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VIETORIS TOPOLOGY ON HYPERSPACES
ASSOCIATED TO A NONCOMMUTATIVE COMPACT SPACE

MAYSAM MAYSAMI SADR

Abstract. We study some topological spaces that can be considered as hyper-
spaces associated to noncommutative spaces. More precisely, for a NC compact
space associated to a unital C∗-algebra, we consider the set of closed projections
of the second dual of the C∗-algebra as the hyperspace of closed subsets of the
NC space. We endow this hyperspace with an analog of Vietoris topology. In
the case that the NC space has a quantum metric space structure in the sense of
Rieffel we study the analogs of Hausdorff and infimum distances on the hyper-
space. We also formulate some problems about distances between sub-circles of
a quantum torus.
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