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STABILITY OF THE KDV EQUATION IN THE CASE OF MIXED
INTERNAL AND BOUNDARY DAMPINGS

WITH TIME-DEPENDENT DELAY

MOHAMMED ALLALI and CHAHNAZ TIMIMOUN

Abstract. The aim of this paper is to consider the nonlinear Korteweg-de Vries
equation with internal feedback without delay and a boundary feedback with
time-dependent delay. We study the well-posedness of the system under some
assumptions on the length of the spatial domain and on the delay using semi-
groups theory and we study the exponential stability of the equation considering
a Lyapunov functional approach.
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1. INTRODUCTION

We want to study the stability of the Korteweg-de Vries equation (KdV) in
the case of mixed internal and boundary dampings with time-varying delay in
the boundary feedback. The KdV equation is a third-order quasilinear one-
dimensional equation. It models the propagation of waves in water of shallow
depth. This wave was observed for the first time by John Scott Russel in 1834
and the equation was introduced in [5]. The controllability and stabilization
properties of the KdV equation have been studied by many authors, see [6, 11]
and [2, 12].

Intensive research has been developed recently on stability problems with
delay for partial differential equations due to the different applications in bi-
ology and engineering. The interest in considering a delay in an equation is
due to the fact that the sensors act with delay in the control systems.

The problem of stabilization of nonlinear KdV equation with constant time-
delay was studied in [1, 8, 13] using a Lyapunov functional approach or an
observability inequality method. The stability problems with time-varying
delays was analyzed in [7] for one-dimensional heat and wave equations. Re-
cently, the problem of stability for the KdV equation with time-varying delay
was studied using a Lyapunov functional approach (see [9]). This work is an
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open problem mentioned in [9] and in our best knowledge, there is no work
dealing with this problem for the KdV equation with mixed boundary and
internal dampings with time-varying delay.

In this work, we are inspired by the techniques developed in [9]. We consider
the following system

(1)



ut(x, t) + ux(x, t) + uxxx(x, t) + u(x, t)ux(x, t)
+a(x)u(x, t) = 0, t > 0, x ∈ (0, L),

u(0, t) = u(L, t) = 0, t > 0,
ux(L, t) = βux(0, t− τ(t)), t > 0,
u(x, 0) = u0(x), x ∈ (0, L),
ux(0, t− τ(0)) = z0(t− τ(0)), 0 < t < τ(0),

where u(x, t) is the amplitude of the water wave at position x at time t and
L > 0 is the length of the spatial domain. We assume that the time-varying
delay τ is a function of time t, which satisfies the following conditions

(2) 0 < τ0 ≤ τ(t) ≤ M, ∀t ≥ 0,

(3) τ̇(t) ≤ d < 1, ∀t ≥ 0,

where 0 ≤ d < 1, and

(4) τ ∈ W 2,∞([0, T ]), ∀T > 0.

We assume that the real constant β satisfies

(5) 0 < |β| < 1− d,

and a = a(x) is nonnegative function belonging to L∞(0, L).

In [1], the exponential stability problem of the nonlinear KdV equation
with constant boundary time-delay feedback was studied using a Lyapunov
functional method for any lengths L < π

√
3 of the spatial domain and an

observability inequality method for any non-critical lengths

L /∈ N =

{
2π

√
k2 + kl + l2

3
, k, l ∈ N∗

}
.

In [13], the asymptotic stability of the quasilinear Korteweg-de Vries equation
with constant time-delay internal feedback was studied. In [9], the problem
of stability for the KdV equation with time-varying delay was studied using a
Lyapunov functional approach under some assumptions on the weight of the
feedbacks, on the time-varying delay and on the length of the spacial domain.

In this work we want to extend these results in the case of mixed internal
and boundary dampings with time-varying delay in the boundary feedback.

This paper is organized as follows. In Section 2, we prove the well-posedness
for system (1). In Section 3 we prove the exponential stability result for system
(1).
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2. WELL-POSEDNESS RESULTS

The goal of this section is to prove the well-posedness results of (1). We
start by proving the well-posedness result of the linearization around 0 of (1).
The next stage is devoted to the study of the linear system with a source term.
To finish, we use the fixed-point argument to show the well-posedness of the
nonlinear system.

2.1 WELL-POSEDNESS RESULT OF THE LINEAR SYSTEM

This part is devoted to the study of the linearization around 0 of (1), that
is

(6)


ut(x, t) + ux(x, t) + uxxx(x, t) + a(x)u(x, t) = 0, t > 0, x ∈ (0, L),
u(0, t) = u(L, t) = 0, t > 0,
ux(L, t) = βux(0, t− τ(t)), t > 0,
u(x, 0) = u0(x), x ∈ (0, L),
ux(0, t− τ(0)) = z0(t− τ(0)), t ∈ (0, τ(0)).

We introduce the following new variable (see, for instance, [7]): Let z(ρ, t) =
ux(0, t − τ(t)ρ) for ρ ∈ (0, 1) and t > 0. We can show that z verifies the
following transport equation

(7)

 τ(t)zt(ρ, t) + (1− τ̇(t)ρ)zρ(ρ, t) = 0, t > 0, ρ ∈ (0, 1),
z(0, t) = ux(0, t), t > 0,
z(ρ, 0) = z0(−τ(0)ρ), ρ ∈ (0, 1).

Define Ψ =

(
u
z

)
, then Ψ satisfies

Ψt =

(
ut
zt

)
=

−ux − uxxx − au
τ̇(t)ρ− 1

τ(t)
zρ

 .

We can rewrite this problem as the following first-order system

(8)

 Ψt(t) = A(t)Ψ(t), t > 0,

Ψ(0) =

(
u0

z0(−τ(0)·)

)
=: Ψ0,

where the time-dependent operator A(t) is defined by

A(t)

(
u
z

)
=

−ux − uxxx − au
τ̇(t)ρ− 1

τ(t)
zρ

 ,

with domain

D(A(t)) =

{(
u
z

)
∈
(
H3(0, L) ∩H1

0 (0, L)
)
×H1(0, 1), z(0) = ux(0),

ux(L) = βz(1)} .
.

We see that D(A(t)) is independent of time t.
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We consider the Hilbert space H = L2(0, L) × L2(0, 1), equipped with the
inner product 〈(

u
z

)
,

(
v
y

)〉
=

∫ L

0
uvdx+

∫ 1

0
zydρ,

and with the associated norm ∥ · ∥H .
Following [7], we prove the well-posedness of (8). The proof is based on the

following theorem which is proven in [3]:

Theorem 2.1. Assume that

(1) Y = D(A(0)) is a dense subset of H,
(2) D(A(t)) = D(A(0)), for all t > 0,
(3) for all t ∈ [0, T ], A(t) generates a strongly continuous semigroup on H

and the family A = {A(t) : t ∈ [0, T ]} is stable with stability constants
C and m independent of t (i.e. the semigroup (St(s))s≥0 generated by
A(t) satisfies ∥St(s)Ψ∥H ≤ Cems∥Ψ∥H , for all Ψ ∈ H and s ≥ 0),

(4)
d

dt
A(t) belongs to L∞

∗ ([0, T ], B(Y, H)), the space of equivalent classes

of essentially bounded, strongly measure functions from [0, T ] into the
set B(Y, H) of bounded operators from Y into H.

Then, problem (8) has a unique solution Ψ ∈ C([0, T ],Y) ∩ C1([0, T ], H) for
any initial datum in Y.

The following theorem gives the existence and uniqueness results of the
solution of the problem (8)

Theorem 2.2. Assume that (2)-(5) hold. Let Ψ0 ∈ H, then there exists a
unique solution Ψ ∈ C([0,+∞), H) to (8). Moreover, if Ψ0 ∈ D(A(0)) then
Ψ ∈ C([0,+∞), D(A(0))) ∩ C1([0,+∞), H).

Proof. We are going to prove the four assumptions of Theorem 2.1. We
follow closely the methods used in [9]. The space Y = D(A(0)) is a dense
subset of H and we have D(A(t)) = D(A(0)), for all t > 0 by definition.
Now, we will prove the assumption 3 of theorem 2.1. First, we introduce the
time-dependent inner product on H defined by〈(

u
z

)
,

(
v
y

)〉
t

=

∫ L

0
uvdx+ |β|τ(t)

∫ 1

0
zydρ,

and with the associated norm ∥ · ∥t.
From (2), the two norms ∥ · ∥t and ∥ · ∥H are equivalent in H. Indeed,
(9)
∀t ≥ 0, ∀(u, z) ∈ H, (1 + |β|τ0)∥(u, z)∥2H ≤ ∥(u, z)∥2t ≤ (1 + |β|M)∥(u, z)∥2H .
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For t ∈ [0, T ] fixed, we start by proving that A(t) is dissipative. We Take

Ψ =

(
u
z

)
∈ D(A(0)) and we calculate ⟨A(t)Ψ,Ψ⟩t :

⟨A(t)Ψ,Ψ⟩t =
〈(

ut
zt

)
,

(
u
z

)〉
t

=

〈−ux − uxxx − au
τ̇(t)ρ− 1

τ(t)
zρ

 ,

(
u
z

)〉
t

=

∫ L

0
(−ux − uxxx − au)udx+ |β|

∫ 1

0
(τ̇(t)ρ− 1)zρzdρ.

By integrating by parts in space and in ρ, we obtain

⟨A(t)Ψ,Ψ⟩t =
1

2
[u2x(x, t)]

L
0 −

∫ L

0
a(x)u2(x, t)dx+

|β|
2
[(τ̇(t)ρ− 1)z2(ρ, t)]10

−|β|
2
τ̇(t)

∫ 1

0
z2(ρ, t)dρ,

.

then

⟨A(t)Ψ,Ψ⟩t =
1

2
(u2x(L, t)− u2x(0, t))−

∫ L

0
a(x)u2(x, t)dx+

|β|
2
z2(0, t)

+
|β|
2
(τ̇(t)− 1)z2(1, t)− |β|

2
τ̇(t)

∫ 1

0
z2(ρ, t)dρ.

.

Using the boundary conditions, we get

⟨A(t)Ψ,Ψ⟩t =
1

2
(β2z2(1, t)− z2(0, t))−

∫ L

0
a(x)u2(x, t)dx+

|β|
2
z2(0, t)

+
|β|
2
(τ̇(t)− 1)z2(1, t)− |β|

2
τ̇(t)

∫ 1

0
z2(ρ, t)dρ,

.

hence

⟨A(t)Ψ,Ψ⟩t =
1

2
(β2 + |β|(τ̇(t)− 1))z2(1, t) +

1

2
(|β| − 1)z2(0, t))

−
∫ L

0
a(x)u2(x, t)dx− |β|

2
τ̇(t)

∫ 1

0
z2(ρ, t)dρ.

.

Finally we obtain

⟨A(t)Ψ,Ψ⟩t ≤
1

2
(β2 + |β|(d− 1))z2(1, t) +

1

2
(|β| − 1)z2(0, t))

−
∫ L

0
a(x)u2(x, t)dx− |β|

2
τ̇(t)

∫ 1

0
z2(ρ, t)dρ

≤ −|β|
2
τ̇(t)

∫ 1

0
z2(ρ, t)dρ,

since we have τ̇(t) ≤ d < 1 and |β| < 1− d.
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We set κ(t) = (τ̇(t)2+1)1/2

2τ(t) , then

⟨A(t)Ψ,Ψ⟩t − κ(t)⟨Ψ,Ψ⟩t ≤ −|β|
2
(τ̇(t) + (τ̇(t)2 + 1)1/2)

∫ 1

0
z2(ρ, t)dρ ≤ 0,

which implies that the operator Ã(t) := A(t)− κ(t)I is dissipative.

Now, we prove that the adjoint of Ã(t), denoted by Ã(t)∗ is dissipative. We
can show that the adjoint of A(t) is defined by

A(t)∗
(
u
z

)
=

 ux + uxxx − au
1− τ̇(t)ρ

τ(t)
zρ −

τ̇(t)

τ(t)
z

 ,

with domain

D(A(t)∗) =

{(
u
z

)
∈
(
H3(0, L) ∩H1

0 (0, L)
)
×H1(0, 1), ux(0) = |β|z(0),

z(1) =
β

|β|(1− τ̇(t))
ux(L)

}
.

.

Let Ψ =

(
u
z

)
∈ D(A(t)∗), then

⟨A(t)∗Ψ,Ψ⟩t =

〈 ux + uxxx − au
1− τ̇(t)ρ

τ(t)
zρ −

τ̇(t)

τ(t)
z

 ,

(
u
z

)〉

=

∫ L

0
(ux + uxxx − au)udx+ |β|τ(t)

∫ 1

0
(
1− τ̇(t)ρ

τ(t)
zρ −

τ̇(t)

τ(t)
z)zdρ.

By integrating by parts in space and in ρ, we obtain

⟨A(t)∗Ψ,Ψ⟩t = −1

2
[u2x(x, t)]

L
0 −

∫ L

0
a(x)u2(x, t)dx+

|β|
2
[(1− τ̇(t)ρ)z2(ρ, t)]10

+
|β|τ̇(t)

2

∫ 1

0
z2dρ− |β|τ̇(t)

∫ 1

0
z2dρ,

.

then

⟨A(t)∗Ψ,Ψ⟩t = −1

2
(u2x(L, t)− u2x(0, t))−

∫ L

0
a(x)u2(x, t)dx− |β|

2
z2(0, t)

+
|β|
2
(1− τ̇(t))z2(1, t)− |β|τ̇(t)

2

∫ 1

0
z2dρ.

.

Using the boundary conditions, we have

⟨A(t)∗Ψ,Ψ⟩t = −1

2
((1− τ̇(t))2z2(1, t)− β2z2(0, t))−

∫ L

0
a(x)u2(x, t)dx

+
|β|
2
(1− τ̇(t))z2(1, t)− |β|

2
z2(0, t)− |β|τ̇(t)

2

∫ 1

0
z2dρ.

.
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Finally we obtain

⟨A(t)∗Ψ,Ψ⟩t =
1− τ̇(t)

2
(|β|+ τ̇(t)− 1)z2(1, t) +

1

2
(β2 − |β|)z2(0, t))

−
∫ L

0
a(x)u2(x, t)dx− |β|τ̇(t)

2

∫ 1

0
z2dρ ≤ −|β|τ̇(t)

2

∫ 1

0
z2dρ,

.

since we have τ̇(t) ≤ d < 1 and |β| < 1− d.
Hence

⟨A(t)∗Ψ,Ψ⟩t − κ(t)⟨Ψ,Ψ⟩t ≤ −|β|
2
(τ̇(t) + (τ̇(t)2 + 1)1/2)

∫ 1

0
z2(ρ, t)dρ ≤ 0,

then the operator Ã(t)∗ := A(t)∗ − κ(t)I is also dissipative.

As Ã(t) and Ã(t)∗ are dissipative and Ã(t) is a densely defined closed lin-

ear operator, then Ã(t) is the infinitesimal generator of a C0 semigroup of
contraction on H for any fixed t ∈ [0, T ] (see [10]).

Following the proof of Theorem 2.2 in [9], we can show that.

(10)
∥Ψ∥t
∥Ψ∥s

≤ e
c

2τ0
|t−s|

, ∀t, s ∈ [0, T ],

where Ψ = (u, z) ∈ H and c is a positive constant.

Hence, for all t ∈ [0, T ], Ã(t) generates a strongly continuous semigroup on

H and the family Ã = {Ã(t) : t ∈ [0, T ]} is stable with stability constants C
and m independent of t (see Proposition 3.4 of [3]). So the third assumption
of Theorem 2.1 is satisfied.

We can also prove that

d

dt
Ã(t) ∈ L∞

∗ ([0, T ], B(D(A(0)), H)).

Indeed,
d

dt
Ã(t) =

d

dt
A(t)− κ̇(t)I,

where from the condition (4), κ̇(t) = τ̇(t)τ̈(t)

2τ(t)(τ̇(t)2+1)1/2
− τ̇(t)(τ̇(t)2+1)1/2

2τ(t)2
is

bounded on [0, T ] for all T > 0 and we obtain

d

dt
A(t)Ψ =

 0
τ(t)τ̈(t)ρ− (τ̇(t)ρ− 1)τ̇(t)

τ(t)2
zρ

 ,

where from the assumption (4),
τ(t)τ̈(t)ρ− (τ̇(t)ρ− 1)τ̇(t)

τ(t)2
is bounded on

[0, T ] .
As the four conditions of Theorem 2.1 are verified, then the problem{

Ψ̃t(t) = Ã(t)Ψ̃(t),

Ψ̃(0) = Ψ0,
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has a unique solution Ψ̃ ∈ C([0, +∞), D(A(0))) ∩ C1([0, +∞), H) for Ψ0 ∈
D(A(0)). We have

Ã(t)Ψ̃(t) = Ψ̃t(t),

then
A(t)Ψ̃(t)− κ(t)Ψ̃(t) = Ψ̃t(t),

so
A(t)Ψ̃(t) = Ψ̃t(t) + κ(t)Ψ̃(t),

we multiply this equation by e
∫ t
0 κ(s)ds to obtain

A(t)e
∫ t
0 κ(s)dsΨ̃(t) = e

∫ t
0 κ(s)dsΨ̃t(t) + κ(t)e

∫ t
0 κ(s)dsΨ̃(t),

hence

A(t)e
∫ t
0 κ(s)dsΨ̃(t) =

d

dt
(e

∫ t
0 κ(s)dsΨ̃(t)),

The solution of (8) is then given by Ψ(t) = e
∫ t
0 κ(s)dsΨ̃(t), which finishes the

proof. □

2.2 WELL-POSEDNESS OF THE LINEAR SYSTEM WITH A SOURCE TERM

We consider now the linear equation (6) with a source term f

(11)



ut(x, t) + ux(x, t) + uxxx(x, t) + a(x)u(x, t) = f(x, t),

t > 0, x ∈ (0, L)

u(0, t) = u(L, t) = 0, t > 0,

ux(L, t) = βux(0, t− τ(t)), t > 0,

u(x, 0) = u0(x), x ∈ (0, L),

ux(0, t− τ(0)) = z0(t− τ(0)), t ∈ (0, τ(0)).

Let T > 0 and introduce the space B=C([0, T ], L2(0, L))∩L2((0, T ), H1(0, L)).

Proposition 2.3. Assume that the conditions (2)-(5) hold.

Let Ψ0 =

(
u0
z0

)
∈ H and f ∈ L1((0, T ), L2(0, L)). Then there exists a unique

solution Ψ =

(
u

ux(0, t− τ(t).)

)
∈ B × C([0, T ], L2(0, 1)) to (11). Moreover,

there exists K > 0 such that

(12) ∥(u, z)∥C([0,T ],H) ≤ K
(
∥Ψ0∥H + ∥f∥L1((0,T ),L2(0,L))

)
,

(13) ∥ux∥L2((0,T ),L2(0,L)) ≤ K
(
∥Ψ0∥H + ∥f∥L1((0,T ),L2(0,L))

)
.

Proof. We can write the system (11) as Ψt(t) = A(t)Ψ(t) +

(
f
0

)
. Us-

ing [4, Th 2] we can show that if Ψ0 ∈ H and f ∈ L1((0, T ), L2(0, L)),
then there exists a unique solution Ψ ∈ C([0, T ), H). Furthermore, Ψ ∈
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C([0, T ), D(A(0)))∩C1([0, T ), H) if Ψ0 ∈ D(A(0)) and f ∈ C([0, T ), L2(0, L))
∩L1((0, T ), D(A(0))).

We take Ψ = (u, z) a classical solution of (11) (it exists if Ψ0 ∈ D(A(0))) .
Let us consider the following energy

(14) E(t) =

∫ L

0
u2(x, t)dx+ |β|τ(t)

∫ 1

0
u2x(0, t− τ(t)ρ)dρ.

Differentiating (14), we get

d

dt
E(t) = 2

∫ L

0
u(x, t)ut(x, t)dx+ |β|τ̇(t)

∫ 1

0
u2x(0, t− τ(t)ρ)dρ

+2|β|τ(t)
∫ 1

0
ux(0, t− τ(t)ρ)uxt(0, t− τ(t)ρ)dρ

= 2

∫ L

0
u(x, t)(−ux − uxxx − au+ f(x, t))dx+ |β|τ̇(t)

∫ 1

0
u2x(0, t− τ(t)ρ)dρ

+2|β|
∫ 1

0
(τ̇(t)ρ− 1)ux(0, t− τ(t)ρ)uxρ(0, t− τ(t)ρ)dρ.

.

We use (11) and integrations by parts, to have

(15)

d

dt
E(t) = (|β| − 1)u2x(0, t) + (β2 − |β|(1− τ̇(t))u2x(0, t− τ(t))

−2

∫ L

0
a(x)u2(x, t)dx+ 2

∫ L

0
u(x, t)f(x, t)dx.

.

From (2)-(5) we obtain

d

dt
E(t) ≤ 2

∫ L

0
f(x, t)u(x, t)dx.

Using the Cauchy-Schwarz inequality, we have

d

dt
E(t) ≤ 2∥f(t)∥L2(0,L)∥u(t)∥L2(0,L).

Now we can take 0 ≤ t ≤ T and integrate the above expression on [0, t] to get

(16) E(t)− E(0) ≤ 2

∫ t

0
∥f(s)∥L2(0,L)∥u(s)∥L2(0,L)ds.

Thus, by the definition of the energy, we get

∥(u(·, t), z(·, t))∥2H ≤ ∥Ψ0∥2H + 2∥f∥L1((0,T ),L2(0,L))∥(u, z)∥C([0,T ],H).

Using the Young inequality and taking the maximum for t ∈ [0, T ], then there
exists K > 0 such that

∥(u, z)∥C([0,T ],H) ≤ K
(
∥Ψ0∥H + ∥f∥L1((0,T ),L2(0,L))

)
,



50 M. Allali and C. Timimoun 10

yielding (12). From (15), we have

d

dt
E(t) + (|β|(1− τ̇(t))− β2)u2x(0, t− τ(t)) ≤ 2

∫ L

0
f(x, t)u(x, t)dx,

and from (2)-(5), we obtain

d

dt
E(t) + (|β|(1− d)− β2)u2x(0, t− τ(t)) ≤ 2

∫ L

0
f(x, t)u(x, t)dx.

We can take 0 ≤ t ≤ T and integrate the above expression on [0, t] to get

(17)

E(t)− E(0) + (|β|(1− d)− β2)

∫ t

0
u2x(0, t− τ(t))dt

≤ 2

∫ t

0
∥f(s)∥L2(0,L)∥u(s)∥L2(0,L)ds.

If we take t = T in (17), there exists K > 0 such that

(18)

∫ T

0
u2x(0, t− τ(t))dt ≤ K

(
∥Ψ0∥2H + ∥f∥2L1((0,T ),L2(0,L))

)
.

Now multiplying the first equation of (11) by xu and integrations by parts on
(0, T )× (0, L), we obtain

1

3

∫ L

0
xu2(x, T )dx+

∫ T

0

∫ L

0
u2xdxdt+

2

3

∫ T

0

∫ L

0
a(x)xu2dxdt =

1

3

∫ L

0
xu20dx

+
1

3

∫ T

0

∫ L

0
u2dxdt+

1

3

∫ T

0
Lu2x(L, t)dt+

2

3

∫ T

0

∫ L

0
xfudxdt,

since we have a(x) > 0, ux(L, t) = βux(0, t − τ(t)) and 2fu ≤ u2 + f2, then,
there exists K > 0 such that

∥ux∥2L2((0,L)×(0,T )) ≤ K

(∫ L

0
u20dx+

∫ T

0

∫ L

0
u2dxdt+

∫ T

0
u2x(0, t− τ(t))dt

+

∫ T

0

∫ L

0
f2dxdt

)
.

Using (18) we obtain (13).
□

2.3 WELL-POSEDNESS OF THE NONLINEAR SYSTEM

The last step is to prove the local well-posedness result for the nonlinear
system (1).

Theorem 2.4. Let T > 0, L > 0 and assume that (2)-(5) hold. Then
there exist r > 0 and K > 0 such that for every (u0, z0) ∈ H satisfying
∥(u0, z0)∥H ≤ r, there exists a unique solution u ∈ B of the system (1) such
that ∥u∥B ≤ K∥(u0, z0)∥H .
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Proof. Let (u0, z0) ∈ H and r > 0 chosen small enough such that ∥(u0, z0)∥H
≤ r. Take v ∈ B and consider the map Q : B → B, defined by Q(v) = u,
where u is the solution of

(19)



ut(x, t) + ux(x, t) + uxxx(x, t)
+a(x)u(x, t) = −v(x, t)vx(x, t), t > 0, x ∈ (0, L),
u(0, t) = u(L, t) = 0, t > 0,
ux(L, t) = βux(0, t− τ(t)), t > 0,
u(x, 0) = u0(x), x ∈ (0, L),
ux(0, t− τ(0)) = z0(t− τ(0)), 0 < t < τ(0).

We see that u ∈ B is a solution of (1) if and only if u is a fixed point
of Q. We can prove similarly to the proof of Theorem 2.6 in [9] that the
map Q is a contraction on the closed ball {v ∈ B, ∥v∥ ≤ R}. Finally, by
applying the Banach fixed point theorem, we deduce that the map Q has a
unique fixed point which is the solution of the nonlinear system (1) and then
the well-posedness result is proven. □

3. EXPONENTIAL STABILITY RESULTS

In this section, we prove the exponential stability results for the nonlinear
system (1). We recall that the energy of (1) is defined by

(20) E(t) =

∫ L

0
u2(x, t)dx+ |β|τ(t)

∫ 1

0
u2x(0, t− τ(t)ρ)dρ.

We are going to show that for a solution of (1) this energy is a decreasing
function of time.

Proposition 3.1. Suppose that (2)-(5) be satisfied. Then for all regular
solution of (1), the energy defined by (20) is decreasing and satisfies

d

dt
E(t) = (|β| − 1)u2x(0, t) + (β2 − |β|(1− τ̇(t)))

×u2x(0, t− τ(t))− 2

∫ L

0
a(x)u2dx ≤ 0.

(21)

Proof. The proof is the same as the proof of Proposition 2.3 and for the

nonlinear term we have for u ∈ H1
0 (0, L),

∫ L
0 u2(x, t)ux(x, t)dx =

1

3
(u3(L, t)−

u3(0, t)) = 0. □

Following [9], we consider the Lyapunov functionnal defined by

(22) V (t) = E(t) + µ1V1(t) + µ2V2(t),

where E is defined by (20), µ1, µ2 > 0 and for any regular solution of (1), we
define V1 and V2 by

(23) V1(t) =

∫ L

0
xu2(x, t)dx,
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V2(t) = τ(t)

∫ 1

0
(1− ρ)u2x(0, t− τ(t)ρ)dρ.

In this work we choose µ1 and µ2 such that 0 < µ1 <
|β|(1− d)− β2

Lβ2
and

0 < µ2 < 1− |β| to guarantee the decrease of the energy of the system.

Theorem 3.2. Suppose that (2)-(5) are satisfied and assume that the length
L fulfills L < π

√
3. Then, there exists r > 0 such that, for every (u0, z0) ∈ H

satisfying ∥(u0, z0)∥H ≤ r, the energy of the system (1) decays exponentially
and so there exist two positive constants γ and K such that

(24) E(t) ≤ Ke−2γtE(0), ∀t > 0,

where, for 0 < µ1 <
|β|(1− d)− β2

Lβ2
and 0 < µ2 < 1− |β|,

(25) γ ≤ min

{
(9π2 − 2π2L3/2r − 3L2)µ1

6L2(µ1L+ 1)
,

µ2(1− d)

2M(|β|+ µ2)

}
,

and

K ≤ 1 + max

{
µ1L,

µ2

|β|

}
.

Proof. The function V is equivalent to the energy E. Indeed we can easily
check for every t > 0 that

(26) E(t) ≤ V (t) ≤ E(t)

(
1 + max

{
µ1L,

µ2

|β|

})
.

Then, it suffices to show that V decays exponentially. Our goal is to prove

that
d

dt
V (t) + 2γV (t) ≤ 0 for γ > 0 to fix later. Let u solution of (1) with

(u0, z0) ∈ D(A(0)) such that ∥(u0, z0)∥0 ≤ r with r > 0 chosen later.
Differentiating V1 and using integration by parts, we get

(27)

d

dt
V1(t) =

∫ L

0
u2(x, t)dx− 3

∫ L

0
u2x(x, t)dx+ Lβ2u2x(0, t− τ(t))

+
2

3

∫ L

0
u3(x, t)dx− 2

∫ L

0
a(x)xu2(x, t)dx.

Now, we differentiate V2 to obtain

d

dt
V2(t) = +2τ(t)

∫ 1

0
(1− ρ)ux(0, t− τ(t)ρ)∂tux(0, t− τ(t)ρ)dρ

τ̇(t)

∫ 1

0
(1− ρ)u2x(0, t− τ(t)ρ)dρ.
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We have τ(t)∂tux(0, t − τ(t)ρ) = (τ̇(t)ρ − 1)∂ρux(0, t − τ(t)ρ) and after some
integrations by parts, we get

(28)
d

dt
V2(t) = u2x(0, t)−

∫ 1

0
(1− τ̇(t)ρ)u2x(0, t− τ(t)ρ)dρ.

From (21), (27) and (28) we obtain

d

dt
V (t) + 2γV (t)

≤ (β2 − |β|(1− d) + µ1Lβ
2)u2x(0, t− τ(t)) + (|β| − 1 + µ2)u

2
x(0)

−3µ1

∫ L

0
u2x(x, t)dx+

2

3
µ1

∫ L

0
u3(x, t)dx+ (µ1 + 2γ + 2Lγµ1)

∫ L

0
u2(x, t)dx

+(2γ|β|M + 2Mγµ2 − µ2(1− d))

∫ 1

0
u2x(0, t− τ(t)ρ)dρ.

We have ∫ L

0
u3(x, t)dx ≤ L3/2r∥ux∥2L2(0,L).

Then we get

d

dt
V (t) + 2γV (t) ≤

(
L2

π2
(µ1 + 2γ + 2Lµ1γ) +

2

3
L3/2rµ1 − 3µ1

)∫ L

0
u2x(x, t)dx

+(|β| − 1 + µ2)u
2
x(0, t) + (β2 − |β|(1− d) + µ1Lβ

2)u2x(0, t− τ(t))

+(2γ|β|M + 2µ2γM − µ2(1− d))

∫ 1

0
u2x(0, t− τ(t)ρ)dρ.

We take µ1 and µ2 small enough to have β2 − |β|(1 − d) + µ1Lβ
2 < 0 and

|β| − 1 + µ2 < 0, then, µ1 <
|β|(1− d)− β2

Lβ2
and µ2 < 1− |β|.

Following [1], since L < π
√
3, we can choose r sufficiently small to have r <

3(3π2−L2)

2L3/2π2 . Hence, we can choose γ > 0 such that

L2

π2 (µ1 + γ + 2Lµ1γ) +
2

3
L3/2rµ1 − 3µ1 ≤ 0,

2γ|β|M + 2µ2γM − µ2(1− d) ≤ 0.

We obtain

γ ≤ (9π2 − 2π2L3/2r − 3L2)µ1

6L2(µ1L+ 1)
,

and

γ ≤ µ2(1− d)

2M(|β|+ µ2)
,
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then

(29) γ ≤ min

{
(9π2 − 2π2L3/2r − 3L2)µ1

6L2(µ1L+ 1)
,

µ2(1− d)

2M(|β|+ µ2)

}
.

Finally we get
d

dt
V (t)+ 2γV (t) ≤ 0 and by solving this equation we obtain

V (t) ≤ V (0)e−2γt for all t > 0. Using (26) we obtain

E(t) ≤ Ke−2γtE(0), ∀t > 0,

Since D(A(0)) is dense in H, we can take (u0, z0) ∈ H. □

4. CONCLUSION

In this work, we presented some well-posedness and stability results for the
nonlinear KdV equation with internal feedback without delay and a bound-
ary feedback with time-dependent delay. We take some assumptions on the
weights of the feedbacks, on the length of the spatial domain and on the time-
dependent delay in order to prove the exponential stability results, using a
Lyapunov functional approach. We can mention a possible future research on
the study of the well-posedness and the stability of the nonlinear KdV equa-
tion in the case of a boundary feedback without delay and an internal feedback
with delay (constant or variable).
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