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ON A CONJECTURE OF LIVINGSTON

FARIT G. AVKHADIEV and KARL J. WIRTHS

Abstract. Let D denote the open unit disc and f : D — C be meromorphic
and injective in D. We further assume that f has a simple pole in the point
p € (0,1) and an expansion

f) =2+ an(P", Jol <p.
n=2

Especially, we consider f that map D onto a domain whose complement with
respect to C is convex. Concerning a (sharper) conjecture of Livingston ([5]) we
prove that for n > 2 the inequality

1 +p2n

Re (an(f)) > i1+ p)?
is valid.
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In the last century, many beautiful results have been proved in Geometric
Function Theory for functions holomorphic in the open unit disc D that map
D conformally onto a convex domain.

The present paper is devoted to a pendant of the family of convex functions,
the family of concave univalent functions with pole p € (0, 1) denoted by C'o(p)
here. To be precise, we say that a function f : D — C belongs to the family
Co(p) if and only if:

(1) f is meromorphic in D and has a simple pole in the point p € (0,1).

(2) f has an expansion

F2) =243 au(f)=", || <p.
n=2

(3) f maps D conformally onto a set whose complement with respect to C
is convex.

There are results on Co(p) that resemble very much those on convex func-
tions, for example it has been proved in [3] that |a,(f)| > 1 for f € Co(p).
Other results look very different from the analogous results on convex func-
tions. Results of this type are the exact domains of variability of the Taylor
coefficients a,(f), f € Co(p). J. Miller proved in [6] in principle that the
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inequality
1+p°+p! P
1 — <
describes the exact domain of variability of ax(f), f € Co(p) (compare [5], [1],
[3], too).
Livingston proved in [5] that the lower bound in
1-p*+p!
(2) Re (a3(f)) > 2 f € Co(p),

is sharp for any p € (0,1). The functions for which the bounds are attained
in (1) and (2) map D onto the whole extended plane minus a line segment.
The consideration of these extremal functions lead Livingston in [5] to the
conjecture

1+ p*"

(3) Re (an(f)) = m

In the present article we prove the existence of a positive lower bound for
Re (an(f)),f € Co(p), n > 2, p € (0,1), which differs from the conjectured

bound in (3) by the factor
1 2
TP (L),
(I+p)? ~\2

This will be the content of Theorem 2. As a preparation for its proof we show

THEOREM 1. Let p € (0,1), f € Co(p) and ¢ € C\ f(D). Then the sharp
inequalities

, fe€Co(p),n>2, pe(0,1).

p p
4 — < Re(c) < —
@ (1-p2%~ () < (1+4p)?
are valid. Equality in (4) is attained if and only if
z
(5) fe(z) =

(1-2)a-2p)
and ¢ = f.(1) in the left inequality (4), resp. ¢ = fe(—1) in the right inequality
(4).

Proof. Since 6\ f(D) is starlike with respect to ¢ and f is normalized as
defined above and has a simple pole in the point p, the function
(1 =2)1 = 2p)f'(2)
F(z):= )
f(z) — ¢
resp. its holomorphic extension from D \ {p} onto D has the following prop-
erties
(1) Re(F(z)) > 0 for z € D (compare [5], Theorem 6).

(2) F(0) = —1 and F(p) = :=£2.

c p
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Let ¢ = x +iy. From the properties of the function F' we conclude that x < 0
and that there exists a function ¢ holomorphic in D such that ¢(D) C D,
©(0) = 0 and

F 2 AN o
PEETHY) —y _1-ve) g
x 1+ p(2)
Hence, there exists a function ® holomorphic in D such that ®(D) C D,

B F(z)(2®+y%) —iy  1—29(2)

x _l—l—sz(z)’zeD’
and )
1—p? (2 | 2y _
3 (@t 4 y) — iy _ 1-p2(p)
x 1+ p®(p)

This equation together With7<I>(D) C D yields that for every ¢ = = + iy €
C\ f(D) there exists a w € D such that

1 7p2 ($2 + 2 _ 3
== y) -y 11—
(6) ~-F = PU s v,
T 14+ pw
where u + iv varies in the disc described by
2 2
1+p? 9 2p
(7) <u—1_p2> + v° < )
From (6) we get
y=2xv
and therefore
up
r = —

(1=p*)(1+v2)
According to (7), this implies (4), where equality in the left inequality is
attained only for

1+p
8 = = =0
®) w=12 =0,
and in the right inequality only for
l-p
9 u=——v=20
©) 1+p
The formula (8) means that ®(p) = —1. According to the maximum principle
this implies ® = —1. The initial value problem
p 00— 1ee
1-p? f)+ghp  1-2 o

has as its unique solution the extremal function f, defined in (6), which maps
D onto

=i p D
C\ T T T
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(compare [5], [6] and[1]). The reasoning concerning the right inequality in (4)
is analogous with (9) and ®(p) = 1. O

THEOREM 2. Let p € (0,1), f € Co(p) and n > 2. Then the inequality

(10) Re(an(f)) = 1 4 p)2

s valid.

Proof. In principal, we proceed as in [1], where the inequality

lan(f)] = m

was proved and we use some arguments from [2] where the Taylor coefficients
of meromorphic univalent functions have been considered. For n > 2 the
function h defined by

h(z) ::{ (1 _Zn(pn—i_z%) +22n)f(z)v z€ D\ {p},

liIn0<|'wfp|ﬂ() h(w)7 Z2=D

is bounded and holomorphic in D. Therefore the angular limits h(el%), and,
in turn, the angular limits f(el?) exist almost everywhere in [0, 27) by Fatou’s
theorem (see [4], chapter IX). Apparently,

an(h) = an(f).
As a consequence of a theorem of F. Riesz (see for instance [4], p. 404) we get
2m

lim
R—1-0 0

h(Re®) — h(ew)) dg = 0.
This together with the residue theorem and the above yields

2m
an(f) = an(h) ! /0 h(e?)e "0 dh

T o

1 2T ) 1
=— f(e? <p"+—2cosn9>d9.
o /. () o (nd)

Now, we use the the right inequality in (4) for ¢ = f(e!?) to get immediately
the inequality (10). O
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