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ON THE CROSSED POLYSQUARE VERSION
OF HOMOTOPY COKERNELS

MOHAMMAD ALI DEHGHANIZADEH, BIJAN DAVVAZ, and MURAT ALP

Abstract. In this paper, we define a generalized notion of semidirect hyper-
product of polygroups and use that to introduce a pushout construction for
crossed polymodules. Our results extend the classical results of crossed squares
to crossed polysquares. One of the main tools in the study to polygroups is the
fundamental relations. Additionally we study of the crossed polysquare version
of homotopy cokernels.
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1. INTRODUCTION

We remind you that Yang-Baxter equations play a very important role in
various fields of applied mathematics. We have already mentioned some of
these fields. Among its solutions, which are made in the name of braidings,
the following can be mentioned:

(1) from Yetter-Drinfel’d modules over a Hopf algebra,
(2) from self-distributive structures,
(3) from crossed modules of groups.

Furthermore, in the abstract, we have mentioned a number of fields in which
crossed modules are used in their study. Therefore, studying crossed modules
and all kinds of automorphisms at least through this is very important. This
is one of the motivations of recent half-century studies in this field. Crossed
modules were defined by Whitehead [17].

We note that there are many and interesting applications of crossed mod-
ules, such as Actor, Pullback, Pushout, and Induced crossed modules [1, 2].
Nilpotent, Solvable, n-Complete, and Representations of crossed modules were
studied by Dehghanizadeh and Davvaz [13, 14]. Polygroups were studied by
Comer [10], also see [12]. In fact, Comer and Davvaz extended algebraic the-
ory, to polygroups. Alp and Davvaz [3], expressed the concept of crossed
polymodule of polygroups along with some properties and characteristics of
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it. Moreover, they introduce new important classes by the fundamental re-
lations. The pushout and pullback crossed polymodules has been introduced
by the Alp and Davvaz, and they described the structure of these two con-
cepts in crossed polymodules. Arvasi et al. [4, 5, 6], introduce the notion of a
2-crossed module, which is generalizations of crossed modules, in addition to
was defined by Brown et al. [7, 8, 9]. In [15], Dehghanizadeh et al. introduce
the notion of crossed polysquare.

We remind you that one of several natural generalizations of groups theory,
which is studied, is the theory of polygroups. Regarding the action on their
elements, in any group, the combination of two elements is one element ,but
in any polygroup, that is a set. In addition, we point out that polygroups
have important uses in many fields, such as lattices, geometry, color scheme,
and combinatorics. As a good source for study, including definition, suitable
examples, and actually studying polygroups as a subclass of supergroups, it
can be referred to [12]. In [15], Dehghanizadeh, Davvaz and Alp studied
crossed polysquare version of homotopy kernels.

In this article, considering the importance of crossed squares, we will exam-
ine their application. In addition we study, version of homotopy cokernels of
their.

2. HOMOTOPY IN CROSSED POLYSQUARES

There are two versions of the kernel of a morphisms of crossed polymodule,
Davvaz and Alp in [3] introduced strict version.

P1
ϕ //

∂

��

P ′
1

∂′

��
P0

Ψ
// P ′

0

Fig. 2.1 – Diagram (1)

Definition 2.1 ([15]). (Fiber hyperproduct) Let P1, P2 and Q be poly-
groups, and let ϕ : P1 −→ Q and ψ : P2 −→ Q be homorphisms. The fiber
hyperproduct of P1 and P2 over Q, also known as a pullback, is the following
subpolygroup of P1 × P2:

P1 ×Q P2 = {(p1, p2) | (p1, p2) ∈ P1 × P2, ϕ(p1) = ψ(p2)}.
If ϕ : P1 −→ Q} and ψ : P2 −→ Q are epimorphism, then this is a subdirect
product.

In this case the objects of the kernel are of categorical of the pullback
P0 ×P ′

0
P ′
1.
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Definition 2.2 ([15]). A braided crossed polymodule of polygroups ∂ :
P1 −→ P0 is a crossed polymodule with a braiding polyfunction {−,−} :
P0 × P0 −→ P∗(P1) satisfying the following axioms:

(i) {p1, p2p3} = {p1, p2} p2{p1, p3};
(ii) {p1p2, p3} =p1 {p2, p3}{p1, p3};
(iii) ∂{p1, p2} = p1p2p

−1
1 p−1

2 ;
(iv) {∂(α), p} = αpα−1;
(v) {p, ∂(α)} =p αα−1; for all α ∈ P1 and p, p1, p2, p3 ∈ P0.

If the braiding is symmetric, we also have:
(vi) {p1, p2}{p2, p} = 1,

Then the crossed polymodule ∂ : P1 −→ P0 is called symmetric crossed poly-
module.

For continue thread, we need to the some of contents, which are as following:

Definition 2.3 ([16]). Let H be a semihypergroup. Then, we set

γ1 = {(x, x) | x ∈ H}
and for every integer n > 1, γn is the relation defined as follows:

xγny ←→ ∃(z1, z2, . . . , zn) ∈ Hn, ∃σ ∈ Sn : x ∈
n∏
i=1

zi, y ∈
n∏
i=1

zσ(i),

where Sn is the symmetric group of degree n. Obviously, for n ≥ 1, the rela-

tions γn are symmetric, and the relation γ =
⋃
n≥1

γn is reflexive and symmetric.

Let γ∗ be the transitive closure of γ. If H is a hypergroup, then γ = γ∗.

Definition 2.4 ([12]). LetP1 =< P1, •, e1, −1 > and P2 =< P2, ∗, e2, −1 >

be two polygroups. We consider the group AutP1 and the group P2
γ∗P2

, let

̂ : P2
γ∗P2

// AutP1

γ∗P2
(p2) // γ̂∗P2

(p2) = p̂2

be a homomorphism of groups. Then, in P1×P2 we define a hyperproduct as
follows:

(p1, p2) ◦ (p′1, p′2) = {(x, y) | x ∈ p1 • p̂2(p′1), y ∈ p2 ∗ p′2}
and we call this the semidirect hyperproduct of polygroups P1 and P2.

Now, we define a generalized notion of semidirect hyperproduct of poly-
groups, and use that to introduce a pushout construction for crossed polymod-
ules. Let P1, Γ1 and P0 be polygroups, each equipped with a right polyaction
of P0, the one on P0 itself being conjugation. We denote all the polyaction
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P1
p //

d
��

Γ1

P0

Fig. 2.2 – Diagram (2)

by −k. Assume we are given a P0-equivariant diagram in which we require

the compatibility condition γ
d(p1)
1 = γ

p(p1)
1 is satisfied for every p1 ∈ P1 and

γ1 ∈ Γ1.

Definition 2.5. The semidirect hyperproduct P0⋉ P1Γ1 of P0 and Γ1 along
P1 is defined to be P0 ⋉ Γ1

N , where

N = {(d(p1)−1, p(p1)) | p1 ∈ P1}.

There are natural polygroup homomorphisms p′ : P0 −→ P0 ⋉ P1Γ1 and
d′ : Γ1 −→ P0 ⋉ P1Γ1, making diagram (3) commute There is also an polyac-

P1
p //

d
��

Γ1

d′
��

P0
p′

// P0 ⋉ P1Γ1

Fig. 2.3 – Diagram (3)

tion of P0 ⋉P1 Γ1 on Γ1 which makes the above diagram equivariant.
An element (p0, γ1) ∈ P0 ⋉P1 Γ1 on γ′1 ∈ Γ1 by sending it to {x | x ∈
γ−1
1 γ′1

p0γ1}. Indeed, d′ : Γ1 −→ P0 ⋉P1 Γ1 is a crossed polymodule.

Theorem 2.6. If outer Diagram (1) is a crossed polysquare, then outer
diagram Diagram (4) gives rise to a crossed polysquare with actions, polygroup

homomorphism ∂′′ and function ¯̄h : (P0 ⋉ P1Γ1) × (P0 × Γ0Γ1) −→ P∗(P1)
defined as following:

(i) the polyaction of Γ0 on P1 is induced by the polyaction of crossed poly-
module of ∂′ : Γ1 −→ Γ0 on ∂ : P1 −→ P0;

(ii) the polyaction of Γ0 on P0 ⋉ P1Γ1 is the polyaction of a crossed poly-
module d : P0 ⋉ P1Γ1 −→ Γ0;

(iii) the polyaction of Γ0 on P0 ×Γ0 Γ1 is defined by

σ(p2, β2) = {(x, y) | x ∈ σp2, y ∈ σβ2}

(the same polyaction seen in the crossed polysquare Diagram (2));



60 M. A. Dehghanizadeh, B. Davvaz, and M. Alp 5

Fig. 2.4 – Diagram (4)

(iv) ∂′′ : Γ1 −→ P0⋉ P1Γ1 is the canonical inclusion map of Γ1 in P0⋉ P1Γ1;

(v) ¯̄h ((p1, β1), (p2, β2)) :=
{
h(β1, p1p2p

−1
1 )h(β2, p1)

−1
}
where the function

h is given by the crossed polysquare structure of Diagram (1).

Proof. p̃0 = ¯̄p0 is a strong homomorphism, where ¯̄p0 is defined in Diagram
(3). Then p̄1 is a strong homomorphism, and so p̃1(α) = (1, p̄1(α)) is a strong
homomorphism. Diagram (4) is commutative and the last map is a crossed
polymodule, because it is easy to check that dp̃1 = ∂′p̄1 = p̄0∂ = p̃0∂̄.

But ¯̄h is well defined, in fact we have

¯̄h
{
((x, y), (p2, β2)) | x ∈ ∂(α)p1, y ∈ β1p̄1(α)−1

}
= h

{
(x, y) | x ∈ β1p̄1(α)−1, y ∈ ∂(α)p1p2p−1

1 ∂(α)
}

h
{
(β2, z)

−1 | z ∈ ∂(α)p1
}

= h
{
(x, y) | x ∈ β1p̄1(α)−1, y ∈ p̄0∂(α)(p1p2p

−1
1 )

}
∂(α)

h(β2, p1)
−1h

{
(β2, z)

−1 | z ∈ ∂(α)
}

= p̄0∂(α)h
{
(x, y) | x ∈ p̄0∂(α)−1

(β1p̄1(α)
−1, y ∈ p1p2p−1

1 )
}

αh
{
(β2, p1)

−1 α−1αβ2α−1
}

= αh
{
(x, y) x ∈ ∂′p̄1(α)−1

(β1p̄1(α)
−1, y ∈ p1p2p−1

1

}
α−1αh(β2, p1)

−1 β2α−1

= α∂
′p̄1(α)−1

h
{
(β1, y) | y ∈ p1p2p−1

1

}
h
{
(p̄1(α)

−1, y) | y ∈ p1p2p−1
1

}
h(β2, p1)

−1 β2α−1

= α∂
′p̄1(α)−1

h
{
(β1, y) | y ∈ p1p2p−1

1

}
h
{
(p̄1(α)

−1, y) | y ∈ p1p2p−1
1

}
h(β2, p1)

−1 β2α−1

= αα−1h
{
(β1, y) | y ∈ p1p2p−1

1

}
αα−1 p1p2p

−1
1 αh(β, p1)

−1 β2α−1
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= h
{
(β1, y) | y ∈ p1p2p−1

1

}
p1β2( p

−1
1 α)h(β2, p1)

−1 β2α−1

= h
{
(β1, y) | y ∈ p1p2p−1

1

}
h(β2, p1)

−1 β2p1( p
−1
1 α) β2α−1

= h
{
(β1, y) | y ∈ p1p2p−1

1

}
h(β2, p1)

−1 β2α β2α−1

= h
{
(β1, y) | y ∈ p1p2p−1

1

}
h(β2, p1)

−1.

Outer Diagram (3) is crossed polysquare and so the equalities above conse-
quences of the axioms of the crossed polysquare.

Now we want to check the five properties making Diagram (4) a crossed
polysquare.

(i) the map p̃1 preserves the polyactions of Γ0; in fact

p̃1(
σα) = {(1, x) | x ∈ p̄1( σα)} = {(1, x) | x ∈ σp̄1(α)} = σ(1, p̄1(α)) =

σp̃1(α).

The map ∂̄ preserves the polyactions of Γ0. Also d is a crossed poly-
module and p̃0 is a crossed polymodule because ¯̄p0 is.

(ii) We want to prove that

p̃1

(
¯̄h((p1, β1), (p2, β2))

)
= (p1, β1)

(p2,β2)(p1, β1)
−1

and we develop the two members separately:

p̃1

(
¯̄h((p1, β1), (p2, β2))

)
= p̃1

(
h{(β1, y) | y ∈ p1p2p−1

1 }h(β2, p1)
−1

)
=

(
1, p̄1(h{(β1, y) | y ∈ p1p2p−1

1 }h(β2, p1)
−1

)
= {(1, y) | y ∈ β1 p1p2p

−1
1 β−1

1
p1β2β

−1
2 };

and

(p1, β1)
(p2,β2)(p1, β1)

−1

= (p1, β1)
p̃0(p2,β2)(p1, β1)

−1

= (p1, β1)
p̃0(p2)(p−1

1 , p
−1
1 β−1

1 )

= (p1, β1){(x, y) | x ∈ p2p−1
1 p−1

2 , y ∈ p2p
−1
1 β−1

1 }

= {(u, v) | u ∈ p1p2p−1
1 p−1

2 , v ∈ β1 p1p2p
−1
1 β−1

1 }

= {(r, s) | r ∈ ∂h(β2, p1)−11, s ∈ β1 p1p2p
−1
1 β−1

1
p1β2β

−1
2 p̄1h(β2, p1)}.

Now we want to prove that

∂̄¯̄h((p1, β1), (p2, β2)) =
(p1,β1)(p2, β2)(p2, β2)

−1;

and we develop the two members separately:

∂̄¯̄h((p1, β1), (p2, β2))

= ∂̄(h{(β1, y) | y ∈ p1p2p−1
1 }h(β2, p1)

−1)

= {(∂h(β1, y) ∂h(β2, p1)−1, p̄1h(β1, y)p̄1h(β2, p1)
−1) | y ∈ p1p2p−1

1 }
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= {(u, v) | u ∈ β1(p1p2p1)
−1p1p

−1
2 p−1

1 p1
β2p−1

1 , v ∈ β1 p1p2p
−1
1 β−1

1
p1β2β

−1
2 }

= {(u, v) |u∈ β1(p1p2p−1
1 )p1p

−1
2

p̄0(p2)p−1
1 ,v∈β1 p1( ∂

′(β2)( p
−1
1 β−1

1 )) p1β2β
−1
2 }

= {(u, v) | u ∈ β1(p1p2p
−1
1 )p1p

−1
2 p2p

−1
1 p−1

2 , v ∈ β1 p1β2β−1
1

p1β−1
2

p1β2β
−1
2 }

= {(u, v) | u ∈ β1(p1p2p
−1
1 )p−1

2 , v ∈ β1 p1β2β−1
1 β−1

2 };

and

(p1,β1)(p2, β2)(p2, β2)
−1 = ∂′(β1)p̄0(p1)(p2, β2)(p

−1
2 , β−1

2 )

= {(u, v) | u ∈ β1(p1p2p
−1
1 ), v ∈ β1 g1β2β−1

1 }(p
−1
2 , β−1

2 )

= {(u, v) | u ∈ β1(p1p2p
−1
1 )p−1

2 , v ∈ β1 p1β2β−1
1 β−1

2 }.

(iii)

¯̄h(p̃1(α), (p2, β2)) = ¯̄h((1, p̄1(α)), (p2, β2))

= h(p̄1(α), p2)h(β2, 1)
−1 = α p2α−1 = α p̄0(p2)α−1

= αp̄0(p2,β2)α−1 = α (p2,β2)α−1;

and

¯̄h((p1, β1), ∂̄(α)) = ¯̄h((p1, β1), (∂(α), p̄1(α)))

= h{(β1, y) | y ∈ p1∂(α)p−1
1 }h(p̄1(α), p1)

−1

= h{(β1, y) | y ∈ ∂( p1α)}h(p̄1(α), p1)−1

= β1( p1α) p1α−1 p1αα−1 = β1( p1α)α−1

= ∂′(β1)p̄0(p1)αα−1 = d(p1,β1)αα−1 = (p1,β1)αα−1.

(iv) We want to prove that:

¯̄h((p1, β1)(p
′
1, β

′
1), (p2, β2)) =

(p1,β1)¯̄h((p′1, β
′
1), (p2, β2))

¯̄h((p1, β1), (p2, β2))

and we develop the two members separately:

¯̄h((p1, β1)(p
′
1, β

′
1), (p2, β2))

= ¯̄h{((x, y), (p2, β2)) | x ∈ p1p′1, y ∈ β1 p1β′1}
= h{(y, z) | y ∈ β1 p1β′1, z ∈ p1p′1p2p′2

−1
p−1
1 }h{(β2, r)

−1 | r ∈ p1p′1}
= β1h{(s, z) | s ∈ p1β′1, z ∈ p1p′1p2p′1

−1
p−1
1 }h{(β1, z) | z ∈ p1p

′
1p2p

′
1
−1
p−1
1 }

= β1h(β2, p
′
1)

−1h(β2, p1)
−1

= β1p1h{(β′1, t) | t ∈ p′1p2p′1
−1}h{(β1, u) | u ∈ p1p′1 p̄0(p2)(p1p′1)−1p2}

= p1h(β2, p
′
1)

−1h(β2, p1)
−1

= β1p1h{(β′1, t) | t ∈ p′1p2p′1
−1}h{(β1, ∂h(β2, r)−1p2 | r ∈ p1p−1

1 }
p1h(β2, p

′
1)

−1h(β2, p1)
−1

= β1p1h{(β′1, t) | t ∈ p′1p2p′1
−1} β1h{(β2, r)−1 | r ∈ p1p′1}
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h(β1, p2)h{(β2, r) | r ∈ p1p−1
1 }

p1h(β2, p
′
1)

−1h(β2, p1)
−1

= β1p1h{(β′1, t) | t ∈ p′1p2p′1
−1} β1h{(β2, r)−1 | r ∈ p1p−1

1 }
h(β1, p2)h(β2, p1)

p1h(β2, p
′
1)

−1h(β2, p1)
−1

= β1p1h{(β′1, t) | t ∈ p′1p2p′1
−1} β1h{(β2, r)−1 | r ∈ p1p−1

1 }h(β1, p2);

and

(p1,β1)¯̄h((p′1, β
′
1), (p2, β2))

¯̄h((p1, β1), (p2, β2))

=β1p1 [h{(β′1, t) | t∈p′1p2p′1
−1}h(β2, p′1)−1]h{(β1, y) | y ∈ p1p2p−1

1 }h(β2, p1)
−1

=β1p1 h{(β′1, t) | t ∈ p′1p2p′1
−1} β1p1h(β2, p′1)−1h{(β1, w) | w ∈ p1 p̄0(p2)p−1

1 p2}
h(β2, p1)

−1

=β1p1 h{(β′1, t) | t ∈ p′1p2p′1
−1} β1p1h(β2, p′1)−1h{(β1, w1) | w1 ∈ p1 ∂

′(β2)p−1
1 p2}

h(β2, p1)
−1

=β1p1 h{(β′1, t) | t∈p′1p2p′1
−1} β1p1h(β2, p′1)−1h{(β1, w2) |w2∈∂h(β2, p1)−1p2}

h(β2, p1)
−1

=β1p1 h{(β′1, t) | t∈p′1p2p′1
−1} β1p1h(β2, p′1)−1 β1h(β2, p1)

−1h(β2, p1)
−1h(β1, p2)

h(β2, p1)h(β2, p1)
−1

=β1p1 h{(β′1, t) | t ∈ p′1p2p′1
−1} β1 [ p1h(β2, p′1)−1h(β2, p1)

−1]h(β1, p2)

=β1p1 h{(β′1, t) | t ∈ p′1p2p′1
−1} β1h{(β2, r)−1 | r ∈ p1p′1}h(β1, p2).

(v)

¯̄h( σ(p1, β1),
σ(p2, β2)) = ¯̄h(( σp1,

σβ1), (
σp2,

σβ2))

= h{( σβ1, x) | x ∈ σp1
σp2

σp−1
1 }h(

σβ2,
σp1)

−1

= h{( σβ1, x) | x ∈ σ(p1p2p
−1
1 )}h( σβ2, σp1)−1

= σh{(β1, y) | y ∈ p1p2p
−1
1 }

σh(β2, p1)
−1

= σ[h{(β1, y) | y ∈ p1p2p
−1
1 }h(β2, p1)

−1]

= σ ¯̄h((p1, β1), (p2, β2).

□

Theorem 2.7. If Diagram (1) is a crossed polysquare, then the outer dia-
gram(Diagram (5)) is a crossed square with actions and function,

h̄ :
P0 ⋉P1 Γ1

β∗
P0⋉P1Γ1

× P0 ×Γ0 Γ1

β∗P0×Γ0
Γ1

−→ P1

β∗P1

defined as follows:



64 M. A. Dehghanizadeh, B. Davvaz, and M. Alp 9

Fig. 2.5 – Diagram (5)

(a) the action of Γ0
β∗
Γ0

on P1
β∗
P1

is induced by the polyaction of Γ0 on P1;

(b) the action of Γ0
β∗
Γ0

on P0⋉P1Γ1
β∗
P0⋉

P1Γ1

⋉P1 Γ1 by the polyaction of Γ0 on P0⋉P1

Γ1;

(c) the action of Γ0
β∗
Γ0

on
P0×Γ0

Γ1

β∗
P0×Γ0

Γ1

is induced by the polyaction of Γ0 on

P0 ×Γ0 Γ1;

(d) the map h̄ : P0⋉P1Γ1
β∗
P0⋉

P1Γ1

× P0×Γ0
Γ1

β∗
P0×Γ0

Γ1

−→ P1
β∗
P1

is

h̄((β∗P0
(p0), β

∗
Γ1
(γ1), (β

∗
P0
(p′0), β

∗
Γ1
(γ′1)) = β∗P1

(h((p0, γ1), (p
′
0, γ

′
1))).

Proof. The action Γ0
β∗
Γ0

on
P0×Γ0

Γ1

β∗
P0×Γ0

Γ1

and P0⋉P1Γ1
β∗
P0⋉

P1Γ1

and P1
β∗
P1

is well defined.

ψ′ is a group homomorphism. We now want to check the five properties making
this diagram a crossed square.

(i) the map ψ preserves the action of Γ0
β∗
Γ0

because Diagram (1) is a crossed

polysquare. The map D preserves the action of Γ0
β∗
Γ0

:

D( σβ∗P1
(p1)) =

(
D( σβ∗P1

(p1)), ψ(
σβ∗P1

(p1))
)

=
(
σD(β∗P1

(p1)),
σψ(β∗P1

(p1))
)

= σ
(
D(β∗P1

(p1)), ψ(β
∗
P1
(p1))

)
= σD(β∗P1

(p1)).
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D′ is a crossed module. We want to prove that ψ′ is a crossed module.
The pre-crossed module property holds because p̄0 satisfies the pre-
crossed polymodule property. It also holds the Peiffer condition:

ψ′(β∗
P0

(p0),β∗
Γ1

(γ1))(β∗
′
P0
(p0), β

∗′
Γ1
(γ1))

=
ψ′|P0

(β∗
P0

(p0))(β∗
′
P0
(p0), β

∗′
Γ1
(γ1))

=
(
ψ′|P0

(β∗
P0

(p0))β∗
′
P0
(p0),

ψ′|P0
(β∗

P0
(p0))β∗

′
Γ1
(γ1)

)
=

(
β∗P0

(p0)β
∗′
P0
(p0)β

∗
P0
(p0)

−1,
D′(β∗

P0
(p0),β∗

Γ1
(γ1))β∗

′
Γ1
(γ1)

)
=

(
β∗P0

(p0)β
∗′
P0
(p0)β

∗
P0
(p0)

−1, β∗Γ1
(γ1)β

∗′
Γ1
(γ1)β

∗
Γ1
(γ1)

−1
)
;

also

(β∗P0
(p0), β

∗
Γ1
(γ1))(β

∗′
P0
(p0), β

∗′
Γ1
(γ1))(β

∗
P0
(p0), β

∗
Γ1
(γ1))

−1

= (β∗P0
(p0), β

∗
Γ1
(γ1))(β

∗′
P0
(p0), β

∗′
Γ1
(γ1))(β

∗
P0
(p0)

−1, β∗Γ1
(γ1)

−1)

= (β∗P0
(p0)β

∗′
P0
(p0)β

∗
P0
(p0)

−1, β∗Γ1
(γ1)β

∗′
Γ1
(γ1)β

∗
Γ1
(γ1)

−1).

ψ′D = D′ψ is a crossed module.
(ii) we want to prove that

ψ(h̄((β∗P0
(p0), β

∗
Γ1
(γ1)), (β

∗
P0
(p′0), β

∗
Γ1
(γ′1))))

= (β∗P0
(p0), β

∗
Γ1
(γ1))

(β∗
P0

(p′0),β
∗
Γ1

(γ′1))(β∗P0
(p0), β

∗
Γ1
(γ1))

−1

and we develop the two members separately:

ψ(h̄((β∗P0
(p0), β

∗
Γ1
(γ1)), (β

∗
P0
(p′0), β

∗
Γ1
(γ′1))))

= ψ(h(β∗Γ1
(γ1), β

∗
P0
(p0)β

∗
P0
(p′0)β

∗
P0
(p0)

−1)h(β∗Γ1
(γ′1), β

∗
P0
(p0))

−1)

= (1, ψ(h(β∗Γ1
(γ1), β

∗
P0
(p0)β

∗
P0
(p′0)β

∗
P0
(p0)

−1)h(β∗Γ1
(γ′1), β

∗
P0
(p0))

−1))

= (1, β∗Γ1
(γ1)

β∗
P0

(p0)β∗
P0

(p′0)β
∗
P0

(p0)−1

β∗Γ1
(γ1)

−1 β∗
P0

(p0)β∗Γ1
(γ′1)β

∗
Γ1
(γ′1)

−1)

also

(β∗P1
(p1), β

∗
Γ1
(γ1))

(β∗
P0

(p′0),β
∗
Γ1

(γ′1))(β∗P0
(p0), β

∗
Γ1
(γ1))

−1

= (β∗P0
(p0), β

∗
Γ1
(γ1))

ψ′(β∗
P0

(p′0),β
∗
Γ1

(γ′1))(β∗P0
(p0), β

∗
Γ1
(γ1))

−1

= (β∗P0
(p0), β

∗
Γ1
(γ1))(β

∗
Γ1
(γ′1)β

∗
P0
(p0)

−1β∗Γ1
(γ′1)

−1,
β∗
P0

(p′0)β
∗
P0

(p0)−1

β∗Γ1
(γ1)

−1)

=(β∗P0
(p0)β

∗
P0
(p′0)β

∗
P0
(p0)

−1β∗P0
(p′0)

−1, β∗Γ1
(γ1)

β∗
P0

(p0)β∗
P0

(p′0)β
∗
P0

(p0)−1

β∗Γ1
(γ1)

−1)

Now we want to prove that
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D(h̄((β∗P0
(p0), β

∗
Γ1
(γ1)), (β

∗
P0
(p′0), β

∗
Γ1
(γ′1))))

=
(β∗

P0
(p0),β∗

Γ1
(γ1))(β∗P0

(p′0), β
∗
Γ1
(γ′1))(β

∗
P0
(p′0), β

∗
Γ1
(γ′1))

−1

and we develop the two members separately:

D(h̄((β∗P0
(p0), β

∗
Γ1
(γ1)), (β

∗
P0
(p′0), β

∗
Γ1
(γ′1))))

= D(h(β∗Γ1
(γ1), β

∗
P0
(p0)β

∗
P0
(p′0)β

∗
P0
(p0)

−1)h(β∗Γ1
(γ′1), β

∗
P0
(p0))

−1)

=
(
ψ|P1h(β

∗
Γ1
(γ1), β

∗
P0
(p0)β

∗
P0
(p′0)β

∗
P0
(p0)

−1)ψ|P1h(β
∗
Γ1
(γ′1), β

∗
P0
(p0))

−1,

β∗Γ1
(γ1)

β∗
P0

(p0)β∗
P0

(p′0)β
∗
P0

(p0)−1

β∗Γ1
(γ1)

−1 β∗
P0

(p0)β∗Γ1
(γ′1)β

∗
Γ1
(γ1)

−1
)

=
( β∗

Γ1
(γ1)(β∗P0

(p0)β
∗
P0
(p′0)β

∗
P0
(p0)

−1)

β∗P0
(p0)β

∗
P0
(p′0)

−1β∗P0
(p0)

−1β∗P0
(p0)

β∗
Γ1

(γ′1)

β∗P0
(p0)

−1, β∗Γ1
(γ1)

β∗
P0

(p0)β∗
P0

(p′0)β
∗
P0

(p0)−1

β∗Γ1
(γ1)

−1 β∗
P0

(p0)β∗Γ1
(γ′1)β

∗
Γ1
(γ1)

−1
)

=
( β∗

Γ1
(γ1)(β∗P0

(p0)β
∗
P0
(p′0)β

∗
P0
(p0)

−1)

β∗P0
(p0)β

∗
P0
(p′0)

−1β∗P0
(p′0)β

∗
P0
(p0)

−1β∗P0
(p′0)

−1,

β∗Γ1
(γ1)

β∗
P0

(p0)β∗Γ1
(γ′1)β

∗
Γ1
(γ1)

−1 β∗
P0

(p0)

β∗Γ1
(γ′1)

−1 β∗
P0

(p0)β∗Γ1
(γ′1)β

∗
Γ1
(γ′1)

−1
)
.

=
(
β∗
Γ1

(γ1)(β∗P0
(p0)β

∗
P0
(p′0)β

∗
P0
(p0)

−1)β∗P0
(p′0)

−1,

β∗Γ1
(γ1)

β∗
P0

(p0)β∗Γ1
(γ′1)β

∗
Γ1
(γ1)

−1β∗Γ1
(γ′1)

−1
)

also

(β∗
P0

(p0),β∗
Γ1

(γ1))(β∗P0
(p′0), β

∗
Γ1
(γ′1))(β

∗
P0
(p′0), β

∗
Γ1
(γ′1))

−1

=
(
β∗
Γ1

(γ1)(β∗P0
(p0)β

∗
P0
(p′0)β

∗
P0
(p0)

−1), β∗Γ1
(γ1)

β∗
P0

(p0)β∗Γ1
(γ′1)β

∗
Γ1
(γ1)

−1
)

(
β∗P0

(p′0)
−1, β∗Γ1

(γ′1)
−1

)
=

(
β∗
Γ1

(γ1)(β∗P0
(p0)β

∗
P0
(p′0)β

∗
P0
(p0)

−1)β∗P0
(p′0)

−1,

β∗Γ1
(γ1)

β∗
P0

(p0)β∗Γ1
(γ′1)β

∗
Γ1
(γ1)

−1β∗Γ1
(γ′1)

−1
)
.

(iii)

h̄(ψ(β∗P1
(p1)), (β

∗
P0
(p′0), β

∗
Γ1
(γ′1)) = β∗P1

(p1)
β∗
P0

(p′0)β∗P1
(p1)

−1

= β∗P1
(p1)

(β∗
P0

(p′0),β
∗
Γ1

(γ′1))β∗P1
(p1)

−1;



12 On the crossed polysquare version of homotopy cokernels 67

also

h̄((β∗P0
(p0), β

∗
Γ1
(γ1)),D(β∗P1

(p1)))

=
β∗
Γ1

(γ1)(
β∗
P0

(p0)β∗P1
(p1))

β∗
P0

(p0)β∗P1
(p1)

−1 β∗
P0

(p0)β∗P1
(p1)β

∗
P1
(p1)

−1

=
β∗
Γ1

(γ1)(
β∗
P0

(p0)β∗P1
(p1))β

∗
P1
(p1)

−1

=
(β∗

P0
(p0),β∗

Γ1
(γ1))β∗P1

(p1)β
∗
P1
(p1)

−1.

(iv) we want to prove that:

h̄((β∗P0
(p0), β

∗
Γ1
(γ1))(β

∗
P0
(p′′0), β

∗
Γ1
(γ′′1 )), (β

∗
P0
(p′0), β

∗
Γ1
(γ′1)))

=
(β∗

P0
(p0),β∗

Γ1
(γ1))h̄((β∗P0

(p′′0), β
∗
Γ1
(γ′′1 )), (β

∗
P0
(p′0), β

∗
Γ1
(γ′1)))

h̄((β∗P0
(p0), β

∗
Γ1
(γ1)), (β

∗
P0
(p′0), β

∗
Γ1
(γ′1))),

and we develop two members separately:

h̄((β∗P0
(p0), β

∗
Γ1
(γ1))(β

∗
P0
(p′′0), β

∗
Γ1
(γ′′1 )), (β

∗
P0
(p′0), β

∗
Γ1
(γ′1)))

= h̄((β∗P0
(p0)β

∗
P0
(p′′0), β

∗
Γ1
(γ1)

β∗
P0

(p0)β∗Γ1
(γ′′1 )), (β

∗
P0
(p′0), β

∗
Γ1
(γ′1)))

= h(β∗Γ1
(γ1)

β∗
P0

(p0)β∗Γ1
(γ′′1 ), β

∗
P0
(p0)β

∗
P0
(p′′0)β

∗
P0
(p′0)β

∗
P0
(p′′0)

−1β∗P0
(p0)

−1)

h(β∗Γ1
(γ′1), β

∗
P0
(p0)β

∗
P0
(p′′0))

−1

=
β∗
Γ1

(γ1)h(
β∗
P0

(p0)β∗Γ1
(γ′′1 ), β

∗
P0
(p0)β

∗
P0
(p′′0)β

∗
P0
(p′0)β

∗
P0
(p′′0)

−1β∗P0
(p0)

−1)

h(β∗Γ1
(γ1), β

∗
P0
(p0)β

∗
P0
(p0)

−1β∗P0
(p′0)β

∗
P0
(p′′0)

−1β∗P0
(p0)

−1)

β∗
P0

(p0)h(β∗Γ1
(γ′1), β

∗
P0
(p′′0))

−1h(β∗Γ1
(γ′1), β

∗
P0
(p0))

−1

=
β∗
Γ1

(γ1)β∗
P0

(p0)h(β∗Γ1
(γ′′1 )

−1, β∗P0
(p′′0)β

∗
P0
(p′0)β

∗
P0
(p′′0)

−1)

β∗
Γ1

(γ1)h(β∗Γ1
(γ′1), β

∗
P0
(p0)β

∗
P0
(p′′0))

−1h(β∗Γ1
(γ1), β

∗
P0
(p′0))

h(β∗Γ1
(γ′1), β

∗
P0
(p0)β

∗
P0
(p′′0))

β∗
P0

(p0)h(β∗Γ1
(γ′1), β

∗
P0
(p′′0))

−1h(β∗Γ1
(γ′1), β

∗
P0
(p0))

−1

=
β∗
Γ1

(γ1)β∗
P0

(p0)h(β∗Γ1
(γ′′1 ), β

∗
P0
(p′′0)β

∗
P0
(p′0)β

∗
P0
(p′′0)

−1)

β∗
Γ1

(γ1)h(β∗Γ1
(γ′1), β

∗
P0
(p0)β

∗
P0
(p′′0))

−1h(β∗Γ1
(γ1), β

∗
P0
(p′0))h(β

∗
Γ1
(γ′1), β

∗
P0
(p0))

β∗
P0

(p0)h(β∗Γ1
(γ′1), β

∗
P0
(p′′0))

β∗
P0

(p0)h(β∗Γ1
(γ′1), β

∗
P0
(p′′0))

−1h(β∗Γ1
(γ′1), β

∗
P0
(p0))

−1

=
β∗
Γ1

(γ1)β∗
P0

(p0)h(β∗Γ1
(γ′′1 ), β

∗
P0
(p′′0)β

∗
P0
(p′0)β

∗
P0
(p′′0)

−1)

β∗
Γ1

(γ1)h(β∗Γ1
(γ′1), β

∗
P0
(p0)β

∗
P0
(p′′0))

−1h(β∗Γ1
(γ1), β

∗
P0
(p′0));
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also
(β∗

P0
(p0),β∗

Γ1
(γ1))h̄((β∗P0

(p′′0), β
∗
Γ1
(γ′′1 )), (β

∗
P0
(p′0), β

∗
Γ1
(γ′1)))

h̄((β∗P0
(p0), β

∗
Γ1
(γ1)), (β

∗
P0
(p′0), β

∗
Γ1
(γ′1)))

=
β∗
Γ1

(γ1)β∗
P0

(p0)
[
h(β∗Γ1

(γ′′1 ), β
∗
P0
(p′′0)β

∗
P0
(p′0)

β∗P0
(p′′0)

−1)h(β∗Γ1
(γ′1), β

∗
P0
(p′′0))

−1
]

h(β∗Γ1
(γ1), β

∗
P0
(p0)β

∗
P0
(p′0)β

∗
P0
(p0)

−1)h(β∗Γ1
(γ′1), β

∗
P0
(p0))

−1

=
β∗
Γ1

(γ1)β∗
P0

(p0)h(β∗Γ1
(γ′′1 ), β

∗
P0
(p′′0)β

∗
P0
(p′0)β

∗
P0
(p′′0)

−1)

β∗
Γ1

(γ1)β∗
P0

(p0)h(β∗Γ1
(γ′1), β

∗
P0
(p′′0))

−1 β∗
Γ1

(γ1)h(β∗Γ1
(γ′1), β

∗
P0
(p0))

−1

h(β∗Γ1
(γ1), β

∗
P0
(p′0))h(β

∗
Γ1
(γ′1), β

∗
P0
(p0))h(β

∗
Γ1
(γ′1), β

∗
P0
(p0))

−1

=
β∗
Γ1

(γ1)β∗
P0

(p0)h(β∗Γ1
(γ′′1 ), β

∗
P0
(p′′0)β

∗
P0
(p′0)β

∗
P0
(p′′0)

−1)

β∗
Γ1

(γ1)
[
β∗
P0

(p0)h(β∗Γ1
(γ′1), β

∗
P0
(p′′0))

−1h(β∗Γ1
(γ′1), β

∗
P0
(p0))

−1
]

h(β∗Γ1
(γ1), β

∗
P0
(p′0))

=
β∗
Γ1

(γ1)β∗
P0

(p0)h(β∗Γ1
(γ′′1 ), β

∗
P0
(p′′0)β

∗
P0
(p′0)β

∗
P0
(p′′0)

−1)

β∗
Γ1

(γ1)h(β∗Γ1
(γ′1), β

∗
P0
(p0)β

∗
P0
(p′′0))

−1h(β∗Γ1
(γ1), β

∗
P0
(p′0)).

(v)

h̄( σ(β∗P0
(p0), β

∗
Γ1
(γ1)),

σ(β∗P0
(p′0), β

∗
Γ1
(γ′1))

= h̄(( σβ∗P0
(p0),

σβ∗Γ1
(γ1)), (

σβ∗P0
(p′0),

σβ∗Γ1
(γ′1)))

= h( σβ∗Γ1
(γ1),

σβ∗P0
(p0)

σβ∗P0
(p′0)

σβ∗P0
(p0)

−1)h( σβ∗Γ1
(γ′1),

σβ∗P0
(p0))

−1

= h( σβ∗Γ1
(γ1),

σ(β∗P0
(p0)β

∗
P0
(p′0)β

∗
P0
(p0)

−1))h( σβ∗Γ1
(γ′1),

σβ∗P0
(p0))

−1

= σh(β∗Γ1
(γ1), β

∗
P0
(p0)β

∗
P0
(p′0)β

∗
P0
(p0)

−1) σh(β∗Γ1
(γ′1), β

∗
P0
(p0))

−1

= σ
(
h(β∗Γ1

(γ1), β
∗
P0
(p0)β

∗
P0
(p′0)β

∗
P0
(p0)

−1)h(β∗Γ1
(γ′1), β

∗
P0
(p0))

−1
)

= σh̄((β∗P0
(p0), β

∗
Γ1
(γ1)), (β

∗
P0
(p′0), β

∗
Γ1
(γ′1))).

□

Now in our conclusion, we consider the image of a crossed polymodule
[3] and we will prove another result showing the analogy between crossed
polymodules and crossed polysquares.

Proposition 2.8. [3] Let χ = (C,P, ∂, α) be a crossed polymodule. Then,
∂(C) is a normal subpolygroup of P .

Proposition 2.9. Let Diagram(1) be a crossed polysquare, the subcrossed
polymodule ∂′|Im p̄1 : Im p̄1 −→ Im p̄0 of ∂′ : Γ1 −→ Γ0 is normal.

Proof. (i) Im p̄0 is a normal subpolygroup of Γ0, because p̄0 : P0 −→ Γ0

is a crossed polymodule;
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(ii) for all σ ∈ Γ0 and β̄ ∈ Im p̄1, that is there exists ᾱ ∈ P1 such that
p̄1(ᾱ) = β̄, we have σβ̄ = σp̄1(ᾱ) = p̄1(

σᾱ), so σβ̄ ⊆ Im p̄1.
(iii) for all σ̄ ∈ Im p̄0 that is there exists p′0 ∈ P0 such that p̄0(p

′
0) = σ̄

and β ∈ Γ1, we have σ̄ββ−1 = p̄0(p′0)ββ−1 = p̄0ββ−1 = p̄1h(β, p
′
0), so

σββ−1 ⊆ Im p̄1.
□

3. CONCLUSION

In this paper, we defined a generalized notion of semidirect hyperproduct
of polygroups and use that to introduce a pushout construction for crossed
polymodules. Our results extended the classical results of crossed squares to
crossed polysquares. One of the main tools in the study of polygroups is the
fundamental relations. Additionally we studeid on crossed polysquare version
of homotopy cokernels.
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