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BESSEL TRANSFORMS AND HARDY SPACE
OF GENERALIZED BESSEL FUNCTIONS

ÁRPÁD BARICZ

Abstract. In this paper, which was motivated by the papers of S. Ponnusamy
[11, 12], we continue the study of generalized and normalized Bessel functions of
the first kind of real order. We present some immediate applications of convexity
and univalence involving Bessel functions associated with the Hardy space of
analytic functions, i.e. we obtain conditions for the function
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to belong to the Hardy space H∞. Let consider A, the class of all analytic and
normalized functions in the unit disk and

R(α) = {f ∈ A : ∃ η ∈ R such that Re [eiη(f ′(z)− α)] > 0, z ∈ U}.
When η = 0 we denoteR(α) simply byR0(α), and when α = 0, we denoteR0(α)
simply by R. We find conditions for the convolution zup(z) ∗ f(z) to belong to
H∞ ∩R, where f is an analytic function in R. Finally we obtain conditions for
α1, α2 and the parameters b, c, p such that the operator B(f) := zup(z) ∗ f(z)
maps R(α1) into R(α2).
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Str. M. Kogălniceanu nr. 1

400084 Cluj-Napoca, Romania
E-mail: bariczocsi@yahoo.com


