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SOME RESEARCH DIRECTIONS IN FIBRE CONTRACTION
THEORY AND ITS APPLICATIONS
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Abstract. In this paper, we will discuss the fixed point theory of triangular op-
erators in the setting of generalized metric spaces and for contraction type oper-
ators. Global asymptotic stability of the fixed point, well-posedness of the fixed
point problem, Ulam-Hyers stability and Ostrowski property are investigated.
Some applications of the basic fibre contraction principles are also considered.

MSC 2020. 47H10, 54H25, 47H09, 45N05, 34K28.

Key words. Triangular operator, fibre contraction, weakly Picard operator,
generalized metric space, generalized contraction, well-posedness, Ostrowki prop-
erty, Ulam-Hyers stability, functional integral equation.

1. INTRODUCTION

In this paper, we will present the fixed point theory of triangular op-
erators in the setting of generalized metric spaces and for contraction type
operators. Global asymptotic stability of the fixed point, well-posedness and
Ulam-Hyers stability of the fixed point problem, as well as the Ostrowski
stability property are investigated. Some applications of the basic fibre con-
traction principles are also considered. Throughout this paper we follow the
notation and terminology in [8]. See also [57, 46, 40].

2. FIBRE CONTRACTION PRINCIPLE

The starting result in fibre contraction theory is the following one, see ([17]).

Theorem 2.1 (Hirsch-Pigh (1970)). Let (X1, d1) be a metric space and
T1 : X1 → X1 be an operator having an attractive fixed point x∗1 ∈ X1. Let
(X2, d2) be a complete metric space and T2 : X1 × X2 → X2 be an operator
such that:

(i) There exists l ∈]0, 1[ such that T2(x1, ·) : X2 → X2 is an l-contraction,
∀ x1 ∈ X1.

(ii) The triangle operator, T : X1 ×X2 → X1 ×X2,

T (x1, x2) := (T1(x1), T2(x1, x2))
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is continuous.

Let x∗2 be the fixed point of T2(x
∗
1, ·). Then (x∗1, x

∗
2) is an attractive fixed

point of T .

Proof. The proof is a standard one in the successive approximations theory.
Let (x1,0, x2,0) ∈ X1 ×X2 and (x1,n+1, x2,n+1) = T (x1,n, x2,n), n ∈ N, i.e.,

x1,n+1 = T1(x1,n) and x2,n+1 = T2(x1,n, x2,n), n ∈ N. By the contraction
principle, it is clear that x1,n → x∗1 as n→ ∞.

Now, let for all n ∈ N∗

d2(x2,n+1, x
∗
2) = d2(T2(x1,n, x2,n), T2(x

∗
1, x

∗
2))

≤ d2(T2(x1,n, x2,n), T2(x1,n, x
∗
2)) + d2(T2(x1,n, x

∗
2), T2(x

∗
1, x2∗))

≤ ld2(x2,n, x
∗
2) + d2(T2(x)1, n, x

∗
2), T2(x

∗
1, x

∗
2) ≤ . . .

≤ ln+1d2(x2,0, x
∗
2) + lnd2(T2(x1,0, x

∗
2), T2(x

∗
1, x

∗
2)) + . . .

+ ld2(T2(x1,n−1, x
∗
2), T2(x

∗
1, x

∗
2)) + d2(T2(x1,n, x

∗
2), T2(x

∗
1, x

∗
2)).

By a well-known Cauchy lemma (see e.g. [49]) we have x2,n → x∗2, n→ ∞. □

Remark 2.2. In the terminology of [8], Theorem 2.1 takes the following
form:

Theorem I. Let (Xi, di), i = 1, 2, be two metric spaces and T = (T1, T2) a
triangular operator. We suppose that:

(i) (X2, d2) is a complete metric space;
(ii) the operator T1 : X1 → X1 is a Picard operator;
(iii) T2(x1, ·) : X2 → X2 is an l-contraction, ∀ x1 ∈ X1.
(iv) The triangle operator, T : X1 ×X2 → X1 ×X2,

T (x1, x2) := (T1(x1), T2(x1, x2))

is continuous.

Then the operator T is a Picard operator.

In connection with this result we present the following questions:

Problem 2.3. Extend Theorem I to the case of contraction type ([8]) con-
ditions (see also [36, 46, 57, 1, 21]).

Commentaries:
Other extensions of the Theorem I can be obtained by replacing condition

(iii) by one of the following conditions:
(1) φ-contraction (see [54, 57])
(iii′) T2(x1, ·) : X2 → X2 is a φ-contraction, ∀ x1 ∈ X1.

(2) Kannan condition
(iii′′) T2(x1, ·) : X2 → X2 is a Kannan operator, ∀ x1 ∈ X1, i.e. there exist

0 < l <
1

2
such that

d2(T2(x1, x2), T2(x1, x̃2)) ≤ l[d2(T2(x1, x2), x2) + d2(T2(x1, x̃2), x̃2)],
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∀ x1 ∈ X1, x2, x̃2 ∈ X2.
Related to the Kannan condition we have the following result.

Theorem 2.4. Let (Xi, di), i = 1, 2, be two metric spaces and T = (T1, T2)
a triangular operator. We suppose that:

(i) (X2, d2) is a complete metric space;
(ii) the operator T1 : X1 → X1 is a Picard operator;

(iii′′′) there exist L > 0 and 0 < l <
1

2
such that

d2(T2(x1, x2), T2(x̃1, x̃2)) ≤ Ld1(x1, x̃1)+l[d2(T2(x1, x2), x2)+d2(T2(x̃1, x̃2), x̃2)],

∀ (x1, x2), (x̃1, x̃2) ∈ X1 ×X2;

Then the operator T is a Picard operator.

Proof. Let (x1,0, x2,0) ∈ X1×X2 and (x1,n+1, x2,n+1) = T (x1,n, x2,n), n ∈ N,
i.e., x1,n+1 = T1(x1,n) and x2,n+1 = T2(x1,n, x2,n), n ∈ N.
T1 is a Picard operator, so FT1 = {x∗1} and x1,n → x∗1 as n → ∞. From

(3”’) we have that T2(x1, ·) : X2 → X2 satisfies (3′ ) for all x1 ∈ X1 and
from Kannan theorem we have that T2(x1, ·) has an unique fixed point for all
x1 ∈ X1. Let FT2(x∗

1,·)
= {x∗2}. We prove that x2,n → x∗2 as n → ∞. We have

that:

d2(x2,n+1, x
∗
2) = d2(T2(x1,n, x2,n), T2(x

∗
1, x

∗
2)) ≤

≤ Ld1(x1,n, x
∗
1) + ld2(T2(x1,n, x2,n), x2,n)

≤ Ld1(x
n
1 , x

∗
1) + ld2(x2,n+1, x

∗
2) + ld(x2,n, x

∗
2).

This implies that

d2(x2,n+1, x
∗
2)

≤ L

1− l
d1(x1,n, x

∗
1) +

l

1− l
d(x2,n, x

∗
2)

≤ L

1− l
d1(x1,n, x

∗
1) +

l

1− l

[
L

1− l
d1(x1,n−1, x

∗
1) +

l

1− l
d(x2,n−1, x

∗
2)

]
≤ L

1− l
d1(x1,n, x

∗
1) +

l

1− l
· L

1− l
d1(x1,n−1, x

∗
1) + . . .

+

(
l

1− l

)n L

1− l
d1(x1,0, x

∗
1) +

(
l

1− l

)n+1

d2(x2,0, x
∗
2) → 0

as n→ ∞, as in Theorem 2.1, by the Cauchy lemma. □

For other results in terms of admissible perturbation of an operator see:
[55].

Problem 2.5. Extend Theorem 2.1 to the case of generalized metric spaces
(see [12, 30, 34, 46, 23, 15, 18, 42, 1, 21, 61]).
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Commentaries:
(1) The case of Rp

+-metric spaces
If (X, d) is a generalized metric space in the sense that the metric takes

vector values (i.e., d : X ×X → Rp
+), we can use the notion of Perov contrac-

tion. More precisely, an operator T : X → X is called a Q-contraction if there
exists a matrix Q ∈Mpp (R+) such that Q is a matrix convergent to zero (i.e.,

Qk converges to the zero matrix as k → +∞) and

d(T (x), T (y)) ≤ Qd(x, y), ∀x, y ∈ X.

Theorem 2.6 (I.A. Rus (1999) [36]). Let (X1, d1) be a metric space and
(X2, d2) be a generalized metric space. Let T = (T1, T2) be a triangular oper-
ator. We suppose that:

(i) (X2, d2) is a complete generalized metric space;
(ii) the operator T1 : X1 → X1 is a Picard operator;
(iii) T2(x1, ·) : X2 → X2 is an Q-contraction, ∀ x1 ∈ X1.
(iv) The triangle operator, T : X1 ×X2 → X1 ×X2, T (x1, x2) := (T1(x1),

T2(x1, x2)) is continuous.

Then the operator T is a Picard operator.

(2) The case of dislocated metric spaces (see [23, 15, 12])
Let X be a nonempty set. Then d : X ×X → R+ is a dislocated metric on

X if the following axioms hold:

(i) d (x, y) = d (y, x) = 0 =⇒ x = y;
(ii) d (x, y) = d (y, x) for all x, y ∈ X;
(iii) d (x, y) ≤ d (x, z) + d (z, y).

Problem 2.7. Extend Theorem 2.1 to the case when (X2, d2) is a complete
dislocated metric space and T2(x1, ·) : X2 → X2 is an l-contraction, ∀ x1 ∈ X1.

Problem 2.8. Extend Theorem 2.1 to the case of generalized metric spaces
and contraction type conditions.

Commentaries:
(1) The Kannan type condition and the framework of a Rp

+-metric space
To study the above problem under the assumptions that (X2, d2) is a com-

plete generalized metric space with d2 : X2×X2 → Rp
+ and T2(x1, ·) : X2 → X2

is a Q-Kannan operator, ∀ x1 ∈ X1, i.e. there exists a matrix Q ∈ Mpp (R+)

with (I −Q)−1Q a matrix convergent to zero, such that:

d2(T2(x1, x2), T2(x1, x̃2)) ≤ Q[d2(T2(x1, x2), x2) + d2(T2(x1, x̃2), x̃2)],

∀ x1 ∈ X1, x2, x̃2 ∈ X2.
(2) The Φ-contraction condition and the framework of a Rp

+ metric space
To study the above problem if (X2, d2) is a complete generalized metric

space with d2 : X2 ×X2 → Rp
+ and T2(x1, ·) : X2 → X2 is an Φ-contraction,

∀ x1 ∈ X1, i.e.:

d2(T2(x1, x2), T2(x1, x̃2)) ≤ Φ (d2(x2, x̃2)) ,
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∀ x1 ∈ X1, x2, x̃2 ∈ X2, where Φ : Rp
+ → Rp

+ such that:

(i) Φ is increasing;
(ii) Φn (t) → 0 as n→ +∞, ∀t ∈ Rp

+.

3. SATURATED FIBRE CONTRACTION PRINCIPLE

Following the Saturated Contraction Principle from [44] we can give the
corresponding Saturated Fibre Contraction Principle:

Theorem 3.1 (Şerban (2017), [56]). Let (X1, d1) be a metric space, (X2, d2)
a complete metric space and T = (T1, T2) : X1 ×X2 → X1 ×X2 a triangular
operator. We suppose that:

(i) T1 : X1 → X1 is a Picard operator (FT1 = {x∗1});
(ii) T2(x1, ·) : X2 → X2 is an l-contraction, for all x1 ∈ X1;
(iii) T2(·, x2) : X1 → X2 is L-Lipschitz, for all x2 ∈ X2.

Then:

(a) T is a Picard operator;
(b) FT = FTn = {(x∗1, x∗2)}, where {x∗2} = FT2(x∗

1,·).

If in addition, T1 is ψ1-Picard operator, then:

(c1) T is ψ-Picard operator in (X1 × Y2, d∞), where

ψ(t) = max

{
ψ1(t),

1

1− l
[t+ Lψ1(t)]

}
, t ∈ R+,

d∞ ((x1, x2) , (x̃1, x̃2)) = max {d1 (x1, x̃1) , d2 (x2, x̃2)} ;

(c2) the fixed point problem for T is well-posed;
(c3) the fixed point equation for T is generalized Ulam-Hyers stable.

If in addition T1 is an α-quasicontraction then:

(d1) T is an lT -quasicontraction in (X1 × Y2, ρ∞), where

ρ∞ ((x1, x2) , (x̃1, x̃2)) = max {r · d1 (x1, x̃1) , d2 (x2, x̃2)} ,

with r > L
1−l and

lT = max

{
α,
L

r
+ l

}
.

(d2) T has the Ostrowski property.

Proof. The proof of (a) and (b) is the same as in Theorem 2.1.
(c1) Let (x1, x2) ∈ X1 ×X2. If T1 is ψ1-Picard operator, then

d1 (x1, x
∗
1) ≤ ψ1 (d1 (x1, T1 (x1))) , ∀x1 ∈ X1,
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where ψ1 : R+ → R+ is increasing, continuous at 0 with ψ1(0) = 0. We know
that FT = {(x∗1, x∗2)}, where {x∗2} = FT2(x∗

1,·), then we have:

d2 (x2, x
∗
2)

≤ d2 (x2, T2 (x1, x2)) + d2 (T2 (x1, x2) , T2 (x
∗
1, x2))

+d2 (T2 (x
∗
1, x2) , T2 (x

∗
1, x

∗
2))

≤ d2 (x2, T2 (x1, x2)) + Ld1 (x1, x
∗
1) + ld2 (x2, x

∗
2) ,

so

d2 (x2, x
∗
2) ≤ 1

1− l
[d2 (x2, T2 (x1, x2)) + Ld1 (x1, x

∗
1)]

≤ 1

1− l
[d2 (x2, T2 (x1, x2)) + Lψ1 (d1 (x1, T1 (x1)))] .

This implies that

d∞ ((x1, x2) , (x
∗
1, x

∗
2)) ≤ max

{
ψ1 (d1 (x1, T1 (x1))) ,

1
1−L [d2 (x2, T2 (x1, x2)) + Lψ1 (d1 (x1, T1 (x1)))]

}
≤ ψ (d∞ ((x1, x2) , T (x1, x2))) ,

where ψ : R+ → R+

ψ (t) = max

{
ψ1 (t) ,

1

1− l
[t+ Lψ1 (t)]

}
.

It is easy to check that ψ : R+ → R+ is increasing, continuous at 0 with
ψ(0) = 0.

(c2) Let ((x1,n, x2,n))n∈N ⊂ X1×X2 such that d∞ ((x1,n, x2,n), T (x1,n, x2,n))
→ 0 as n→ +∞. Then, we have:

d∞ ((x1,n, x2,n), (x
∗
1, x

∗
2)) ≤ ψ (d∞ ((x1,n, x2,n), T (x1,n, x2,n))) → 0 as n→ ∞.

(c3) Let ε > 0 and (y∗1, y
∗
2) ∈ X1 ×X2 be a solution of the inequation

d∞ ((y1, y2) , T (y1, y2)) ≤ ε.

Since T is ψ-Picard operator, then

d∞ ((y∗1, y
∗
2) , (x

∗
1, x

∗
2)) ≤ ψ (d∞ ((y∗1, y

∗
2) , T (y∗1, y

∗
2))) ≤ ψ (ε) ,

so the fixed point equation for T is generalized Ulam-Hyers stable.
(d1) Let (x1, x2) ∈ X1 × X2 and r > L

1−l . If T1 is an α-quasicontraction
then

r · d1 (T1 (x) , x∗1) ≤ α · r · d1 (x1, x∗1) ≤
≤ α · ρ∞ ((x1, x2) , (x

∗
1, x

∗
2)) .

r > L
1−α ⇐⇒ L

r + α < 1 and from (iii) and (iv) we have

d2 (T2 (x1, x2) , x
∗
2) ≤ L

r
· r · d1 (x1, x∗1) + l · d2 (x2, x∗2) ≤

≤
(
L

r
+ l

)
ρ∞ ((x1, x2) , (x

∗
1, x

∗
2)) ,
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therefore

ρ∞ (T (x1, x2) , (x
∗
1, x

∗
2)) = max {r · d1 (T1 (x) , x∗1) , d2 (T2 (x1, x2) , x∗2)} ≤

≤ max

{
α,
L

r
+ l

}
· ρ∞ ((x, y) , (x∗, y∗)) ,

for all (x1, x2) ∈ X1×X2, so T is an lT -quasicontraction in (X1 × Y2, ρ∞) with
lT = max

{
α, Lr + l

}
.

(d2) Let ((x1,n, x2,n))n∈N ⊂ X1 ×X2 such that ρ∞((x1,n+1, x2,n+1), T (x1,n,
x2,n)) → 0 as n→ +∞. Then, we have:

ρ∞ ((x1,n+1, x2,n+1), (x
∗
1, x

∗
2)) ≤

≤ ρ∞ ((x1,n+1, x2,n+1), T (x1,n, x2,n)) + ρ∞ (T (x1,n, x2,n), (x
∗
1, x

∗
2)) ≤

≤ ρ∞ ((x1,n+1, x2,n+1), T (x1,n, x2,n)) + lTρ∞ ((x1,n+1, x2,n+1), (x
∗
1, x

∗
2)) ≤ . . .

≤
n∑

j=0
ljT · ρ∞ ((x1,n+1−j , x2,n+1−j), T (x1,n−j , x2,n−j))

+lnT · ρ∞ ((x1,0, x2,0), (x
∗
1, x

∗
2)) .

From Cauchy Lemma we get

ρ∞ ((x1,n+1, x2,n+1), (x
∗
1, x

∗
2)) → 0 as n→ +∞,

so T has the Ostrowski property. □

As in the case of Theorem 2.1, the following questions emerge from Theorem
3.1:

Problem 3.2. Extend Theorem 3.1 to the case of contraction type condi-
tions.

Problem 3.3. Extend Theorem 3.1 to the case of generalized metric spaces.

Problem 3.4. Extend Theorem 3.1 to the case of generalized metric spaces
and contraction type conditions.

Commentaries:
(1) The Kannan condition and the context of a Rp

+-metric space
To study the above problem if (X2, d2) is a complete generalized metric space

with d2 : X2 ×X2 → Rp
+ and T2(x1, ·) : X2 → X2 is an Q-Kannan operator,

∀ x1 ∈ X1, i.e. there exists a matrix Q ∈ Mpp (R+) with (I −Q)−1 · Q a
matrix convergent to zero, such that:

d2(T2(x1, x2), T2(x1, x̃2)) ≤ Q[d2(T2(x1, x2), x2) + d2(T2(x1, x̃2), x̃2)],

∀ x1 ∈ X1, x2, x̃2 ∈ X2.
(2) The Φ-contraction condition and the context of a Rp

+ metric space
To study the above problem if (X2, d2) is a complete generalized metric

space with d2 : X2 ×X2 → Rp
+ and T2(x1, ·) : X2 → X2 is an Φ-contraction,

∀ x1 ∈ X1, i.e.:

d2(T2(x1, x2), T2(x1, x̃2)) ≤ Φ (d2(x2, x̃2)) ,

∀ x1 ∈ X1, x2, x̃2 ∈ X2, where Φ : Rp
+ → Rp

+ such that:
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(i) Φ is increasing;
(ii) Φn (t) → 0 as n→ +∞, ∀t ∈ Rp

+.

4. HYBRID FIBRE CONTRACTION PRINCIPLE

Another basic fibre contraction principle is the following theorem (see [37,
40]).

Theorem 4.1 (Rus (1999, 2003)). Let (X1,
F−→) be an L-space, (X2, d2) a

complete metric space and T = (T1, T2) : X1 × X2 → X1 × X2 a triangular
operator. We suppose that:

(i) T1 : X1 → X1 is weakly Picard operator;
(ii) T2(x1, ·) : X2 → X2 is an l-contraction;
(iii) if (x∗1, x

∗
2) ∈ FT , then T2(·, x∗2) is continuous in x∗1.

Then the operator T is a weakly Picard operator. If T1 is Picard operator,
then T is a Picard operator.

The proof is similar with the proof of Theorem 2.1.
In the case of the above result we have the following questions:

Problem 4.2. Extend Theorem 4.1 to the case of contraction type condi-
tions.

Problem 4.3. Extend Theorem 4.1 to the case of generalized metric spaces.

Problem 4.4. Extend Theorem 4.1 to the case of generalized metric spaces
and contraction type conditions.

As starting references for these problems see: [46, 57, 53, 49, 2, 3, 12, 36,
38, 39, 40, 47, 8] etc.

5. FIBRE CONTRACTION PRINCIPLE ON A SUBSET OF THE CARTESIAN

PRODUCT

Let (Xi, di), i = 1, 2, be two metric spaces, U ⊂ X1 × X2 be a nonempty
subset such that

Ux1 := {x2 ∈ X2 | (x1, x2) ∈ U} ≠ ∅, ∀ x1 ∈ X1.

For the operators T1 : X1 → X1, T2 : U → X2, we consider the operator
defined by

T (x1, x2) := (T1(x1), T2(x1, x2)).

We have the following result ([35]):

Theorem 5.1 (Petruşel-Rus-Şerban (2021)). We suppose that:

(i) (X2, d2) is a complete metric space and U is a closed subset of X1×X2;
(ii) T (U) ⊂ U ;
(iii) T1 is weakly Picard operator;
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(iv) there exist L > 0 and 0 < l < 1 such that:

d2(T2(x1, x2), T2(x̃1, x̃2)) ≤ Ld1(x1, x̃1) + ld2(x2, x̃2),

for all (x1, x2), (x̃1, x̃2) ∈ U .

Then T is a weakly Picard operator. If T1 is a Picard operator, then T is a
Picard operator too.

Problem 5.2. Give a saturated variant of Theorem 5.1 (see [8, 35]).

6. TRIANGULAR OPERATOR ON
m∏
i=1

m∏
i=1

m∏
i=1

XXXiii

Let X =
m∏
i=1

Xi. We consider the operators Tj : X1 × . . . × Xj → Xj ,

j = 1, 2, . . . ,m, and

T : X → X
T (x1, . . . , xm) = (T1 (x1) , T2 (x1, x2) , . . . , Tm (x1, . . . , xm))

Theorem 6.1 (Rus (1999), [37]). Suppose that:

(i) (X1,
F−→) be an L-space;

(ii) T1 : X1 → X1 is weakly Picard operator;
(iii) (Xj , dj) is a complete metric space, j = 2, . . . ,m;
(iv) Tj (x1, . . . , xj−1, ·) : Xj → Xj is lj−contraction, j = 2, . . . ,m;

(v) If (x∗1, . . . , x
∗
m) ∈ FT , then Tj

(
·, . . . , ·, x∗j

)
is continuous in (x∗1, . . . ,

x∗j−1), j = 2, . . . ,m.

Then T is weakly Picard operato. Moreover, if T1 is Picard operator, then
T is Picard operator.

Proof. The proof can be obtained by induction using Theorem 5.1. □

Theorem 6.2 (Şerban (1999), [54]). Suppose that:

(i) (X1,
F−→) be an L-space;

(ii) T1 : X1 → X1 is weakly Picard operator;
(iii) (Xj , dj) is a complete metric space, j = 2, . . . ,m;
(iv) Tj (x1, . . . , xj−1, ·) : Xj → Xj is φj-contraction, where φj is a subad-

ditive strong comparison function, j = 2, . . . ,m;
(v) If (x∗1, . . . , x

∗
m) ∈ FT , then Tj

(
·, . . . , ·, x∗j

)
is continuous in (x∗1, . . . ,

x∗j−1), j = 2, . . . ,m.

Then T is weakly Picard operator. Moreover, if T1 is Picard operator, then
T is Picard operator.
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7. APPLICATIONS OF FIBRE CONTRACTION PRINCIPLES

7.1 EXISTENCE OF SOLUTIONS

In what follow we apply saturated fibre contraction principle to study the
following system of integral equations:

(1)


x (t) =

t∫
a
K (t, s, x (s)) ds+ k (t) , t ∈ [a, b]

y (t) =
b∫
a
H (t, s, x (s) , y (s)) ds+ h (t) , t ∈ [a, b]

We consider X1 = (C [a, b] , ∥·∥τ ) and X2 = (C [a, b] , ∥·∥∞) where

∥x∥τ = max
t∈[a,b]

(∣∣∣x (t) · e−τ(t−a)
∣∣∣) , τ > 0,

∥y∥∞ = max
t∈[a,b]

(|y (t)|) .

From (1) we define the triangular operator T = (T1, T2) : X1×X2 → X1×X2,
where T1 : X1 → X1

T1 (x) (t) =

t∫
a

K (t, s, x (s)) ds+ k (t) ,

and T2 : X1 ×X2 → X2

T2 (x, y) (t) =

b∫
a

H (t, s, x (s) , y (s)) ds+ h (t) .

We have:

Theorem 7.1. We suppose that:

(i) K ∈ C ([a, b]× [a, b]× R), H ∈ C
(
[a, b]× [a, b]× R2

)
, k, h ∈ C[a, b];

(ii) there exists LK > 0 such that

|K (t, s, u1)−K (t, s, u2)| ≤ LK · |u1 − u2|

for all t, s ∈ [a, b] and u1, u2 ∈ R;
(iii) there exists lH , LH > 0 such that

|H (t, s, u1, v1)−H (t, s, u2, v2)| ≤ lH · |u1 − u2|+ LH · |v1 − v2| ,

for all t, s ∈ [a, b] and u1, u2, v1, v2 ∈ R;
(iv) LH (b− a) < 1.

Then:

(a) the system (1) has an unique solution (x∗, y∗) ∈ X1 ×X2 .
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(b) the sequence (xn, yn) given by

xn+1 = T1 (xn)

yn+1 = T2 (xn, yn)

with (x0, y0) ∈ X1×X2, converges uniformly to (x∗, y∗) for all (x0, y0)
∈ X1 ×X2;

(c) we have:∥x0 − x∗∥τ ≤ 1
1−l1

∥x0 − T1 (x0)∥τ ,

∥y0 − y∗∥∞ ≤ 1

1− l2

(
∥y0 − T2 (x0, y0)∥∞ +

l

1− l1
∥x0 − T1 (x0)∥τ

)
,

for any (x0, y0) ∈ X1 × X2, where l1 = LK
τ , with τ chosen such that

τ > LK , l2 = LH (b− a), l = lH
τ

(
eτ(b−a) − 1

)
;

(d) the fixed point problem for T is well-posed;
(e) the fixed point equation for T is generalized Ulam-Hyers stable;
(f) the operator T has the Ostrowski property.

Proof. By standard technique, the operator T1 : X1 → X1

T1 (x) (t) =

t∫
a

K (t, s, x (s)) ds+ k (t) ,

is a l1−contraction with l1 = LK
τ for suitable choice of τ > 0, (τ > LK), thus

T1 is a Picard operator and we denote by x∗ ∈ X the unique fixed point of T1.
From condition (3) we get

|T2 (x, y1) (t)−T2 (x, y2) (t)| ≤
b∫
a
|H (t, s, x (s) , y1 (s))−H (t, s, x (s) , y1 (s))|ds

≤ LH ·
b∫
a
|y1 (s)− y2 (s)|ds ≤ LH (b− a) ∥y1 − y2∥∞

and therefore

∥T2 (x, y1)− T2 (x, y2)∥∞ ≤ l2 · ∥y1 − y2∥∞
for all x ∈ X1 and y1, y2 ∈ X2 which shows that T2(x, ·) : X2 → X2 is an
l2-contraction for fixed x ∈ X1. Also, we have

∥T2 (x1, y)− T2 (x2, y)∥∞ ≤ l · ∥x1 − x2∥τ ,

for all x1, x2 ∈ X1 and y ∈ X2, where l = lH
τ

(
eτ(b−a) − 1

)
, which shows

that T2(·, y) : X1 → X2 is an l-Lipschitz operator for fixed y ∈ X2, so, from
Theorem 3.1 we get all the conclusions. □

Remark 7.2. For other applications of Fibre Contraction Principle and its
variants to the existence of the solutions see [9, 14, 19, 20, 29, 32, 33, 41, 45,
48, 50, 52].
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7.2 SMOOTHNESS OF SOLUTIONS

We consider the following system of integral equations:

(2)


x1 (t, λ) =

t∫
a
K (t, s, x1 (s, λ) , λ) ds+ k (t, λ) ,

x2 (t, λ) =
b∫
a
H (t, s, x1 (s, λ) , x2 (s, λ) , λ) ds+ h (t, λ) ,

t ∈ [a, b], λ ∈ J , where J ⊆ R is a closed interval.
We consider X1 = (C ([a, b]×J) , ∥·∥τ ) and X2 = (C ([a, b]×J) , ∥·∥∞) where

∥x∥τ = max
(t,λ)∈[a,b]×J

(∣∣∣x (t, λ) · e−τ(t−a)
∣∣∣) , τ > 0, ∥y∥∞ = max

(t,λ)∈[a,b]×J
(|y (t, λ)|) .

From (1) we define the operators T1 : X1 → X1, T1(x1)(t, λ)=
t∫
a
K(t, s, x1(s, λ),

λ)ds+k (t, λ), T2 : X1×X2 → X2, T2 (x1, x2) (t, λ)=
b∫
a
H(t, s, x1(s, λ), x2(s, λ),

λ)ds+ h (t, λ) .
We have:

Theorem 7.3. We suppose that:

(i) J ⊆ R is a closed interval;
(ii) K ∈ C ([a, b]× [a, b]× R×J), H ∈ C

(
[a, b]× [a, b]× R2×J

)
and k, h ∈

C ([a, b]×J) ;
(iii) there exists LK > 0 such that |K (t, s, u1, λ)−K (t, s, u2, λ)| ≤ LK ·

|u1 − u2| for all t, s ∈ [a, b], u1, u2 ∈ R, λ ∈ J ;
(iv) there exists lH , LH > 0 such that

|H (t, s, u1, v1, λ)−H (t, s, u2, v2, λ)| ≤ lH · |u1 − u2|+ LH · |v1 − v2| ,

for all t, s ∈ [a, b], u1, u2, v1, v2 ∈ R, λ ∈ J ;
(v) LH (b− a) < 1.

Then:

(a) the system (2) has an unique solution (x∗1, x
∗
2) ∈ X1 ×X2 .

(b) the sequence (x1,n, x2,n) given by x1,n+1 = T1 (x1,n), x2,n+1 = T2(x1,n,
x2,n) with (x1,0, x2,0) ∈ X1 × X2, converges uniformly to (x∗1, x

∗
2) for

all (x1,0, x2,0) ∈ X1 ×X2;
(c) If K (t, s, ·, ·) ∈ C1 (R×J), H (t, s, ·, ··) ∈ C1

(
R2×J

)
, k (t, ·) , h (t, ·) ∈

C1 (J), for every t, s ∈ [a, b] then x∗1 (t, ·), x∗2 (t, ·) ∈ C1 (J), for every
t, s ∈ [a, b].

Proof. (a)+(b) We consider X1 = (C ([a, b]×J) , ∥·∥τ ) and X2 = (C([a, b]
×J), ∥·∥∞) where

∥x∥τ = max
(t,λ)∈[a,b]×J

(∣∣∣x (t, λ) · e−τ(t−a)
∣∣∣) , τ > 0, ∥y∥∞ = max

(t,λ)∈[a,b]×J
(|y (t, λ)|) .
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From (2) we define the operators T1 : X1 → X1,

T1 (x1) (t, λ) =

t∫
a

K (t, s, x1 (s, λ) , λ) ds+ k (t, λ) ,

T2 : X1 ×X2 → X2,

T2 (x1, x2) (t, λ) =

b∫
a

H (t, s, x1 (s, λ) , x2 (s, λ) , λ) ds+ h (t, λ)

and the triangular operator T = (T1, T2) : X1 × X2 → X1 × X2. As in the
proof of Theorem 7.1 we have that T1 : X1 → X1 is a l1−contraction with
l1 = LK

τ for suitable choice of τ > 0, (τ > LK), and T2(x1, ·) : X2 → X2 is
an l2-contraction for fixed x1 ∈ X1, l2 = LH (b− a), so, from Theorem 3.1 we
have that T = (T1, T2) is a Picard operator, therefore we get (i) and (ii).

(c) We formally differentiate the equations of the system (2) with respect
to λ:

∂x1
∂λ

(t, λ) =

t∫
a

∂K

∂u
(t, s, x1 (s, λ) , λ) ·

∂x1
∂λ

(s, λ) ds

+

t∫
a

∂K

∂λ
(t, s, x1 (s, λ) , λ) ds+

∂k

∂λ
(t, λ) ,

∂x2
∂λ

(t, λ) =

b∫
a

∂H

∂u
(t, s, x1 (s, λ) , x2 (s, λ) , λ) ·

∂x1
∂λ

(s, λ) ds

+

b∫
a

∂H

∂v
(t, s, x1 (s, λ) , x2 (s, λ) , λ) ·

∂x2
∂λ

(s, λ) ds

+

b∫
a

∂H

∂λ
(t, s, x1 (s, λ) , x2 (s, λ) , λ) ds+

∂h

∂λ
(t, λ)

These relations suggest us to consider the spaces X3 = X1, X4 = X2 and the
following operators T3 : X1 ×X2 ×X3 → X3,

T3 (x1, x2, x3) (t, λ) =

t∫
a

∂K

∂u
(t, s, x1 (s, λ) , λ) · x3 (s, λ) ds+

+

t∫
a

∂K

∂λ
(t, s, x1 (s, λ) , λ) ds+

∂k

∂λ
(t, λ) ,



14 Fibre contraction theory and its applications 125

T4 : X1 ×X2 ×X3 ×X4 → X4

T4 (x1, x2, x3, x4) (t, λ) =

b∫
a

∂H

∂u
(t, s, x1 (s, λ) , x2 (s, λ) , λ) · x3 (t, λ) ds

+

b∫
a

∂H

∂v
(t, s, x1 (s, λ) , x2 (s, λ) , λ) · x4 (t, λ) ds

+

b∫
a

∂H

∂λ
(t, s, x1 (s, λ) , x2 (s, λ) , λ) ds+

∂h

∂λ
(t, λ)

and the triangular operator T = (T1, T2, T3, T4) :
4∏

i=1
Xi →

4∏
i=1

Xi.

We already proved that T1 : X1 → X1 is a l1−contraction, so it is Picard
operator, and T2(x1, ·) : X2 → X2 is an l2-contraction for fixed x1 ∈ X1. We
have:

|T3 (x1, x2, x3) (t, λ)− T3 (x1, x2, x̃3) (t, λ)|

≤
t∫

a

∣∣∣∣∂K∂u (t, s, x1 (s, λ) , λ)

∣∣∣∣ · |x3 (s, λ)− x̃3 (s, λ)| ds

≤ LK

τ
· ∥x3 − x̃3∥τ · e

τ(t−a)

for all (t, λ) ∈ [a, b]× J , therefore

∥T3 (x1, x2, x3)− T3 (x1, x2, x̃3)∥τ ≤ LK

τ
· ∥x3 − x̃3∥τ

for all (x1, x2) ∈ X1 × X2 and x3, x̃3 ∈ X3, so T3 (x1, x2, ·) : X3 → X3 is an

l3-contraction, where l3 =
LK
τ for suitable choice of τ > 0, (τ > LK).

Also, we have:

|T4 (x1, x2, x3, x4) (t, λ)− T4 (x1, x2, x3, x̃4) (t, λ)| ≤

≤
b∫
a

∣∣∂H
∂v (t, s, x1 (s, λ) , x2 (s, λ) , λ)

∣∣ · |x4 (s, λ)− x̃4 (s, λ)|ds ≤

≤ LH (b− a) · ∥x4 − x̃4∥∞ ,

for all (t, λ) ∈ [a, b]× J , hence

∥T4 (x1, x2, x3, x4)− T4 (x1, x2, x3, x̃4)∥∞ ≤ LH (b− a) · ∥x4 − x̃4∥∞ ,

for all (x1, x2, x3) ∈ X1×X2×X3 and x4, x̃4 ∈ X3, so T4 (x1, x2, x3, ·) : X4 →
X4 is an l4-contraction, where l4 = LH (b− a).
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Applying Theorem 6.1 for triangular operator T = (T1, T2, T3, T4) :
4∏

i=1
Xi →

4∏
i=1

Xi we conclude that T is Picard operator and the sequences (x1,n)n∈N,

(x2,n)n∈N, (x3,n)n∈N, (x4,n)n∈N defined by:

x1,n+1 (t, λ) =

t∫
a

K (t, s, x1,n (s, λ) , λ) ds+ k (t, λ) ,

x2,n+1 (t, λ) =

b∫
a

H (t, s, x1,n (s, λ) , x2,n (s, λ) , λ) ds+ h (t, λ) ,

x3,n+1 (t, λ) =

t∫
a

∂K

∂u
(t, s, x1,n (s, λ) , λ) · x3,n (s, λ) ds+

+

t∫
a

∂K

∂λ
(t, s, x1,n (s, λ) , λ) ds+

∂k

∂λ
(t, λ)

x4,n+1 (t, λ) =

b∫
a

∂H

∂u
(t, s, x1,n (s, λ) , x2,n (s, λ) , λ) · x3,n (t, λ) ds+

+

b∫
a

∂H

∂v
(t, s, x1,n (s, λ) , x2,n (s, λ) , λ) · x4,n (t, λ) ds+

+

b∫
a

∂H

∂λ
(t, s, x1,n (s, λ) , x2,n (s, λ) , λ) ds+

∂h

∂λ
(t, λ)

converge uniformly to (x∗1, x
∗
2, x

∗
3, x

∗
4) ∈ FT for all (x1,0, x2,0, x3,0, x4,0) ∈

4∏
i=1

Xi.

If for fixed (x1,0, x2,0, x3,0, x4,0) ∈
4∏

i=1
Xi we chose x3,0 =

∂x1,0

∂λ and x4,0 =
∂x2,0

∂λ

then x3,1 =
∂x1,1

∂λ and x4,1 =
∂x2,1

∂λ . By induction we have x3,n =
∂x1,n

∂λ ,

x4,n =
∂x2,n

∂λ and x3,n ⇒ x∗3, x4,n ⇒ x∗4, these imply that there exist
∂x∗

1
∂λ ,

respectively
∂x∗

2
∂λ and

∂x∗
1

∂λ = x∗3, respectively
∂x∗

2
∂λ = x∗4 □

Remark 7.4. For other applications of Fibre Contraction Principle and its
variants to the derivability of the solutions with respect to a parameter see
[37, 52, 54, 55, 57, 58, 59].
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[13] M. Dobriţoiu, W.W. Kecs and A. Toma, An application of the fiber generalized contrac-

tions theorem, WSEAS Trans. Math., 5 (2006), 1330–1335.
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[26] V. Mureşan, On a functional-differential equation, in Fixed Point Theory and its Ap-
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Inform., 46 (2008), 143–160.
[43] I.A. Rus, Some nonlinear functional differential and integral equations via weakly Picard

operator theory: a survey, Carpathian J. Math., 26 (2010), 230–258.
[44] I.A. Rus, Some variants of contraction principle, generalizations and applications, Stud.
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