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ON e∗-θ-D-SETS AND RELATED TOPICS

DILEK AKALIN and MURAD ÖZKOÇ

Abstract. This paper aims to study the notion of e∗-θ-open sets and to inves-
tigate new properties of this notion. Also, we define a new type of set, called
e∗-θ-D-set, via the notion of e∗-θ-open set. Moreover, we introduce some new
separation axioms by utilizing e∗-θ-D-sets. We obtain many results related to
these new notions. In addition, the notions of e∗-θ-kernel and slightly e∗-θ-R0

space are defined. Some characterizations regarding these new notions have been
obtained. Furthermore, we have given many examples concerning the mentioned
notions. Finally, we not only put forward the definition of e∗-R1 space but also
obtained some of its characterizations
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1. INTRODUCTION

The concept of open set is very important for general topology. The broad
perspective offered to mathematicians by this fundamental concept in topology
facilitates the organization of elements and the study of topological spaces.
This richness of the open set concept adds depth to mathematical thought
and contributes significantly to the understanding of topological spaces. As
we go deeper into topology, the diversity of open sets increases. This diversity
provides a mathematical basis for separating different points and set structures
with different neighborhoods. At this stage, it is important to point out that
separation axioms play a decisive role. Today, various special and general
forms of separation axioms have been defined and studied in detail by many
mathematicians. Moreover, special and general forms of open sets have also
gained an important place in the mathematical literature. For instance, in
1966, Velicko introduced the notion of θ-open [12] set which is the stronger
form of open sets in topology. After him, several new forms of θ-open [12]
classes such as pre-θ-open [8], semi-θ-open [7], β-θ-open [2, 9], and e∗-θ-open
[6] were defined and studied in the literature. In the first part of this paper,
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Koçman University under the project number 23/153/02/1.

Corresponding author: Murad Özkoç.
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we present an independent notion of β-θ-open set [2, 9], which was introduced
in 2015 by Farhan et. al. The literature on e∗-θ-open and e∗-θ-closed sets
defined by Yang some new results are obtained that do not hold. In the
second section, the e∗-θ-D-set and quasi e∗-θ-D-set defined in this paper are
analyzed. The concepts of e∗-θ-D0 space, e∗-θ-D1 space, e∗-θ-D2 space are
introduced through the concepts of θ-closed set and the relations between
these concepts are investigated. In the third section, the concepts of e∗-θ-R0

space and e∗-θ-core are partially defined and the relations between these two
concepts are analyzed. In the fourth section, the notions of S-continuous,
θ-S-e∗-continuous and S-e∗-continuous functions are defined and some basic
results on these functions are presented. In the last section, the definition
of e∗-R1 space is given and two characterizations of this concept has been
obtained.

2. PRELIMINARIES

Throughout this paper, X and Y refer always to topological spaces on
which no separation axioms are assumed unless otherwise mentioned. For a
subset A of X, cl(A) and int(A) denote the closure of A and the interior of
A in X, respectively. The family of all open subsets containing x of X is
denoted by O(X,x). A subset A is said to be regular open [11] (resp. regular
closed [11]) if A = int(cl(A)) (resp. A = cl(int(A))). The δ-interior [12] of
a subset A of X is the union of all regular open sets of X contained in A
and is denoted by δ-int(A). The subset A of a space X is called δ-open [12] if
A = δ-int(A), i.e., a set is δ-open if it is the union of some regular open sets.
The complement of a δ-open set is called δ-closed. Alternatively, a subset A of
a space X is called δ-closed [12] if A = δ-cl(A), where δ-cl(A) = {x ∈ X|(∀U ∈
O(X,x))(int(cl(U)) ∩ A ̸= ∅)}. The family of all δ-open (resp. δ-closed) sets
in X is denoted by δO(X) (resp. δC(X)).

A subset A of X is said to be e∗-open [5] if A ⊆ cl(int(δ-cl(A))). The
complement of an e∗-open set is called e∗-closed. A subset A of a space X is
said to be e∗-regular [6] if it is both e∗-open and e∗-closed. The e∗-interior [5]
of a subset A of X is the union of all e∗-open sets of X contained in A and is
denoted by e∗-int(A). The e∗-closure [5] of a subset A of X is the intersection
of all e∗-closed sets of X containing A and is denoted by e∗-cl(A). The family
of all e∗-open (resp. e∗-closed, e∗-regular) subsets containing x of X is denoted
by e∗O(X,x) (resp. e∗C(X,x), e∗R(X,x)).

A point x of X is called an e∗-θ-cluster [6] point of A ⊆ X if e∗-cl(U)∩A = ∅
for every U ∈ e∗O(X,x). The set of all e∗-θ-cluster points of A is called
the e∗-θ-closure of A and is denoted by e∗-clθ(A). A subset A is said to be
e∗-θ-closed if and only if A = e∗-clθ(A). The complement of an e∗-θ-closed set
is said to be e∗-θ-open. The family of all e∗-θ-closed (resp. e∗-θ-open) subsets
of X is denoted by e∗θC(X) (resp. e∗θO(X)). The family of all e∗-θ-closed
(resp. e∗-θ-open) subsets containing x of X is denoted by e∗θC(X,x) (resp.
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e∗θO(X,x)). Also, the family of all e∗-θ-open sets containing the subset F of
X will be denoted by e∗θO(X,F ).

Definition 2.1 ([6]). The following properties hold for a subset A of a
topological space (X, τ) :

(a) A ∈ e∗O(X) if and only if e∗-cl(A) ∈ e∗R(X),
(b) A ∈ e∗C(X) if and only if e∗-int(A) ∈ e∗R(X).

Corollary 2.2 ([6]). Let A and Aα(α ∈ Λ) be any subsets of a space
(X, τ). Then the following properties hold:

(a) A is e∗-θ-open in X if and only if for each x ∈ A there exists U ∈
e∗R(X,x) such that x ∈ U ⊆ A,

(b) If Aα is e∗-θ-open in X for each α ∈ A, then ∪α∈ΛAα is e∗-θ-open in
X.

Theorem 2.3 ([6]). For a subset A of a topological space X, the following
properties hold:

(a) If A ∈ e∗O(X), then e∗-cl(A) = e∗-clθ(A),
(b) A ∈ e∗R(X) if and only if A is e∗-θ-open and e∗-θ-closed.

Definition 2.4 ([6]). A space X is said to be e∗-regular if for each closed
set F ⊆ X and each point x ∈ X \ F, there exist disjoint e∗-open sets U and
V such that x ∈ U and F ⊆ V.

Theorem 2.5 ([6]). For a space X, the following are equivalent:
(a) X is e∗-regular;
(b) For each point x ∈ X and for each open set U of X containing x, there

exists V ∈ e∗O(X) such that x ∈ V ⊆ e∗-cl(V ) ⊆ U ;
(c) For each subset U ∈ e∗O(X) and each x ∈ U, there exists V ∈ e∗R(X)

such that x ∈ V ⊆ U.

Definition 2.6 ([4]). A function f : X → Y is said to be e∗-irresolute if
f−1[V ] ∈ e∗O(X) for every V ∈ e∗O(Y ).

Theorem 2.7 ([10]). Let f : X → Y be a function. The following properties
are equivalent:

(a) f is weakly e∗-irresolute;
(b) f [e∗-cl(A)] ⊆ e∗-clθ(f [A]) for every subset A of X,
(c) f−1[V ] is e∗-θ-open in X for every e∗-θ-open V of Y.

Remark 2.8 ([6]). It can be easily shown that e∗-regular ⇒ e∗-θ-open ⇒
e∗-open.

Theorem 2.9 ([6]). For each subset A of a topological space (X, τ), we
have:

e∗-clθ(A) =
⋂
{V |A ⊆ V and V is e∗-θ-closed}

=
⋂
{V |A ⊆ V and V ∈ e∗R(X)}.

Remark 2.10. It is easy to prove that:
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(a) the intersection of an arbitrary collection of e∗-θ-closed sets is e∗-θ-
closed.

(b) X and ∅ are e∗-θ-closed sets.

Remark 2.11. The following example shows that the union of any two
e∗-θ-closed sets of X need not to be e∗-θ-closed in X.

Example 2.12 ([6]). Let X = {1, 2, 3} and τ = {∅, X, {1}, {2}, {1, 2}}. The
subsets {1} and {2} are e∗-θ-closed in (X, τ) but {1, 2} is not e∗-θ-closed.

Theorem 2.13 ([6]). For a subset A of a space X, the following are equiv-
alent:

(a) A ∈ e∗R(X);
(b) A = e∗-cl(e∗-int(A));
(c) A = e∗-int(e∗-cl(A)).

Theorem 2.14 ([6]). Let X be a topological space and A ⊆ X. Then, the
operator e∗-cl is idempotent, i.e., e∗-clθ(e

∗-clθ(A)) = e∗-clθ(A).

3. ON e∗-θ-e∗-θ-e∗-θ-OPEN SETS

Definition 3.1. A subset A of a topological space X is said to be θ-
complement e∗-open (briefly, θ-c-e∗-open) provided there exists a subset U
of X for which X \A = e∗-clθ(U). We call a set θ-complement e∗-closed if its
complement is θ-c-e∗-open.

Remark 3.2. It should be mentioned that by Theorem 2.14, X \ A =
e∗-clθ(U) is e∗-θ-closed and A is e∗-θ-open. Therefore, the equivalence of
θ-c-e∗-open and e∗-θ-open is obvious from Definition 3.1.

Theorem 3.3. Let X be a topological space and A ⊆ X. If A is e∗-open,
then e∗-int(e∗-clθ(A)) is e∗-θ-open.

Proof. Let A ∈ e∗O(X).
By Theorem 2.13, A ∈ e∗O(X) ⇒ e∗-cl(A) ∈ e∗C(X) ⇒ X \ e∗-cl(A) ∈

e∗O(X)⇒ e∗-cl(X \ e∗-cl(A)) = e∗-clθ(X \ e∗-cl(A)), which we denote by (1).
A ⊆ X ⇒ X \ e∗-int(e∗-cl(A)) = e∗-cl(X \ e∗-cl(A)) ⇒ e∗-int(e∗-cl(A)) =

X \ e∗-cl(X \ e∗-cl(A))A ∈ e∗O(X) ⇒ e∗-int(e∗-clθ(A)) = e∗-int(e∗-cl(A)) =
X \ e∗-cl(X \ e∗-cl(A)), which we denote by (2).

(1), (2) imply e∗-int(e∗-clθ(A)) = \e∗-clθ(\e∗-cl(A)) ⇒ e∗-int(e∗-clθ(A)) ∈
e∗θO(X). □

Theorem 3.4. Let X be a topological space. Then the notion of e∗-θ-open
is equivalent to the notion of e∗-regular if and only if e∗-clθ(A) is e∗-regular
for every set A ⊆ X.

Proof. (⇒). Let e∗θO(X) = e∗R(X) and A ⊆ X.
By Theorem 2.14, A ⊆ X ⇒ e∗-clθ(A) = e∗-clθ(e

∗-clθ(A)) ⇒ e∗-clθ(A) ∈
e∗θC(X), which we denote by (1).
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e∗-clθ(A) ∈ e∗θC(X) ⇒ X \ e∗-clθ(A) ∈ e∗θO(X), which combined with
e∗θO(X) = e∗R(X), impliesX\e∗-clθ(A) ∈ e∗R(X) ⊆ e∗θC(X)⇒ e∗-clθ(A) ∈
e∗θO(X) . . . (2), which we denote by (2).

(1),(2)⇒ e∗-clθ(A) ∈ e∗R(X).
(⇐). Let U ∈ e∗θO(X). Our aim is to show that U ∈ e∗R(X).
By Remark 3.2, U ∈ e∗θO(X)⇒ (∃A ⊆ X)(X \U = e∗-clθ(A)) and, by the

hypothesis, X \ U ∈ e∗R(X)⇒ U ∈ e∗R(X). □

Theorem 3.5. Let X be a topological space and B ⊆ X. If B is e∗-θ-open,
then B is an union some of e∗-regular sets.

Proof. Let B ∈ e∗θO(X) and x ∈ B.
By Remark 3.2, B ∈ e∗θO(X) ⇒ (∃A ⊆ X)(B = X \ e∗-clθ(A)) and

x ∈ B imply x /∈ e∗-clθ(A) ⇒ (∃Wx ∈ e∗O(X,x))(e∗-cl(Wx) ∩ A = ∅) ⇒
(∃Wx ∈ e∗O(X,x))(e∗-cl(Wx) ⊆ \A) ⇒ (Wx ∈ e∗O(X,x))(e∗-int(e∗-cl(Wx))
= (e∗-intθ(e

∗-cl(Wx)) ⊆ e∗-intθ(\A) = \e∗-clθ(A)A := {e∗-int(e∗-cl(Wx))|
(∀x ∈ B)(∃Wx ∈ e∗O(X,x))(e∗-int(e∗-cl(Wx)) ⊆ \e∗-clθ(A))}} ⇒ (A ⊆ e∗R(
X))(B =

⋃
A). □

Corollary 3.6. Let X be a topological space and B ⊆ X. If B is e∗-θ-
closed, then B is an intersection some of e∗-regular sets.

4. ON e∗-θ-Die∗-θ-Die∗-θ-Di AND e∗θ-Tie∗θ-Tie∗θ-Ti TOPOLOGICAL SPACES

In this chapter, we introduce some classes of sets via the notion of e∗-θ-open
sets. Also, the relationships between these notions and some other existing
notions in the literature are investigated.

Definition 4.1. A subset A of a topological space X is called an e∗-θ-D-set
if there exist two sets U, V ∈ e∗θO(X) such that U ̸= X and A = U \ V. The
family of all e∗-θ-D-set of X and all e∗-θ-D-set of X containing x ∈ X will be
denoted by e∗θD(X) and e∗θD(X,x), respectively.

Remark 4.2. It is clear that every e∗-θ-open set U different from X is
an e∗-θ-D-set. However, the converse of this implication need not be true as
shown by the following example.

Example 4.3. Let X = {a, b, c, d} and τ = {∅, {a}, {c}, {a, c}, {c, d}, {a, c,
d}, X}. Then, e∗θO(X) = 2X \ {{b}} and e∗θD(X) = 2X \ {X}. It is obvious
that the set {b} is an e∗-θ-D-set but it is not e∗-θ-open.

Definition 4.4. A topological space X is called e∗-θ-D0 (resp. e∗-θ-D1,
e∗-θ-D2) if for any distinct pair of points x and y in X, there exist U ∈
e∗θD(X,x) and V ∈ e∗θD(X, y) such that y /∈ U or x /∈ V (resp. y /∈ U and
x /∈ V, U ∩ V = ∅).

Definition 4.5 ([1]). A topological space X is called e∗θ-T0 (resp. e∗θ-T1,
e∗θ-T2) if for any distinct pair of points x and y in X, there exist U ∈
e∗θO(X,x) and V ∈ e∗θO(X, y) such that y /∈ U or x /∈ V (resp. y /∈ U
and x /∈ V, U ∩ V = ∅).
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Remark 4.6. From Definitions 4.1 to 4.5, we obtain the following diagram:

e∗θ-T2 ⇒ e∗θ-T1 ⇒ e∗θ-T0

⇓ ⇓ ⇓
e∗-θ-D2 ⇒ e∗-θ-D1 ⇒ e∗-θ-D0

Theorem 4.7 ([1]). Let X be a topological space. If X is e∗θ-T0, then it is
e∗θ-T2.

Theorem 4.8. Let X be a topological space. If X is e∗-θ-D0, then it is
e∗θ-T0.

Proof. It suffices to prove that every e∗-θ-D0 space is e∗θ-T0.
Let x, y ∈ X and x ̸= y.

x ̸= y
X is e∗-θ-D0

}
⇒ (∃A ∈ e∗θD(X,x))(y /∈ A)∨(∃B ∈ e∗θD(X, y))(x /∈ B)

⇒ (∃N,M ∈ e∗θO(X))(M ̸= X)(A = M \N)(x ∈ A)(y /∈M ∨ y = M ∩N).
First case. Let y /∈M.
U := M
y /∈M

}
⇒ (U ∈ e∗θO(X,x))(y /∈ U).

Second case. Let y ∈M ∩N.
(y ∈M ∩N ⊆ N)(V := N)

(A = M \N)(x ∈ A)⇒ x /∈ N

}
⇒ (V ∈ e∗θO(X, y))(x /∈ V ). □

Corollary 4.9. For a topological space X, all notions given in Remark
4.6 are equivalent.

Definition 4.10. Let X be a topological space, N ⊆ X and x ∈ X. The
set N is called an e∗-θ-neighbourhood of x in X if there exists an e∗-θ-open
set U of X such that x ∈ U ⊆ N. The family of all e∗-θ-neighbourhood of a
point x is denoted by Ne∗θ(x).

Definition 4.11. Let X be a topological space and x ∈ X. The point x
which has only X as the e∗-θ-neighbourhood is called a point common to all
e∗-θ-closed sets (briefly, e∗-θ-cc).

Theorem 4.12. Let X be a topological space. If X is e∗-θ-D1, then X has
no e∗-θ-cc-point.

Proof. Let x, y ∈ X and x ̸= y.
x ̸= y

X is e∗-θ-D1

}
⇒ (∃A ∈ e∗θD(X,x))(∃B ∈ e∗θD(X, y))(x /∈ B)(y /∈ A)

⇒ (∃U, V ∈ e∗θO(X))(U ̸= X)(x ∈ A = U\V )
⇒ (U ∈ e∗θO(X))(x ∈ U ⊆ U ̸= X)
⇒ X ̸= U ∈ Ne∗θ(x)⇒ Ne∗θ(x) ̸= {X}. □

Definition 4.13. A subset A of a topological space X is called a quasi
e∗-θ-closed set (briefly, qe∗θ-closed) if e∗-clθ(A) ⊆ U whenever A ⊆ U and U
is e∗-θ-open in X. The family of all quasi e∗-θ-closed set in X will be denoted
by qe∗θC(X).
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Lemma 4.14 ([5]). Let A be any subset of a space X. Then, x ∈ e∗-clθ(A)
if and only if U ∩A ̸= ∅ for each U ∈ e∗R(X,x).

Theorem 4.15. For a topological space X, the following statements hold:
(a) For each pair of points x and y in X, x ∈ e∗-clθ({y}) implies y ∈

e∗-clθ({x});
(b) For each x ∈ X, the singleton {x} is qe∗θ-closed in X.

Proof. (a) Let x, y ∈ X and y /∈ e∗-clθ({x}).
y /∈ e∗-clθ({x})⇒ (∃V ∈ e∗O(X, y))(e∗-cl(V ) ∩ {x} = ∅).
Theorem 2.3 implies
(e∗-cl(V ) ∈ e∗R(X, y))(e∗-cl(V ) ∩ {x} = ∅)

U := e∗-cl(V )

}
⇒ (U ∈ e∗O(X, y))(e∗-cl(U) ∩ {x} = ∅)
⇒ x /∈ e∗-clθ({y}).
(b) Let x ∈ X, U ∈ e∗θO(X) and {x} ⊆ U.
(x ∈ X)({x} ⊆ U)(U ∈ e∗θO(X))⇒ U ∈ e∗θO(X,x)
Corollary 2.2 implies (∃V ∈ e∗R(X,x))(V ⊆ U)
⇒ (V ∈ e∗R(X,x))(V = e∗-cl(V ) ⊆ U)

e∗R(X) ⊆ e∗θO(X)

}
⇒ (V ∈ e∗O(X,x))(e∗-clθ({x}) ⊆ e∗-clθ(V ) = e∗-cl(V ) ⊆ U). □

Definition 4.16. A spaceX is said to be e∗-θ-T1/2 if qe
∗θC(X) ⊆ e∗θC(X).

Theorem 4.17. For a topological space X, the followings are equivalent:
(a) X is e∗-θ-T1/2;
(b) X is e∗θ-T1.

Proof. (a)⇒ (b). Let x, y ∈ X and x ̸= y.
By Theorem 4.15,

x, y ∈ X =⇒ {x}, {y} ∈ qe∗θC(X)
X is e∗-θ-T1/2 ⇒ qe∗θC(X) ⊆ e∗θC(X)

}
⇒ {x}, {y} ∈ e∗θC(X)

x ̸= y

}
⇒ (X \ {y} ∈ e∗θO(X,x))(X \ {x} ∈ e∗θO(X, y))

(U := X \ {y})(V := X \ {x})

}
⇒ (U ∈ e∗θO(X,x))(V ∈ e∗θO(X, y))(y /∈ U)(x /∈ V ).
(b)⇒ (a). Let A ∈ qe∗θC(X). Suppose that A /∈ e∗θC(X). We will obtain

a contradiction.
A /∈ e∗θC(X)⇒ A ̸= e∗-clθ(A)⇒ (∃x ∈ X)(x ∈ e∗-clθ(A) \A)

X is e∗θ-T1

}
⇒ (∀a ∈ A)(∃Va ∈ e∗θO(X, a))(x /∈ Va)

Corollary 2.2

}
⇒ (A ⊆

⋃
a∈A Va)(x /∈

⋃
a∈A Va ∈ e∗θO(X))

A ∈ qe∗θC(X)

}
⇒x /∈ e∗-clθ(A)⊆

⋃
a∈A Va.

This contradicts with x ∈ e∗-clθ(A). □

Definition 4.18. A function f : X → Y is said to be weakly e∗-irresolute
[10] (briefly, w.e∗.i.) (resp. strongly e∗-irresolute) if for each x ∈ X and each
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V ∈ e∗O(Y, f(x)), there exists U ∈ e∗O(X,x) such that f [U ] ⊆ e∗-cl(V ) (resp.
f [e∗-cl(V )] ⊆ V ).

Remark 4.19 ([10, Theorem 3.7.(d)(e)]). A function f : X → Y is weakly
e∗-irresolute if and only if f−1[V ] is e∗-θ-closed (resp. e∗-θ-open) in X for
every e∗-θ-closed (resp. e∗-θ-open) set V in Y.

Theorem 4.20. If f : X → Y is a weakly e∗-irresolute surjection and A is
an e∗-θ-D-set in Y, then the inverse image of A is an e∗-θ-D-set in X.

Proof. Let A ∈ e∗θD(Y ).
A ∈ e∗θD(Y )⇒ (∃U, V ∈ e∗θO(Y ))(U ̸= Y )(A = U \ V )

f is weakly e∗-irresolute surjection
Theorem 2.7

⇒
(f−1[U ], f−1[V ] ∈ e∗θO(X))(f−1[U ] ̸= X)(f−1[A] = f−1[U ] \ f−1[V ]) ⇒

f−1[A] ∈ e∗θD(X). □

Theorem 4.21. If Y is an e∗-θ-D1 space and f : X → Y is a weakly
e∗-irresolute bijection, then X is e∗-θ-D1.

Proof. Let x, y ∈ X and x ̸= y.

(x, y ∈ X)(x ̸= y)
f is bijective

}
⇒ (f(x), f(y) ∈ Y )(f(x) ̸= f(y))

Y is e∗-θ-D1

}
⇒

⇒ (∃U ∈ e∗θD(Y, f(x)))(∃V ∈ e∗θD(Y, f(y)))(f(y) /∈ U)(f(x) /∈ V )
Theorem 4.20

}
⇒

⇒ (y /∈ f−1[U ] ∈ e∗θD(X,x))(x /∈ f−1[V ] ∈ e∗θD(X, y)). □

Theorem 4.22. For a topological space X, the followings are equivalent:
(a) X is e∗-θ-D1;
(b) For each pair of distinct points x, y ∈ X, there exists a weakly e∗-

irresolute surjection f : X → Y, where Y is an e∗-θ-D1 space such that
f(x) ̸= f(y).

Proof. (a)⇒ (b). Let x, y ∈ X and x ̸= y.
(x, y ∈ X)(x ̸= y)

(Y := X)(f := {(x, x)|x ∈ X})
Hypothesis

 ⇒ (f is w.e∗.i. surjection) (Y is e∗-θ-D1)

(f(x) ̸= f(y)).
(b)⇒ (a). Let x, y ∈ X and x ̸= y.

(x, y ∈ X)(x ̸= y)
Hypothesis

}
⇒ ∃f ∈ Y X w.e∗.i. surjection)(Y is e∗-θ-D1)(f(x) ̸=

f(y)) ⇒ (f ∈ Y X w.e∗.i. sur.)(∃U ∈ e∗θD(Y, f(x)))(∃V ∈ e∗θD(Y, f(y)))
(f(y) /∈ U)(f(x) /∈ V ), Theorem 4.20 implies (y /∈ f−1[U ] ∈ e∗θD(X,x))(x /∈
f−1[V ] ∈ e∗θD(X, y)). □
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5. FURTHER PROPERTIES

Definition 5.1. Let A be a subset of a topological spaceX. The e∗-θ-kernel
of A, denoted by e∗-kerθ(A), is defined to be the set⋂

{U |(U ∈ e∗θO(X))(A ⊆ U)}.

Remark 5.2. For a subset A of a topological spaceX, the sets of e∗-kerθ(A)
and β-kerθ(A) need not be equal to each other as shown by the following
example.

Example 5.3. Let X = {a, b, c, d} and τ = {∅, X, {a}, {a, b}, {a, b, c}}.
Then e∗R(X) = e∗θO(X) = e∗O(X) = 2X and βR(X) = βθO(X) = {∅, X},
βO(X) = {∅, X, {a}, {a, b}, {a, c}, {a, d}, {a, b, c}, {a, b, d}, {a, c, d}}. For the
subset A = {a, b}, e∗-kerθ(A) = A ̸= X = β-kerθ(A).

Definition 5.4. A space X is called slightly e∗-θ-R0 space if⋂
{e∗-clθ({x})|x ∈ X} = ∅.

Remark 5.5. A slightly e∗-θ-R0 space need not be a slightly β-θ-R0 space
as shown by the following example.

Example 5.6. Let X = {a, b, c, d} and τ = {∅, X, {a}, {a, b}, {a, b, c}}.
Since ⋂

{e∗-clθ({x})|x ∈ X}

=
⋂
{e∗-clθ({a}), e∗-clθ({b}), e∗-clθ({c}), e∗-clθ({d})} = ∅,

the space X is a slightly e∗-θ-R0 space. On the other hand, since⋂
{β-clθ({x})|x ∈ X} =

⋂
{β-clθ({a}), β-clθ({b}), β-clθ({c}), β-clθ({d})}

=
⋂
{X} = X ̸= ∅,

the space X is not a slightly β-θ-R0 space.

Theorem 5.7. Let A be a subset of a space X. Then:

e∗-kerθ(A) = {x ∈ X : e∗-clθ({x}) ∩A ̸= ∅}.

Proof. Let x /∈ e∗-kerθ(A).
x /∈ e∗-kerθ(A) ⇒ x /∈

⋂
{U |(U ∈ e∗θO(X))(A ⊆ U)}

⇒ (∃U ∈ e∗θO(X))(A ⊆ U)(x /∈ U)
⇒ (\U ∈ e∗θC(X))({x} ⊆ \U)(\U ⊆ \A)
⇒ (\U ∈ e∗θC(X))(e∗-clθ({x}) ⊆ e∗-clθ(\U) = \U ⊆ \A)
⇒ e∗-clθ({x}) ∩A = ∅
⇒ x /∈ {x|e∗-clθ({x}) ∩A = ∅}

Then, we have

{x|e∗-clθ({x}) ∩A = ∅} ⊆ e∗-kerθ(A),which we denote by (1).
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Now, let x /∈ {x|e∗-clθ({x}) ∩A ̸= ∅}.
x /∈ {x|e∗-clθ({x}) ∩A ̸= ∅} ⇒ e∗-clθ({x}) ∩A = ∅ ⇒ A ⊆ \e∗-clθ({x})

U := \e∗-clθ({x})

}
⇒ (U ∈ e∗θO(X))(A ⊆ U)(x /∈ U)

⇒ x /∈
⋂
{U |(U ∈ e∗θO(X))(A ⊆ U)} = e∗-kerθ(A).

Then, we have

e∗-kerθ(A) ⊆ {x|e∗-clθ({x}) ∩A = ∅},which we denote by (2).

(1), (2)⇒ e∗-kerθ(A) = {x|e∗-clθ({x}) ∩A = ∅}. □

Theorem 5.8. Let X be a topological space. Then, X is slightly e∗-θ-R0 if
and only if e∗-kerθ({x}) ̸= X for any x ∈ X.

Proof. (⇒). Suppose that there is a point y in X such that e∗-kerθ({y}) =
X.

e∗-kerθ({y}) = {x|e∗-clθ({x})∩{y} ≠ ∅} = X ⇒ (∀x ∈ X)(y ∈ e∗-clθ({x}))
⇒ y ∈

⋂
{e∗-clθ({x})|x ∈ X}

Hypothesis
Theorem 5.7

⇒ y ∈
⋂
{e∗-clθ({x})|x ∈ X} = ∅.

This is a contradiction.
(⇐). Suppose that X is not slightly e∗-θ-R0.

X is not slightly e∗-θ-R0 ⇒
⋂
{e∗-clθ({x})|x ∈ X} ≠ ∅

⇒ (∃y ∈ X)(y ∈
⋂
{e∗-clθ({x})|x ∈ X})

⇒ (∃y ∈ X)(∀x ∈ X)(y ∈ e∗-clθ({x})).
Theorem 2.9⇒ (∀x ∈ X)(y ∈

⋂
{V |({x} ⊆ V )(V ∈ e∗R(X))})

⇒ (∀x ∈ X)(∀V ∈ e∗R(X, y))({x} ⊆ V )

⇒ (∀V ∈ e∗R(X, y))(V = X)⇒ e∗-clθ({y}) = X.
This is a contradiction. □

Theorem 5.9. Let X and Y be two topological spaces. If X is slightly
e∗-θ-R0, then the product X × Y is slightly e∗-θ-R0.

Proof. Let X be slightly e∗-θ-R0.
Let A :=

⋂
{e∗-clθ({(x, y)})|(x, y) ∈ X × Y }.

A ⊆
⋂
{e∗-clθ({x})× e∗-clθ({y}|(x, y) ∈ X × Y }

=
⋂
{e∗-clθ({x})|x ∈ X} ×

⋂
{e∗-clθ({y})|y ∈ Y } = ∅.

□

Definition 5.10. A function f : X → Y is S-continuous (resp. θ-S-e∗-
continuous, S-e∗-continuous) if for each x ∈ X and each e∗-open subset V of
Y containing f(x), there exists an open subset U of X containing x such that
cl(f [U ]) ⊆ V (resp. e∗-clθ(f [U ]) ⊆ V, e∗-cl(f [U ]) ⊆ V ).

Definition 5.11. A function f : X → Y is said to be e∗-open [5] if f [U ] is
e∗-open in Y for every open set U of X.
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Remark 5.12. From Definitions 5.10 and 5.11, we have the following dia-
gram.

θ-S-e∗-continuous −→ S-e∗-continuous←− S-continuous

A function f which is S-e∗-continuous need not to be S-continuous as shown
by the following example.

Example 5.13. Let X = {a, b, c, d} and τ = {{a}, {c}, {a, c}, {c, d}, {a, c,
d}, ∅, X}. Define the function f : (X, τ)→ (X, τ) by f(x) = c. The function f
is S-e∗-continuous but it is not S-continuous.

Question 5.14. Is there any S-e∗-continuous function which is not θ-S-e∗-
continuous?

Theorem 5.15. Let X and Y be two topological spaces. If f : X → Y is
S-e∗-continuous and e∗-open, then f is θ-S-e∗-continuous.

Proof. Let x ∈ X and V ∈ e∗O(Y, f(x)).

(x ∈ X)(V ∈ e∗O(Y, f(x)))
f is S-e∗-continuous

}
⇒ (∃U ∈ O(X,x))(e∗-cl(f [U ]) ⊆ V )

f is e∗-open

}
Theorem 2.3⇒ (∃U ∈ O(X,x))(e∗-clθ(f [U ]) = e∗-cl(f [U ]) ⊆ V ). □

Definition 5.16. The graph G(f) of a function f : X → Y is said to be
strongly e∗-θ-closed if for each point (x, y) ∈ (X×Y )\G(f), there exist subsets
U ∈ e∗O(X,x) and V ∈ e∗θO(Y, y) such that (e∗-cl(U)× V ) ∩G(f) = ∅.

Lemma 5.17. The graph G(f) of f : X → Y is strongly e∗-θ-closed in X×Y
if and only if for each point (x, y) ∈ (X×Y )\G(f), there exists U ∈ e∗O(X,x)
and V ∈ e∗θO(Y, y) such that f [e∗-cl(U)] ∩ V = ∅.

Proof. Let (x, y) /∈ G(f).
(x, y) /∈ G(f)

G(f) is strongly e∗-θ-closed

}
⇒

⇒ (∃U ∈ e∗O(X,x))(∃V ∈ e∗θO(Y, y))((e∗-cl(U)× V ) ∩G(f) = ∅)
⇒ (∃U ∈ e∗O(X,x))(∃V ∈ e∗θO(Y, y))(∀x ∈ X)((x, f(x)) /∈ e∗-cl(U)× V )

⇒ (∃U ∈ e∗O(X,x))(∃V ∈ e∗θO(Y, y))(f [e∗-cl(U)] ∩ V = ∅). □

Definition 5.18. A space X is called to be e∗-T1 [3] if for each pair of
distinct points in X, there exist e∗-open sets U and V containing x and y,
respectively, such that y /∈ U and x /∈ V.

Theorem 5.19. Let X and Y be two topological spaces. If f : X → Y
is θ-S-e∗-continuous weak e∗-irresolute and Y is e∗-T1, then G(f) is strongly
e∗-θ-closed.

Proof. Let (x, y) /∈ G(f).
(x, y) /∈ G(f)⇒ (y, f(x) ∈ Y )(y ̸= f(x))

Y is e∗-T1

}
⇒
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(∃V ∈ e∗O(Y, f(x))(y /∈ V ))
f is θ-S-e∗-continuous

}
⇒ (∃U ∈ O(X,x))(y /∈ e∗-clθ(f [U ]))

f is weak e∗-irresolute

}
⇒ (U ∈ e∗O(X,x))(\e∗-clθ(f [U ]) ∈ e∗θO(X, y))(e∗-cl(U)× (\e∗-clθ(f [U ]))
∩G(f) = ∅).

□

Theorem 5.20. Let f : X → Y be a weak e∗-irresolute function. Then, f
is θ-S-e∗-continuous if and only if for each x ∈ X and each e∗-closed subset
F of Y with f(x) /∈ F, there exists an open subset U of X containing x and
an e∗-θ-open subset V of Y with F ⊆ V such that f [e∗-cl(U)] ∩ V = ∅.

Proof. (⇒). Let x ∈ X, F ∈ e∗C(Y ) and f(x) /∈ F.
(x ∈ X)(F ∈ e∗C(Y ))(f(x) /∈ F )⇒ Y \ F ∈ e∗O(Y, f(x))

f is θ-S-e∗-continuous

}
⇒

⇒ (∃U ∈ O(X,x))(e∗-clθ(f [U ]) ⊆ Y \ F )
f is weak e∗-irresolute

}
⇒

⇒ (U ∈ O(X,x))(f [e∗-cl(U)] ⊆ e∗-clθ(f [U ]) ⊆ Y \ F )
V := Y \ e∗-clθ(f [U ])

}
⇒

⇒ (U ∈ O(X,x))(V ∈ e∗θO(Y ))(F ⊆ V ⊆ Y \ f [e∗-cl(U)])

⇒ (U ∈ O(X,x))(V ∈ e∗θO(Y, F ))(f [e∗-cl(U ]) ∩ V = ∅.
(⇐). Let x ∈ X and V ∈ e∗O(Y, f(x)).

(x ∈ X)(V ∈ e∗O(Y, f(x)))⇒ f(x) /∈ Y \ V ∈ e∗C(Y )
Hypothesis

}
⇒

⇒ (∃U ∈ O(X,x))(∃W ∈ e∗θO(Y, Y \ V ))(f [e∗-cl(U)] ∩W = ∅)
⇒ (U ∈ O(X,x))(W ∈ e∗θO(Y, Y \ V ))(f [U ] ⊆ f [e∗-cl(U)] ⊆ Y \W ⊆ V )

⇒ (U ∈ O(X,x))(e∗-clθ(f [U ]) ⊆ e∗-clθ(Y \W ) = Y \W ⊆ V ). □

Corollary 5.21. Let X and Y be two topological spaces and f : X → Y
be a weak e∗-irresolute function. Then, f is θ-S-e∗-continuous if and only if
for each x ∈ X and each e∗-open subset V of Y containing f(x), there exists
an open subset U of X containing x such that e∗-clθ(f [e

∗-cl(U)]) ⊆ V.

Proof. (⇒). Let x ∈ X and V ∈ e∗O(Y, f(x)).

(x ∈ X)(V ∈ e∗O(Y, f(x)))
Hypothesis

}
⇒ (∃U ∈ O(X,x))(e∗-clθ(f [U ]) ⊆ V )

f is weak e∗-irresolute

}
and Theorem 2.7 ⇒ (∃U ∈ O(X,x))(f [e∗-cl(U)] ⊆ e∗-clθ(f [U ]) ⊆ V )
⇒ (U ∈ O(X,x))(e∗-clθ(f [e

∗-cl(U)]) ⊆ e∗-clθ(f [U ]) ⊆ V ).
(⇐). Let x ∈ X and V ∈ e∗O(Y, f(x)).

(x ∈ X)(V ∈ e∗O(Y, f(x)))
Hypothesis

}
⇒

⇒ (∃U ∈ O(X,x))(e∗-clθ(f [U ]) ⊆ e∗-clθ(f [e
∗-cl(U)]) ⊆ V ). □

Now, we discuss some fundamental properties of θ-S-e∗-continuous func-
tions related to composition and restriction.
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Theorem 5.22. Let f : X → Y and g : Y → Z be two functions. If
f is continuous and g is θ-S-e∗-continuous, then g ◦ f : X → Z is θ-S-e∗-
continuous.

Proof. Let x ∈ X and W ∈ e∗O(Z, g(f(x))).

W ∈ e∗O(Z, g(f(x)))
g is θ-S-e∗-continuous

}
⇒ (∃V ∈ O(Y, f(x))(e∗-clθ(g[V ]) ⊆W )

f is continuous

}
⇒

⇒ (∃U ∈ O(X,x))(e∗-clθ(g(f [U ])) ⊆ e∗-clθ(g[V ]) ⊆W ). □

Theorem 5.23. Let f : X → Y and g : Y → Z be two functions. If g ◦ f is
θ-S-e∗-continuous and f is an open surjection, then g is θ-S-e∗-continuous.

Proof. Let y ∈ Y and W ∈ e∗O(Z, g(y)).
(y ∈ Y )(W ∈ e∗O(Z, g(y)))

f is surjective

}
⇒

⇒ (∃x ∈ X)(y = f(x))(W ∈ e∗O(Z, g(f(x))))
g ◦ f is θ-S-e∗-continuous

}
⇒

⇒ (∃U ∈ O(X,x))(e∗-clθ(g(f [U ])) ⊆W )
f is open

}
⇒

⇒ (f [U ] ∈ O(Y, y))(e∗-clθ(g[f [U ]]) ⊆W )
V := f [U ]

}
⇒

⇒ (V ∈ O(Y, y))(e∗-clθ(g[V ]) ⊆W ). □

Theorem 5.24. Let f : X → Y be a function and A ⊆ X. If f is θ-S-e∗-
continuous, then f |A : A→ Y is θ-S-e∗-continuous.

Proof. Let x ∈ A and V ∈ e∗O(Y, f(x)).

(x ∈ A)(V ∈ e∗O(Y, f(x)))
A ⊆ X

}
⇒ (x ∈ X)(V ∈ e∗O(Y, f(x)))

f is θ-S-e∗-continuous

}
⇒

⇒ (∃W ∈ O(X,x))(e∗-clθ(f [W ]) ⊆ V )
U := W ∩A

}
⇒

⇒ (U ∈ O(A, x))(e∗-clθ(f |A[U ]) = e∗-clθ(f [W ∩A]) ⊆ e∗-clθ(f [W ]) ⊆ V ).
□

6. e∗-R1e∗-R1e∗-R1 SPACE

Definition 6.1. A topological space X is said to be e∗-R1 if for all x, y ∈ X
with e∗-cl({x}) ̸= e∗-cl({y}), there exist disjoint e∗-open sets U and V such
that e∗-cl({x}) ⊆ U and e∗-cl({y}) ⊆ V.

Remark 6.2. An e∗-R1 space need not to be a β-R1 space as shown by the
following example.

Example 6.3. Let X = {a, b, c, d} and τ = {∅, {a}, {c}, {a, c}, {c, d}, {a, c,
d}, X}. Then, the space X is an e∗-R1 space but it is not β-R1.
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Theorem 6.4. Let X be a topological space. Then, X is e∗-R1 if and only
if e∗-clθ({x}) = e∗-cl({x}) for all x ∈ X.

Proof. (⇒). Let x ∈ X. x ∈ X ⇒ e∗-cl({x}) ⊆ e∗-clθ({x}) which we denote
by (1).

Now, let y /∈ e∗-cl({x}).
y /∈ e∗-cl({x})⇒ e∗-cl({x}) ̸= e∗-cl({y})

X is e∗-R1

}
⇒

⇒ (∃U, V ∈ e∗O(X))(U ∩ V = ∅)(e∗-cl({x}) ⊆ U)(e∗-cl({y}) ⊆ V )
⇒ (U ∈ e∗O(X,x))(V ∈ e∗O(X, y))(e∗-cl({x}) ∩ e∗-cl({y}) ⊆ e∗-cl({x}) ∩ V
⊆ e∗-cl({x}) ∩e∗-cl(V ) ⊆ e∗-cl(U) ∩ e∗-cl(V ) = ∅).
⇒ (V ∈ e∗O(X, y))({x} ∩ e∗-cl(V ) ⊆ e∗-cl({x}) ∩ e∗-cl(V ) = ∅) ⇒ y /∈
e∗-clθ({x}).

Then, we have e∗-clθ({x}) ⊆ e∗-cl({x}), which we denote by (2).
(1), (2)⇒ e∗-cl({x}) = e∗-clθ({x}).
(⇐). Let x, y ∈ X and e∗-cl({x}) ̸= e∗-cl({y}).

If e∗-cl({x}) ̸= e∗-cl({y}), then there exists z ∈ X such that z ∈ e∗-cl({x}) \
e∗-cl({y}) or z ∈ e∗-cl({y}) \ e∗-cl({x})).

First Case: Let z ∈ e∗-cl({x}) \ e∗-cl({y}).
z ∈ e∗-cl({x}) \ e∗-cl({y})⇒ (z ∈ e∗-cl({x}))(z /∈ e∗-cl({y}))

Hypothesis

}
⇒

⇒ (z ∈ e∗-cl({x}) = e∗-clθ({x}))(z /∈ e∗-cl({y}) = e∗-clθ({y}))
⇒ (∀W ∈ e∗R(X, z))(W ∩ {x} ≠ ∅)(∃U ∈ e∗R(X, z))(U ∩ {y} = ∅)
⇒ (U ∈ e∗R(X, z))({x} ⊆ U)({y} ⊆ \U)

V := \U

}
⇒

⇒ (U, V ∈ e∗O(X, z))(U ∩ V = ∅)(e∗-cl({x}) ⊆ U)(e∗-cl({y}) ⊆ V ).
Second Case: Similarly proved. □

Theorem 6.5. Let X be a topological space. Then, X is e∗-R1 if and only
if for each e∗-open set A and each x ∈ A, e∗-clθ({x}) ⊆ A.

Proof. (⇒). Let A ∈ e∗O(X,x) and y /∈ A.
y /∈ A ∈ e∗O(X,x)

X is e∗-R1

}
⇒ x /∈ e∗-clθ({y}) = e∗-cl({y}) ⊆ X \A

⇒ (∃V ∈ e∗O(X,x))(e∗-cl(V ) ∩ {y} = ∅)
⇒ (e∗-cl(V ) ∈ e∗R(X,x))(e∗-cl(V ) ∩ {y} = ∅)

U := \e∗-cl(V )

}
⇒

⇒ (U ∈ e∗R(X, y) ⊆ e∗O(X, y))(e∗-cl(U) ∩ {x} = ∅)⇒ y /∈ e∗-clθ({x}).
(⇐). Let x, y ∈ X and y ∈ e∗-clθ({x}) \ e∗-cl({x}).

y ∈ e∗-clθ({x}) \ e∗-cl({x})⇒ (y ∈ e∗-clθ({x}))(y /∈ e∗-cl({x}))
⇒ (y ∈ e∗-clθ({x}))(∃A ∈ e∗O(X, y))(A ∩ {x} = ∅)

Hypothesis

}
⇒

⇒ (y ∈ e∗-clθ({x}))(e∗-clθ({y}) ∩ {x} = ∅)
⇒ (y ∈ e∗-clθ({x})(x /∈ e∗-clθ({y})). So, Theorem 4.15 ⇒ (y ∈ e∗-clθ({x})
(y /∈ e∗-clθ({x}))⇒ y ∈ e∗-clθ({x}) \ e∗-clθ({x}) = ∅.
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This is a contradiction. □

Theorem 6.6. Let X and Y be two topological spaces. If f : X → Y is a
θ-S-e∗-continuous surjection, then Y is an e∗-R1 space.

Proof. Let V ∈ e∗O(Y, y).

V ∈ e∗O(Y, y)
f is surjective

}
⇒ (∃x ∈ X)(y = f(x))(V ∈ e∗O(Y, f(x)))

f is θ-S-e∗-continuous

}
⇒

⇒ (∃U ∈ O(X,x))(e∗-clθ({y}) ⊆ e∗-clθ(f [U ]) ⊆ V ). □
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