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ON THE INTEGRAL REPRESENTATION OF EXCESSIVE
FUNCTIONS UNDER BOCHNER SUBORDINATION

WAJDI TOUHAMI

Abstract. Let P be a semigroup of kernels on a Lusin space F with associated
resolvent U, let 8 be a Bochner subordinator and let P® be the subordinate
semigroup of P by means of 5. In this paper we give sufficient conditions to
have an integral representation of P’-excessive functions in terms of U-exit laws
and (. As application, if PP is the semigroup of a transient right Markov process
X, we derive a probabilistic representation of P?-excessive functions in terms of
additive functionals of X and §.
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1. INTRODUCTION

This paper is devoted to the integral representation of excessive functions
under the potential theory defined by a semigroup of kernels, obtained after
Bochner subordination. This subordination is a convenient way of transform-
ing semigroup of kernels and their functional energies. A usual problem is
to show that regularities properties are transferred from the given semigroup
to the subordinated one. Our problem is different but is related to the usual
problem, because we must have the stability of some properties such as the
properness and the unicity of charges (cf. [16]). The key of the representation
in our problem is the notion of resolvents’ exit laws which is well known in
the ergodic theory for resolvents [8, XII-3]. Thanks to this notion, authors in
[15] found an integral representation of potentials by additive kernels. Also
authors in [19] characterized subordinated exit laws in terms of initial entities.
This describes clearly the importance of resolvents’ exit laws.

Let P = (P;)¢>0 be a sub-Markovian semigroup of kernels on a Lusin mea-
surable space (£, &) and let U = (U,)p>0 be the associated resolvent. An exit
law for U is a family f := (f,)p>0 of non-negative measurable functions on E
satisfying

(1) fp:fq+(q_p)Upfq ; Uqu:Upfq7 0<p<yq.
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Let 8 = (B¢)i>0 be a Bochner subordinator. The subordinate semigroup P? of
P by means of § is defined by

) Pl /OOOPsﬂt(ds), >0

We are interested in Bochner subordinator 8 of (K)-type, that is x := fooo Bsds
is absolutely continuous with respect to A and its density is completely mono-
tone. Let p be the associated measure on [0, 00| given by K = L(p) - A and p
be a reference measure for U. The first aim of the present paper is to prove,
under finiteness conditions, that fooo fs p(ds) is equal p-almost everywhere to
a PP-excessive function, for each U-exit law (f,). The natural question that
arises is the following: given a P#-excessive function h, can us find a (unique)
U-exit law (fp) such that h = fooo fsp(ds), p-a.e.? The study of this question
is the main goal of this paper and we will solve, under some appropriate as-
sumptions, this converse problem. Precisely, we will suppose that P admits a
dual semigroup I@, both are proper and the cones of their u-a.e. finite excessive
functions are inf-stable and generates £. Moreover § will be supposed belong-
ing to a subclass of (K)-type subordinators as described later. Based on [17],
the idea is to represent first UP-purely excessive measures by U-entrance laws
and next by using Hunt’s approximation Theorem, where U? is the resolvent
of PP,

Our integral representation is a generalisation of some result given in [19],
without imposing restrictive conditions on excessive functions. Similar integral
representation by means of semigroups exit laws was studied in many papers,
see for example [I}, 9, [10] 13, [14] [18§].

Let X and X be transient right Markov processes with associated semi-
groups P and I@, in duality with respect to u. As a consequence of the main
result we prove, for each p-a.e. finite P?-excessive function, that there exists
a unique additive functional (A;) for X such that h(z) = E*( [ L(p)(t) dA;),
p-a.e.. Integral representation of excessive functions in terms of additive func-
tionals was investigated in [20], for the particular case when f is the trivial
subordinator.

2. PRELIMINARIES

Let E be a Lusin measurable space equipped with its Borel o-field £ (which
denotes also the cone of all £-measurable functions). We denote by p€ the cone
of positive functions of £ and by M the cone of o-finite positive measures on
E.

A kernel on FE is a mapping K : E x £ — [0,00] such that x+ — K(x, A)
is measurable for each A € £ and A — K(z,A) is a (positive) measure for
each x € £. In this case, K acts to the right on p€ and to the left on M by
Kf(z):= [ fly) K(z,dy) for f € p€,z € E and pK(A) := [ K(z,A) p(dz)
for p € M, A € £. In the sequel we fix u € M, a property holds p-a.e.
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means that this property holds except on a p-negligible set. We put F :=
{u € & : wis finite, p-a.e.}. We endow R, with its Borel field A and we
denote by A the Lebesgue measure on R;. The notation £(7) stands for the
Laplace transform of a positive measure 7 on Ry and d; stands for the Dirac
measure at ¢t € [0, 00]. We denote by id the identity function on R;. Finally,
we abbreviate the expression “the monotone convergence theorem” by MCT.

In the following section we will introduce some definitions which will be
useful in the remainder of this paper, for more details see [8, Chap. VII], [6]
Sec. 1I-1,2,3] and [22, Sec. 1].

2.1. SEMIGROUPS AND RESOLVENTS OF KERNELS

A (sub-Markovian) semigroup P := (F;);~0 on F is a family of kernels on
(E, &) such that

(1) (t,z) = P f(z) is A ® E-measurable for each f € &
(2) P1<1and PsP, = Psyy for all s, >0

Two semigroups are said to be in duality with respect to u € M provided
J Pruvdp = [uPwdp for each u,v € p€ and all ¢ > 0.

Let P := (P;);>0 be a semigroup on E, then the family U := (U,),>0 defined
by

o0
Up = / exp(—pt) P, dt, t>0
0
is called the resolvent of P. It satisfies pU,1 <1 for each p > 0 and
Up=Us+ (q—p)UpU; ;5 UgUp =U,Uy, 0<p<gq

Since the mapping p — U, is decreasing then we may define the initial kernel
U of the resolvent U by U := Uy := sup,o Up = fooo P, ds, which is called the
potential kernel of P. The resolvent equation may be extended to p = 0:

U=U,+qU,U, q>0

For a given ¢ > 0, the family U? := (Upyq)p>0 is the resolvent of Q¢ =
(€79 P,)4~o. Following [8, VII, p. 7], we say that P is proper if there exists a
strictly positive function [ such that Ul is bounded.

Remember that a set N € £ is called of potential zero if Up1x = 0 for some
p > 0. By using the resolvent equation we have the same property for all
p > 0. R

If P and P are in duality then their resolvents are also in duality, that is
JUuvdp = fuﬁtv dy for every u,v € p€ and all p > 0.

The resolvent U is said to be p-basic if there exists a mesurable function
G :]0,00[x E x E — [0, 00] such that

/G x,y) u(y)pu(dy), x € E.
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Following [22] p. 271], a proper semigroup P is said to satisfy the principle
unicity of charges (UC), if for all positive measures vq,v9 on E.

nU=wnlUecM=v =uw.

2.2. EXCESSIVE STRUCTURE

A function h € p€ is called P-excessive (resp.U-excessive) if P,h < h for
all t > 0 (supermedianity) and P.h — h as t — 0 (resp. pUph T h as p —
o0). In the same way, a measure m € M is called P-excessive (resp. U-
excessive) provided mP; T m as t — 0 (resp. pmU, T m as p — o0). We
say that m € M is U-purely excessive if it is U-excessive and pmU, | 0
as p | 0. For m € M satisfying mU € M, it is known that mU is U-
purely excessive. According to [8, XII 18], P-excessive functions are exactly
U-excessive functions. Analogously, we can prove that there is identity between
excessive measures for P and U. We denote by Exc(PP) the cone of P-excessive
measures and by S(IP) the cone of P-excessive functions belonging to F. If P
admits a dual P with respect to p, it is well known that the set {h-p: h €
S(P)} C Exc(P). Let P be a proper resolvent, the function L : S(P) x Exc(P) —
[0, 00| defined by

L(h,l) :=sup{v(h) : vU € M, vU <}

was introduced by Meyer [8, p. 23-24] and called the energy functional asso-
ciated to P.

In the sequel we suppose that p is a reference measure for U that is U is
p-basic and p is U-excessive. In this case sets of potential zero are exactly
p-negligeable sets. We index by

S »

all entities associated to P.

3. EXIT AND ENTRANCE LAWS FOR RESOLVENTS

The following notions of exit laws and entrance laws are taken from [8, p.
38-40].
A U-entrance law is a family m := (mp)p>0 C M such that for all0 < p < ¢:

myp =mq+(q—p)meUp 5 mpUs =mqeUp

Let m be a U-entrance law, then the mapping p — m,, is increasing as p | 0
and mg := Sup,,~( Mp is a positive measure.

A U-exit law is a family f := (f})p>0 of nonnegative functions of F satisfying
the functional equation .

If holds p-a.e. we say that (fy) is a p-exit law for U. Let f be a U-exit
law, then the mapping p — f, is increasing as p | 0 and fo := sup,~ fp is
P-supermedian. Moreover fo, = inf,~q f, is finite and satisfies foo = 0, p-a.e..
So the function f, is equal p-a.e. to some QP-excessive function for each p > 0.
For more examples of U-exit laws we refer the reader to [I5, p. 125]. Note
that the family (fp+q)p>0 is a Ul-exit law for each ¢ > 0.
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LEMMA 3.1. Let f be a U exit law. Then Upysfors T Upfy as s — 0, for
each p,q > 0.

LEMMA 3.2. Let P and P be semigroups in duality with respect to p. Let
(my) be a U-entrance law such that my, is absolutely continuous with respect

to p for each p > 0 and let j/; :=dmyp/dp. Then (f;,) is a p-exit law for U.

Proof. Since m, € M, then f, € F for each p > 0. For 0 < p < g, we have
from the entrance law equation

p=J) - n=Fo-n=Jo-n=(a=p)Fs- Uy = (a = D)(Tpy) -
and (Upfq)-u = (]?q',u)Up = (]?p-u)Uq = (ﬁq]?p)-u. Which yields the result. OJ

LEMMA 3.3. Let (gp) be a p-exit law for U, then there exists a U-exit law
(fp) such that fp, = gp, p-a.e.

Proof. Define for n € N*: gi'(x) := nUy,gy(z). Let p > 0,n > pandr =n—p
then

r+p
QZ =(r+ p) Urtpgp = Y TUr4p9p

Since g, is QP-supermedian then r — rU,4,g, is increasing as r 1 co. Hence
fp(x) == lim,, g, (z) exists and belongs to F for each p > 0 and x € E. By
and the fact that U is p-basic we get for all 0 < p < ¢

(3) nUngp(z) — nUngq(z) = (g — p) Up(nUpngq)(z), rekl

Letting n — oo in (3)) and using MCT we deduce that (f,) is a U-exit law. In
the other hand

nUngp =T Ur-i—pgp =9p — Gr+p
By letting » — oo we obtain f, = g, y-a.e. O

4. BOCHNER SUBORDINATION AND INTEGRAL REPRESENTATION
4.1. BOCHNER SUBORDINATION

For the following notion we refer the reader to [5, Chap. II-9], [6, Sec. V-3],
[11] and [12].

A Bochner subordinator 5 = (¢)¢>0 is a family of sub-probability measures
on (R4, A) such that that

(1) Bi* Bs = Bsgt for all s,t > 0.
(2) limy_,0 By = dp vaguely.
For each p > 0, we put k,, := [ e7?*fsds and k := kg := sup, kp = [~ B ds.
The associated Bernstein function ¢ is given by the relation L£f;(s) =
exp (—t¢(s)) for each s,t > 0.
Let P be a semigroup on E and 8 be a Bochner subordinator. Then the
subordinate semigroup of P by means of 3 is defined by .
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Let UP be the resolvent of PP then we can write for all p > 0

(4) Wzéwg%m)

A Bochner subordinator is said to be of (K)-type if there exists a completely
monotone function ¥ on |0, co[ such that k = - \.

Let 8 be a subordinator of (K)-type then i) = L(p) for some non-negative
measure p on [0, co[ due to the Bernstein Theorem. According to [12, Proposi-
tion 11], ¢ is integrable at 0 and k,(dt) = v, (t)-dt where 1), is also a completely
monotone and integrable function on ]0, o[, for each p > 0. Therefore v, is
also the Laplace transform of a non-negative measure p, on [0, co[. Following
[12, p. 157], we have p,({0}) = 0 and [;° 1p,(ds) < % for all p > 0. Moreover
from [I1], p. 240], it was affirmed that

1
(5) ;i_% 11 pp(dt) = 172 p(dt) weakly.
We give now the most important subordinator n®, defined by its Bernstein
function ¢ (z) = z® for @ €]0, 1[. It is called the one sided stable subordintor.
Following [0, p. 187] we have k® = ¢* - A = L(p®) - X\ where
a—1 a

Vo(s) = Ty Hoeel(s) and p*(ds) = [ ool ()

Let 8 be a Bochner subordinator of (K)-type, then we have

(6) Lf—/ U, pp(ds),  p>0
0

Since k), T Kk as p — 0 then and @ may be extended to p = 0. We denote
by L? the energy functional associated to UP. In the sequel subordinators are
considered of (K)-type. We denote by H the set of Bochner subordinators
B of (K)-type such that p([0,e]) > 0 for all ¢ > 0. Note that the trivial
subordinator € = (g¢);~0 € H. Also, if p is absolutely continuous with respect
to A then 8 € H, in particular n® € H.

Let f := (fy)p=0 be a U-exit law, we denote by f% := (f,?)p>0 the family
defined by fpﬂ = fooo fs pp(ds). According to [I9, Proposition 4.3], f% is a
p-exit law for UP whenever fy € F.

PROPOSITION 4.1. IfPP is proper then P? is proper. Moreover S(P) C S(P?)
and Exc(P) C Exc(P?).
THEOREM 4.2. Let f = (fp)p>0 be a U-exit law such that fo € F and

fq € L*(p) for some q > 0, then the function h:= [ fs p(ds) is equal p-a.e.
to some PP-excessive function.

Proof. Suppose first that fy € F. According to Proposition 1 is also a
reference measure for U?. Taking into account that f? is a UP-exit law then

ffo = 0, p-a.e. Therefore foﬁ is equal p-a.e. to a PP-excessive function. We
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shall prove that fOB = h, p-a.e.. Making use of the relation U, fpﬁ = Upﬁ fq for
each p,q > 0 together with MCT, we get

5 _ , _ i _ _ [T _
(7) Ugfo = Uy <11)1_r>%f5> —]l)l_rf(l)Uqf;’? = Uﬁfq —/0 Us fq p(ds) = Ugh.

Moreover

1 o0
0 v (e [T

Suppose first that f, € L*(u) for all p > 0. Denote by B the o-field generated
by functions of the form Ul for | € L'(u) and r > 0. The fact that fo, =
0, pu — a.e implies that f, is equal u — a.e to some QP-excessive function.
Without loss of generality we can suppose that f, is QP-excessive so f, is B-
measurable for each p > 0. The continuity of the mapping p — f,(z) on [0, 00|
yields the A® B-measurability of (p, z) = f,(x). In view of the boundedness of
measures (1 + s)~1p(ds) and (1 + s)~!p,(ds), we affirm by Tonelli’s Theorem
that h and f(’? are B-measurable. From [8, XII 57], and we claim

that limg qufOﬁ = f(?, p—a.e. and limgy_,oc qUyh = h, p-a.e. Consequently

fg = h, u— a.e due to .

Now suppose that there exists ¢ > 0 such that f, € L!(u) then (f{)p>0 is a
U¥-exit law included in L!(n) and fI = f, < oo, p-a.e.. According to the first
case we have p-a.e.:

0 supp [ ([T s10a9) pytan = [ ot
p>0 0 0 0
Using Fubini’s Theorem, Lemma @D and MCT we get u-a.e.

sup pU,) / fs p(ds) = supp / Uy fs p(ds) pp(dr)
p>0 0 p>0 0

p(ds) < 00, p-a.e.

= supsup p / Urtq fstqp(ds) pp(dr)
p>0 ¢>0 0

= supsup p / U} / [ p(ds) pp(dr)
q>0 p>0 0 0

— sup /0 " 19 p(ds) = /0 " foplds)

q>0

4.2. INTEGRAL REPRESENTATION

Consider two semigroups P and P in duality with respect to u. Suppose,
until the end of this section that P and P verify the following condition (C):

(1) P and P are proper and satisfy the principle uniqueness of charges.
(2) The cones S(P) and S(P) are inf-stable and generates £.
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REMARK 4.3. We cite two situations when the condition (C) is satisfied:
(1) E is locally compact space with countable base and P together with
P are proper strong feller semigroups on E. In this case excessive
functions are lower-semi-continuous functions. The properness of P
and P implies that £ is generated by S(P) and S (]?D) as well.
(2) P and P are associated to transient right Markov processes. This sit-
uation will be focused later.

The idea of the proof of the following proposition is adapted from the proofs
of [17, Proposition 11 and Theorem 12].

PROPOSITION 4.4. Let A be a UP-purely excessive measure such that LP(A,
v) < oo for some U-excessive function v > 0. Then there exists a unique
U-entrance law (mp) such that A = [ m, p(ds).

Proof. According to [I7, Theorem 6 and Remark 13] there exists a unique
U-purely excessive measure [ such that L?(A,v) = L(l,v). Let m, := [—1(qU,)
for ¢ > 0, then (my) is a U-entrance law and mg := limg,_,omg = [. From [17,
Theorem 6] again, we have LA(ApU,,v) = L(IpUp,,v). By reason of [8, XII
39.1] and the entrance law equation we have

1
L’B(mpUB,v) =mp(v) = L(mpU,v) = L(mo Up,v) = —L(IlpUp,v) =
p

1
= ];LB (ApU,,v) = LP (AU, v)

Hence, by [17, Proposition 9], we conclude that
(10) mpUP = AU,
Using the resolvent equation again and , we get for each 0 < p < ¢
(myp —my) U’ = A Up—AU; = (¢ —p) AUU, = (¢ — p)mpUﬁUq =
= (¢ — p)mpU, U’
Following [I5, Theorem 1], P? satisfies also (UC) and consequently (m,) is

a U-entrance law. Using we get AUP = Jo~ ms p(ds) UP. Put T =
Jo~ ms p(ds). Then for each h € S(P) we obtain

A(h) = LP(AUP h) = LP(Y U, h) = T(h)

So A = Y. For the uniqueness, suppose that there exists some U-entrance law
(myp) such that A = [° m,p(ds), p-a.e. Then we get m,UP = AU, = m,U”
for each p > 0 and the proof is achieved by using (UC). O

LEMMA 4.5. Let ¢ be the Bernstein function associated to 3, then id/¢ is
a Bernstein function and

(11) U=U"U"

where B is the Bochner subordinator associated to id/¢.
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Proof. The fact that 1/¢ = L(k) = L(Lp) yields 1/¢ is a Stieltjes function
(see [21, Definition 2.1]). According to |21l Proposition 7.1 and Theorem 7.3],
id/¢ is also a Bernstein function. We have

1 11
LN =—==-—==L(Kk*xL(RK)=L(k*R)
id ¢ %l

where Kk = fooo ES ds. Thus k * kK = A and consequently

U:/ Psds:/ / PS+Tm(ds)%(dr):/ PUP k(ds) = UP UP.
0 0 0 0
O

THEOREM 4.6. Suppose that f € H. Then for each h € S(PP), there exists
a unique U-ezit law (fy) such that h = [J° fs p(ds), p-a.e.

Proof. The fact that Pis proper yields the existence of a positive function
I such that Ul is bounded. Since h - I E Exc(@g ) and P8 is proper, then there
exists a sequence of bounded measures (v,) C M such that I/nfj B4 h-p, due
to Hunt’s approximation Theorem [8, XII 38]. Let LP be the energy functional
of PB. By virtue of [8, XII 39.1], we have for each n € N

L2 (v, UP,U1) = /ﬁz dv, < 0o
According to Proposition there exists a U-entrance law (Mg )p>0 such that
[e.9]
(12) v UP = / my p(ds), neN
0

From we have Vnﬁﬁ (/jp = fhg Us , which implies that the sequence
(T Ue ) 1s increasing for each p > 0. By reason of [8 XII 17], the properness

of P leads to the existence of a sequence (pg)r C p€ such that U o T h for
every h € S(U). Let ny,ne € N such that n; < ng, by using we obtain

mp Upr, = mp UP(UP ) < mi2UP (U gr) = mp? Uy
letting k — oo and using MCT we get (h) < My (h), which affirm that
(ﬁlg)n is increasing for each p > 0. Consequently m, = lim, . M, is a

positive measure on E. Letting n — oo in and applying MCT again we
obtain

(13) hop= /Ooo ms p(ds)

From we deduce that (m,) C M and we can show easily that (m,) is a U-
entrance law. Let A € € such that p(A) = 0 then [;° m4(A) p(ds) = 0 due to
(13]). For each s > 0, since p([0, s[) > 0, then there exists 0 < r < s such that
my(A) = 0 and consequently ms(A) = 0 because ¢ — my(A) is decreasing.
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Therefore there exists a measurable function gy such that mgs = g5 - u for each
s > 0, by reason of Radon-Nikodym Theorem. According to Lemma (9p)
is a p-exit law for U and from Lemma [3.3] the integral representation of h
holds for some U-exit law (f,). Now, let us prove the uniqueness. Suppose

that there exists some U-exit law f such that h = fo fs p(ds) p-a.e., then we
have for all p > 0

(14) Uﬁfp:/O Usfpp(ds) = / fs p(ds) / fep(ds) =UPf,,

for all p > 0. Since h is supermedian for U? and pp # 0, then there exists
r > 0 such that U,h < oo and so Uph < oo for all p > r. The duality property
together with yields

(fp WU =W L) n=UPF) u=(f, WU?,  p>r

It follows that f;, = fp, p-a.e. for all p > r, because UP f,, = Uyh < oo and Ps
satisfies (UC). By using we get for p < r

fo=Tr = =p)Upfr = (r = 0)Upfr = foy = fr
which implies E, = fp for all p > 0. O

COROLLARY 4.7. Suppose that 3 € H. Then for each UP-exit law (g,) sat-

isfying go € F, there exists a unique U-exit law (fp) such that g, = fpﬁ, [-a.e.
for each p > 0.

Proof. We know that there exists h € S(P?) such that go = h,p-a.ec..
From Theorem there exists a unique U-exit law (f,) such that gy =
fooo fs p(ds), p-a.e.. Using and @ we obtain for each p > 0

o0 1
U gy =Uygo = /0 Usfy p(ds) =U"f) < 90

which implies (gj, - U8 = ( ff - u)UP € M. The result is a consequence from
(UC). O

5. APPLICATION

Let X = (Q,F, Ft, (Xt), (©r),P*) be a right Markov process with state
space (E,&) (see [2, p. 306-307]). The associated semigroup P := (P;)s>0 is
given by

Pf(x) = E*(f(X)), t>0,2€E, fepE
If P is proper then X is called transient. It is known that h is QP-excessive if
and only if the process (e P*h(X;)) is a right continuous (F;)-supermartingale
with respect to P? for all x € E (for more details we refer the reader to [4]
Appendix p. 418-419 ]).

An additive functional (A;) for X is an increasing right continuous pro-
cess, (Fi)-adapted, satisfying Ag = 0 and for all s,t > 0: Agyy = A+ Ago
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O,, PT-ae.. Weput e,(A)(x) := E*[ [} exp(—pt) dA;]. According to [8, XV
29], the family (e,(A)) is a U-exit law when it is included in F.

Let 8 be a subordinator of (K)-type and let Y be the right Markov process
whose semigroup is P?. The process Y is called the subordinate of X by
means of 3. Now, let (A;) be an additive functional of X. It follows from
Theorem [£.2] that the function h defined by

(15)
hz) = B2 ( ARG dAt) _ R ( [ ot dAt) = [ e pias)

is equal p-a.e. to a PP-excessive function whenever E¥(AL,) < oo, p-a.e. and
eq(A) € L (p) for some g > 0.

In the next Theorem we will prove the converse Whilg\ supposing that X =
(L, F, Fr, (X1), (©),P7) and X = (O, F, Fi, (Xy), (©,), P¥) are two right tran-
sient Markov processes on (F, &) and their associated semigroups are in dual-
ity with respect to p. According to [2, Proposition 1.8.2], P and P satisfy the
condition (C).

THEOREM 5.1. If B € H, then for each h € S(PP), there exists an additive
functional (A;) for X such that

(16) h(z) =E* </ P(t) dAt> ,  j-a.e.
0
The uniqueness holds whenever X 1is continuous.

Proof. By Theorem we have h = [° fs p(ds) for some U-exit law (fp).
The fact that f, is equal p-a.e. to some QP-excessive function and based on
[8, XV 7-b)], there exists an additive functional (A;) for X and a QP-excessive
function ¢, such that (e P"¢,(X;)) is a local martingale and

(17) fp=ep(A)+4,, p-ae., p>0

It is clear that (e,(A)) is a U-exit law. In the other hand, the random vari-
able T,, := inf{s > 0 : {,(X;) > n} is a stopping time for each n € N,
because the mapping s — e P%(,(X;) is right continuous p-a.e.. Let (S,) be
a sequence of stopping times such that (e '4,(X¢ns,)) is a martingale then
(e P4, (Xtns, AT, )) 1s also a martingale, for the reason that 7T), T co. Taking
into account that

e P Uy An)(Xs,nTont) = € PUp(X s, AT AL)

for all n € N and ¢ > 0, then (e P/(¢, An)(X})) is a bounded locale martingale
and therefore it is a martingale. Hence £, A n is QP-invariant, meaning that
qUgtp(lp AN ) = £, An for each ¢ > 0. By letting n — oo and applying
MCT we get qUgiplp = £p. From we affirm that (£,) is also a U-exit
law, therefore, for every p > 0, £, = limy—0 qUqg4plp = limgy—0(¢p — lprq) = 0.
Consequently f, = e,(A), p-a.e., and from we get . To prove the
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uniqueness, suppose that there exists some additive functional (B;) for X
such that h(z) = E*( [~ ¥ (t) dB;), p-a.e.. Then we obtain

(18) h = /000 es(A) p(ds) = /000 es(B)p(ds), p-a.e.

Since 8 € H, it follows from that e,(B) € F for each p > 0, and so (e,(B))
is a U-exit law. According to the uniqueness in Theorem we affirm that
ep(A) = ep(B), p-a.e. for all p > 0. Consequently E*(A;) = E*(By), p-a.e.
Thanks to [7, p. 159], we get Ay = By due to the above and the continuity of
X. O

COROLLARY 5.2. For each h € S(PP), there exists an additive functional
(Ay) for X such that h(x) = E*(Ax), p-a.e.. The uniqueness holds whenever
X is continuous.

COROLLARY 5.3. Let a €]0,1[ and h € S(P""). Then there exists some
additive functional (Ay) such that

h(z) = F(la)JEx (/Ooo et dAt> ., p-a.e.

If X is continuous, the uniqueness holds.

EXAMPLE 5.4. Let X be a Brownian motion on R? and let Y be the subor-
dinate of X by means of . For a bounded domain D C R?, the process Y7
is obtained by killing Y upon leaving D. The process Z is defined as the result
of first killing X upon leaving D, and then subordinating the killed Brownian
motion X using n®.

Let h be a quasimartingale function for Y”. According to [3, Corollary 3.7],
h is also a quasimartingale function for Z. Furthermore, by [3, Corollary 2.7],
there exist two excessive functions hq, ho for the semigroup of Z, such that
h = hy — ha. Using Theorem [.6] h can be represented in terms of two exit
laws f and g for the resolvent of XP7:

1 o0 N
= F(a)F(l—a)/O (fs - gs)s dsv p-a.e.

Morover, Theorem guarantees the existence of two additive functionals A
and B for X P such that:

— 1 x OO a—1 _ > a—1
h(x)—r(a)E {/0 s d A /0 s st], p-a.e.
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