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EXTENSION OF LINEAR OPERATORS, DISTANCED
CONVEX SETS AND THE MOMENT PROBLEM

LUMINIŢA LEMNETE NINULESCU and OCTAV OLTEANU

Abstract. One applies an extension theorem of linear operators ([10, Theorem
5, p. 969]) to the classical moment problem in spaces of continuous functions
on a compact interval and in spaces of analytic functions. One proves that
certain conditions (which are often fulfilled) are sufficient for the existence of
some solutions of some moment problems. Our solutions satisfies some sandwich
type conditions. One of these conditions (the inequalities (5)) and the fact that
equalities (4) hold only for j ≥ 1 are in a way unusual with respect to some other
moment problems. We exploit the notions of distanced convex sets and positive
sequence on an interval. One solves an operator-valued moment problem.

MSC 2000. 47A57, 46A22, 30A10.

1. INTRODUCTION

We recall some general facts concerning the classical moment problem. Let
X be a space of real or complex functions defined on a compact subset in
Rn which contains the polynomials xj(t) = tj , j ∈ Nn and let {yj}j∈Nn

a sequence of real (respectively complex) numbers. The problem is: find
necessary and sufficient (or only sufficient) conditions on {yj}j∈Nn for the
existence of a linear functional f on X such that the moment conditions

f(xj) = yj , j ∈ Nn

are satisfied and such that f have some other sandwich type properties, which
generalize the continuity and positivity of the linear functional f . If we define
f0 : Sp {xj ; j ∈ N∗} → R (or C) by

f0

 ∑
j∈F⊂Nn

λjxj

 :=
∑
j∈F

λjyj

(finite sums), then it is clear that to solve the moment problem means to find
conditions upon {yj}j∈Nn such that f0 may be extended to a linear functional
f defined on the whole space X, such that some sandwich conditions are
satisfied. The yj , j ∈ Nn are called moments since they generalize the classical
moments (see [2]).
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The general extension result stated in section 2 from below enables us to
find sufficient conditions for the existence of solutions of some moment prob-
lems which may lead (via measure theory) to some solutions of some Markov
moment type problems (see [5]).

2. A GENERAL EXTENSION THEOREM FOR LINEAR OPERATORS

Theorem 2.1. [10, Theorem 5, p. 969] Let X be a locally convex space,
Y an order-complete vector lattice with strong order unit u0 and let X0 be a
vector subspace of X. Let A ⊂ X be a convex subset such that the following
two conditions are fulfilled:

(a) There exists a neighbourhood V of the origin such that (X0+V )∩A = Φ
(A and X0 are distanced).

(b) A is bounded.
Then for any equicontinuous family of linear operators {fi}i∈I ⊂ L(X0, Y )

and for any ỹ ∈ Y+ \ {0}, there exists an equicontinuous family {f̃i}i∈I ⊂
L(X, Y ) such that f̃i|X0 = fi and f̃i|A ≥ ỹ, i ∈ I.

Moreover, let u0 be a strong unit in Y and V a convex, circled neighbourhood
of the origin, with the properties

(1) fi(V ∩X0) ⊂ [−u0, u0],

(2) (X0 + V ) ∩A = Φ.

If we denote by pV the Minkowski functional attached to V and we choose
0 < α ∈ R such that pV |A ≤ α and α1 > 0 such that ỹ ≤ α1u0, then the
following relations hold

(3) f̃i(x) ≤ (1 + α + α1)pV (x)u0, x ∈ X, i ∈ I.

3. MAIN RESULTS

Theorem 3.1. Let 0 < b ∈ R, X := C([0, b]), xj(t) = tj, j ∈ N, j ≥ 1,
t ∈ [0, b], {ϕk : k ∈ N} ⊂ X, ||ϕk|| ≤ 1, ϕ0 ≡ 1, ϕk(0) = 1, k ∈ N. Let Y be
an order complete vector lattice with strong unit u0, and let {y1, y2, . . .} ⊂ Y

be such that the sequence {u0, y1, y2, . . .} is positive on [0, b] (
n∑

j=0

λjt
j ≥ 0

∀t ∈ [0, b] ⇒ λ0u0 +
n∑

j=1

λjyj ≥ 0 in Y , n ∈ N, λj ∈ R).

Then, for any α1 ∈ R+, there exists f ∈ L(X, Y ) such that

(4) f(xj) = yj , j ∈ N, j ≥ 1,

(5) f(ϕk) ≥ α1u0, k ∈ N,

(6) f(x) ≤ (2 + α1)||x||u0, x ∈ X.
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Moreover, if α1 ≥ 1 and if Y is endowed with a linear topology such that the
positive cone Y+ is closed and normal, then f is continuous and positive.

Proof. We apply Theorem 2.1 to X = C([0, b]), X0 = Sp{xj ; j ∈ N, j ≥ 1},
A := co{ϕk : k ∈ N}. For any p0 ∈ X0 and any a ∈ A, we have

||p0 − a|| ≥ |p0(0)− a(0)| = 1,

whence d(X0, A) ≥ 1. This implies (X0 + B(0, 1)) ∩ A = Φ, where B(0, 1) :=
{x ∈ X; ||x|| < 1}. We take V := B(0, 1) in Theorem 2.1. Thus pV = || ||. On
the other hand, ||ϕk|| ≤ 1, k ∈ N ⇒ pV |A = || |||A ≤ 1. So, we can take α := 1
in Theorem 2.1. We also take ỹ := α1u0, f0

(∑n
j=1 λjxj

)
:=

∑n
j=1 λjyj (I =

{0}). Now we check (1). Let
∑n

j=1 λjxj ∈ X0 ∩ V = X0 ∩ B(0, 1). Then we
have

sup


∣∣∣∣∣∣

n∑
j=1

λjt
j

∣∣∣∣∣∣ ; t ∈ [0, b]

 < 1,

i.e.
∑n

j=1 λjt
j + 1 > 0, t ∈ [0, b] and 1 −

∑n
j=1 λjt

j > 0, t ∈ [0, b]. Since
the sequence {u0, y1, y2, . . .} is supposed to be positive on [0, b], these relations
lead to

u0 +
n∑

j=1

λjyj ≥ 0 and u0 −
n∑

j=1

λjyj ≥ 0

which mean

f0

 n∑
j=1

λjxj

 =
n∑

j=1

λjyj ∈ [−u0, u0],

i.e. (1).
By Theorem 2.1, there exists f̃0 =: f ∈ L(X, Y ) such that f |X0 = f0,

f |A ≥ α1u0, f(x) ≤ (1 + 1 + α1)||x||u0, x ∈ X. These relations imply (4),
(5), (6). Let now α1 ≥ 1, and let Y be endowed with a topology such that
Y+ is closed and normal. We have to prove that f is continuous and positive.
From (6) (written also for −x instead of x) and from the fact that Y+ is
normal, we deduce the continuity of f . To prove that f is also positive, it
is sufficient to show that f(p) ≥ 0 for any positive polynomial p (then one
uses Weierstrass-Bernstein theorem and the fact that Y+ is closed). So, let
p(t) = λ0 + λ1t + . . . + λntn ≥ 0, ∀t ∈ [0, b]. Since {u0, y1, y2, . . .} is positive

on [0, b], we deduce λ0u0 + λ1y1 + . . . + λnyn ≥ 0, i.e.
n∑

j=1

λjyj ≥ −λ0u0 in Y .

On the other hand, since we have supposed that ϕ0 ≡ 1 and α1 ≥ 1, we get

f(λ0ϕ0 + λ1x1 + . . . + λnxn) = λ0f(ϕ0) +
n∑

j=1

λjyj ≥

≥ λ0f(ϕ0)− λ0u0

(5)

≥ λ0(α1u0 − u0) = λ0(α1 − 1)u0 ≥ 0
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i.e. f(p) ≥ 0. The proof is complete. �

Corollary 3.2. Let H be a Hilbert space and let A ∈ A(H) = the set of
all selfadjoint operators applying H into H. We suppose that A is positive
(< A(h), h >≥ 0 ∀h ∈ H). We denote

A1 := {U ∈ A(H); UA = AU}, Y := {U ∈ A1; UV = V U, ∀V ∈ A1}.

Let b ∈ R+ such that S(A) ⊂ [0, b], where S(A) is the spectrum of A. Let
α1 ≥ 1. Then there exists an increasing function σ : [0, b] → Y such that

(4′)
∫ b

0
tjdσ(t) = Aj , j ∈ N, j ≥ 1

(5′)
∫ b

0
e−ktdσ(t) ≥ α1I, k ∈ N

(6′)
∫ b

0
x(t)dσ(t) ≤ (2 + α1)||x||I, x ∈ C([0, b]),

where I is the identity operator.
In particular, for such a function σ we have

(7) α1 + 1 ≤ ||σ(b)− σ(0)||+ || exp(−kA)||, k ∈ N

Proof. We apply Theorem 3.1 to ϕk(t) = e−kt, k ∈ N, t ∈ [0, b], Y defined
above, u0 = I (it is well-known that Y is a complete vector lattice with strong
unit u0 = I (see [4]). We have to show that the sequence {I,A, A2, . . .} is
positive on [0, b] ⊃ S(A). This is a consequence of the existence of the spectral
measure attached to A, which is positive since A is selfadjoint. By Theorem
3.1, there exists f ∈ L(X, Y ) such that (4), (5) and (6) hold. Since α1 ≥ 1
and the positive cone Y+ is closed and normal, f is continuous and positive.
Using the representation theorem of linear and (τo) bounded operators f :
C([0, b]) → Y (see [4], p. 272), we deduce the existence of a function of bounded
variation σ : [0, b] → Y with the properties (4′), (5′), (6′). Since f is positive,
σ is increasing. Now we prove (7). We have

α1I
(5′)
≤

∫ b

0
e−ktdσ(t) =

∞∑
m=0

(−k)m

m!

∫ b

0
tmdσ(t)

(4′)
=

= σ(b)− σ(0) +
∞∑

m=1

(−k)m

m!
Am =

= σ(b)− σ(0)− I +
∞∑

m=0

(−k)m

m!
Am =

= σ(b)− σ(0)− I + exp(−kA), k ∈ N
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This is equivalent to

< (α1 + 1)I(h), h) >≤< (σ(b)− σ(0)(h), h > +

+ < exp(−kA)(h), h >, h ∈ N, k ∈ N,

which implies

(α1 + 1)||h||2 ≤ ||σ(b)− σ(0)|| ||h||2 + || exp(−kA)|| ||h||2,

h ∈ H, k ∈ N, which is equivalent to (7).
The proof is completed. �

Next we consider the case when the moments yj , j ∈ N are real numbers
(Y = R).

Via Jensen inequality, we obtain some inequalities connecting the terms of
a sequence, which is positive on [0, b], to the second term of the sequence (see
inequalities (8) from below).

Corollary 3.3. Let {1, y1, y2, . . .} ⊂ R be a positive sequence on [0, b].
Then the following inequalities hold

(8) y1 ≤ 3(j−1)/j · y1/j
j , j ∈ N, j ≥ 1

(in particular, y1 ≤ 3 lim inf y
1/j
j ).

Proof. We apply Theorem 3.1 to Y = R, u0 = 1, ϕk(t) = e−kt, t ∈ [0, b],
α1 ≥ 1. The sequence {1, y1, y2, . . .} being supposed to be positive on [0, b], by
Theorem 3.1, there exists a linear functional f ∈ (C([0, b]))∗ such that (4), (5)
and (6) hold. Using the representation theorem of linear positive functionals
f : C([0, b]) → R by measures dσ with σ : [0, b] → R increasing function,
there exists such a function σ such that

(4′′)
∫ b

0
tjdσ(t) = yj , j ∈ N, j ≥ 1,

(5′′)
∫ b

0
exp(−kt)dσ(t) ≥ α1, k ∈ N,

(6′′)
∫ b

0
x(t)dσ(t) ≤ (2 + α1)||x||, x ∈ C([0, b])

hold. By (5′′), σ is not constant. Now we apply the following particular variant
of the Jensen’s inequality

∫ b

a
h(t)p(t)dσ(t) ≥

(∫ b

a
p(t)dσ(t)

)
· h


∫ b

a
tp(t)dσ(t)∫ b

a
p(t)dσ(t)

 ,
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(where σ : [a, b] → R is an increasing nonconstant function, h is continuous
and convex, p is continuous and nonnegatively, p 6≡ 0) to h(t) = tj , j ≥ 1,
p(t) = 1 ∀t ∈ [0, b]. We find

yj
(4′′)
=

∫ b

0
tjdσ(t) ≥

∫ b

0
dσ(t)


∫ b

0
tdσ(t)∫ b

0
dσ(t)


j

(4′′)
= [σ(b)− σ(0)] ·

[
y1

σ(b)− σ(0)

]j

=
yj
1

[σ(b)− σ(0)]j−1
,

i.e. yj [σ(b)− σ(0)]j−1 ≥ yj
1, which leads to

y1 ≤ [σ(b)− σ(0)](j−1)/jy
1/j
j =

(∫ b

0
dσ(t)

)(j−1)/j

y
1/j
j

(6′′)
≤ (2 + α1)(j−1)/jy

1/j
j ,

the last inequality being valid for any α1 ≥ 1. Writing it for α1 = 1, we find
(8). �

Remark 3.4. Using Taylor formula and finite sums
p∑

n=1

(−1)nkn

n!
tn with p ∈

N odd number, it is easy to prove that if {1, y1, y2, . . .} is a positive sequence

on [0, b], then we have
p∑

n=1

(−1)nkn

n!
yn ≤ 0. Similarly, for p even number, one

obtains
p∑

n=1

(−1)nkn

n!
yn ≥ −1. From these two inequalities, making p → ∞,

we get

−1 ≤
∞∑

n=1

(−1)nkn

n!
yn ≤ 0.

Note that for these inequalities it is not necessary to use the fact that {y1, y2,
. . .} is a moment sequence (by Theorem 3.1).

Next we consider a moment problem in a space X of analytic functions on an
open disk, which are continuous on the closed disk. Let b > 0 and X := Ab the
space of all functions x which may be represented as an absolutely convergent

series x(z) =
∞∑

j=0

λjz
j , |z| < b, λj ∈ R, x being continuous on the closed

disk |z| ≤ b. For x ∈ X, we note ||x|| = sup{|x(z)|; |z| ≤ b}. Let xj ∈ X,
xj(z) = zj , j ∈ N. Let Y = L∞(Ω), where (Ω, µ) is a measurable space, the
measure µ being positive. We denote by u0 ∈ Y the function u0(ω) = 1, ω ∈ Ω
(u0 is a strong order unit in Y endowed with the usual cone Y+). For y ∈ Y ,
we note ||y||∞ = esssupy. With these notations, from theorem 2.1 we deduce
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Theorem 3.5. Let b > 1, {ϕk : k ∈ N} ⊂ X such that ||ϕk|| ≤ M ,
ϕk(0) = 1, k ∈ N. Let {yj : j ∈ N, j ≥ 1} ⊂ Y be a sequence such that
||yj ||∞ ≤ b− 1, j ≥ 1.

Then for any ỹ ∈ Y+, there exists f ∈ L(X, Y ) such that

(4′′′) f(xj) = yj , j ∈ N, j ≥ 1

(5′′′) f(ϕk) ≥ ỹ, k ∈ N

(6′′′) f(x) ≤ (1 + M + ||ỹ||∞)||x||u0, x ∈ X

Proof. We apply Theorem 2.1 to X0 := Sp{xj , j ≥ 1}, A := co{ϕk; k ∈ N},

f0

 n∑
j=1

λjxj

 :=
n∑

j=1

λjyj . By the conditions upon ϕk, k ∈ N, it follows that

d(X0, A) = inf{||x− a||; x ∈ X0, a ∈ A} ≥ 1

Thus we get (X0 + B(0, 1)) ∩ A = Φ, so we can apply Theorem 2.1. to
V = B(0, 1). This implies pV = || ||. We check (1)

x ∈ B(0, 1) ∩X0 ⇒ x =
n∑

j=1

λjxj , ||x|| < 1.

Using the Cauchy inequalities for the analytic function x, we find

|λj | ≤ ||x||/bj < 1/bj , j ∈ {1, 2, . . . , n}.

On the other hand, for any y ∈ Y = L∞(Ω), we have |y(ω)| ≤ ||y||∞ ·
u0(ω) a.e. in Ω, whence |y| ≤ ||y||∞u0. These relations and the hypothesis
||yj ||∞ ≤ b− 1, j ≥ 1 lead to∣∣∣∣∣∣

n∑
j=1

λjyj

∣∣∣∣∣∣ ≤
n∑

j=1

|λj | |yj | ≤

 n∑
j=1

(1/bj)||yj ||∞

 u0 ≤

≤

 ∞∑
j=1

1/bj

 (b− 1)u0 = u0,

i.e.
∑n

j=1 λjxj ∈ B(0, 1) ∩X0 ⇒ f0

(∑n
j=1 λjxj

)
=

∑n
j=1 λjyj ∈ [−u0, u0].

On the other hand, we remark that pV |A = || |||A ≤ M , so we may take in
Theorem 2.1 α := M . One also remarks that ỹ ≤ ||ỹ||∞u0, hence we may take
α1 := ||ỹ||∞. The conclusion follows. �

A similar result may be proved for spaces X of analytic functions on a
n-dimensional open polydisk D, continuous on the closed polydisk D̄.
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