A is a
tolerance-free ρ-pattern algebra where ρ is an at least 3-ary totally reflexive
relation then we show that it is functionally complete. The binary ρ-pattern
functions are projections on A. If a, b ∈ A, then the patterns (a, a, b), (a, b, a),
(b, a, a) are the same with respect to ρ. Thus none of the ρ-pattern functions
is a majority function on A. The nontrivial ρ-pattern functions which are
semiprojections do not preserve the bounded partial orders on A (see [3]).
Using Proposition 1 we get that the algebra A is functionally complete. ¤

Theorem 5. Let ρ be an at least binary totally reflexive, totally symmetric
relation on an at least three element finite set A. The finite ρ-pattern algebra
A is functionally complete iff A is tolerance-free.

Proof. If ρ is the equality relation on A, then our theorem is true (see [1]).
If ρ is an at least 3-ary relation on A, then by the Proposition 4 our theorem is
true. From now on let ρ be a binary no equality relation on A. The functionally
complete ρ-pattern algebras are tolerance-free algebras. Therefore it is enough
to prove that every finite tolerance-free ρ-pattern algebra A is functionally
complete. There are two binary nontrivial ρ-pattern functions on A. One of
them is

f(x, y) =

{
x, if (x, y) ∈ ρ,

y otherwise.
The other function can be obtained from f by changing x and y. We will show
that f does not preserve the bounded partial orders on A. From that we get
that the other function does not preserve them either. Let ≤ be a bounded
partial order on A with the least element 0, and the greatest element 1.

a) Let ρ be a central relation on A. If ρ has at least two central elements
then ρ is not simple see [10], and the ρ- pattern algebra A is not tolarance-free
algebra.

b) Let ρ be a central relation on A with a single central element c and
a, b ∈ A, (a, b) 6∈≤, (a, b) 6∈ ρ. The following matrices will be used

a a
0 b
a b

b b
a 1
a b

0 c
1 1
1 c

0 c
k k
k c

0 0
k c
k 0

c k
0 0
c 0

If c = 0, then the first, if c = 1 then the second matrix shows that f does not
preserve ρ. If 0 and 1 are not central elements of ρ, then there is an element
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k ∈ A with (0, k) 6∈ ρ. If k = 1, then the third matrix will be used. If k 6= 0, 1,
then we have the following cases:

(1) k and c are incomparable,
(2) k ≤ c,
(3) c < k.
In case (1) the fourth matrix, in case (2) the fifth matrix, and in case (3)

the sixth matrix show that f does not preserve ≤.
c) If ρ is not a central relation on A, then the following matrices will be

used
1 1
0 a
1 a

0 a
1 1
1 a

d 1
e e
d e

e 1
d d
e d

If (0, 1) ∈ ρ, then there exists element a with (a, 1) 6∈ ρ. Now the first
matrice shows that f does not preserve ρ. If (0, 1) 6∈ ρ and there exists
element a with a 6= 1 (a, 1) ∈ ρ, then the second matrix does the work. If
(0, 1) 6∈ ρ and there does not exist element a with a 6= 1, (a, 1) ∈ ρ, then there
are elements d, e with d 6= e, (d, e) ∈ ρ. In this case the third matrix with
(d, e) 6∈≤ and the fourth matrix with (e, d) 6∈≤ show that f does not preserve
≤. Therefore the nontrivial binary ρ-pattern functions do not preserve the
bounded partial orders if ρ is a binary no equality relation on A.

If ρ is a binary no equality relation on A with a 6= b, (a, b) ∈ ρ, then
the patterns (a, a, b), (a, b, a) and (a, b, b) are the same with repect to ρ. In
this case none of the ρ-pattern functions is a majority function. We have
already mentioned that the nontrivial semiprojections do not preserve the
bounded partial orders on A. The tolerance-free algebras are simple and have
no compatible binary central relations. Therefore using Theorem 2 we get
from Proposition 1 that A is functionally complete. ¤

Using Theorem 2 and Theorem 5 we can formulate the following corollary.

Corollary 6. Let ρ be at least binary totally reflexive, totally symmetric
relation on an at least three element finite set A. The finite simple ρ-pattern
algebra A is functionally complete iff A has no compatible binary central re-
lation preserved by every automorphism.

Claim 7. Let ρ be an at least binary central relation on a finite set A.
Then the ρ-pattern algebra (A, f) is not functionally complete if f is a binary
ρ-pattern function.

Indeed, if ρ is a binary central relation on A, then let C be the center of ρ.
The binary ρ-pattern functions preserve the nontrivial equivalence with blocks
C, A\C. Therefore the algebra (A; f) is not functionally complete.

If ρ is an at least 3-ary central relation on A, then the binary ρ-pattern
functions are projections.
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Claim 8. Let ρ be an at least binary central relation on a finite set A. Then
there exists a nontrivial ρ-pattern function f which is a semiprojection and the
algebra (A; f) is not functionally complete.

Indeed, if ρ is a binary central relation on A, then the function

f(x1, x2, x3) =

{
x3, if (x1, x2), (x2, x3) ∈ ρ and (x1, x3) 6∈ ρ

x1 otherwise

is a nontrivial ρ-pattern function, which is a semiprojection.
If ρ is an at least 3-ary central relation on A, then the function

gn(x1, . . . , xn) =

{
xn, if (x1, . . . , xn) ∈ ρ,

x1 otherwise

is a nontrivial ρ-pattern function which is also a semiprojection. It is easy to
see that f and g preserve the nontrivial equivalence with block C, A\C where
C is the center of ρ. The proof is completed.

Proposition 9. Let ρ be an at least binary minimal central relation with
the center {c} on an finite set A. The finite simple ρ-pattern algebra A is
functionally complete iff A has no compatible binary minimal central relation
with the center {c}.

Proof. The algebra A is a nontrivial algebra. From the Theorem 5 we get
that A has no compatible bounded partial order. The central element c is
the fixed point of the automorphisms of ρ. These automorphisms are also the
automorphisms of A. They can preserve only that binary minimal central
relation whose center is {c}. Using the Theorem 2 and Remark 3 we get the
proof.

Define the following subsets of An:
A1 := {(c, a2, . . . , an) ∈ An : c, a2, . . . , an are pairwise different elements},

...
An := {(a1, a2, . . . , c) ∈ An : a1, a2, . . . , c are pairwise different elements},
B := {(a1, . . . , an) ∈ An : ∃i, j, (1 ≤ i 6= j ≤ n) with ai = aj},
D := {(a1, . . . , an) ∈ An : a1, a2, . . . , an are pairwise different noncentral
elements}. ¤

Theorem 10. Let ρ be an at least binary minimal central relation with the
center {c} on a finite set A. If f is a n-ary nontrivial ρ-pattern function which
is an i-th semiprojection on A then the algebra (A; f) is functionally complete
unless

(a) f(x1, . . . , xn) = c iff xi = c; or

f(x1, . . . , xn) =

{
xi, if (x1, . . . , xn) ∈ B or (x1, . . . , xn) ∈ D,

c otherwise;
or
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(b) f(x1, . . . , xn) = fM (x1, . . . , xn) where

(c) fM (x1, . . . , xn) =





xi, if (x1, . . . , xn) ∈ B or (x1, . . . , xn) ∈ D or

(x1, . . . , xn) ∈ Aj ,

j ∈ M ⊆ {1, . . . , i− 1, i + 1, . . . , n}
c otherwise.

Proof. We need the following matrices:

a1 a1
...

...
ai an
...

...
c c
...

...
an an

c an

a1 c
...

...
ai ai
...

...
c c
...

...
an an

c ai

a1 a1
...

...
c c
...

...
ak ak
...

...
an a1

ak c

a1 c
...

...
c c
...

...
ak ak
...

...
an an

ak c

c a1
...

...
ai ai
...

...
c ak
...

...
an an

ai ak

a1 c
...

...
ai ai
...

...
c c
...

...
ak c
...

...
an c
ak ai

a1 c
...

...
c ai
...

...
ak c
...

...
an c
ak ai.

If (a) comes true then it is easy to prove that f preserves the equivalence
ε on A with the two blocks {c}, A\{c}. In this case the algebra (A; f) is not
functionally complete.

If (a) is not true, we have two cases. In the first case there exists pattern
(a1, . . . , ai, . . . , c, . . . , an) ∈ Aj with j 6= i, f(a1, . . . , ai, . . . , c, . . . , an) = c.
Let ε be an arbitrary nontrivial equivalence on A. We show that f does not
preserve ε. If {c} is a block of ε, then there exist ai, an ∈ A with ai 6= an,
(ai, an) ∈ ε. In this case the first matrix shows that f does not preserve ε. Now
let a1, ai, c ∈ A be with c 6= a1, (c, a1) ∈ ε, (c, ai) 6∈ ε. Now the second matrix
will be used. In the second case we can suppose that there is not pattern
(a1, . . . , c, . . . , an) ∈ Aj with 1 ≤ j ≤ n, f(a1, . . . , c, . . . , an) = c. Suppose that
f(a1, . . . , c, . . . , ak, . . . , an) = ak if (a1, . . . , c, . . . , ak, . . . , an) ∈ Ai. Let ε be an
arbitrary nontrivial equivalence on A. We show that f does not preserve ε. If
ε has a block with a single element c and a1, an ∈ A with a1 6= an, (a1, an) ∈ ε,
then the third matrix does the work. If a1, ak, c ∈ A with a1 6= c, (c, a1) ∈ ε,
(c, ak) /∈ ε, then in this case the fourth matrix shows that f does not preserve
ε. We proved that the algebra (A; f) is simple if (a) is not true.

If (b) or (c) comes true, then it is easy to see that f preserves the binary
minimal central relation τ on A with the center {c}. c.

If (b) and (c) do not come true, then we show that f does not preserve τ .
In the first case we can suppose that

f(a1, . . . , ak, . . . , an) = ak, k 6= i,
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with (a1, . . . , ak, . . . , an) ∈ D. Then we get from the fifth matrix that f
does not preserve τ . In the second case we suppose that there exists j 6= k,
(1 ≤ j, k ≤ n) for which (a1, . . . , c, . . . , ak, . . . , an) ∈ Aj with

f(a1, . . . , c, . . . , ak, . . . , an) = ak, k 6= i.

If j 6= i and (a1, . . . , ai, . . . , c, . . . , ak, . . . , an) ∈ Aj then the sixth matrix shows
that f does not preserve τ . If j = i, then in case (a1, . . . , c, . . . , ak, . . . , an) ∈ Aj

we use the seventh matrix. The proof is completed. ¤

Theorem 11. Let ρ be an at least binary minimal central relation with the
center {c} on a finite set A. The ρ-pattern algebra A is functionally complete
iff

(1) A has no compatible equivalence with blocks {c}, A\{c},
(2) A has no compatible binary minimal central relation with the center {c}.
Proof. We can see in the proof of Claim 7 and Theorem 10 that one of the

term operations of A which can generate minimal clone preserves the equiva-
lence with blocks {c}, A\{c} or does not preserve the nontrivial equivalences
on A. Therefore one of the term operations of A preserves the equivalence
with blocks {c}, A\{c} or does not preserve the nontrivial equivalences on A.
Using the Proposition 9 we get our theorem. ¤
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[1] Csákány B., Homogeneous algebras are functionally complete, Algebra Universalis, 11
(1980), 149–158.

[2] Fried E. and Pixley A.F., The dual discriminator function in universal algebra, Acta
Sci. Math., 41 (1979), 83–100.
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Rozpravy Československé Akad. Věd. Rada Math Přirod. Věd., 80 (1970), 3–93.
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