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NONCONVEX MIXED QUASI VARIATIONAL INEQUALITIES

MUHAMMAD ASLAM NOOR

Abstract. In this paper, we introduce a new class of mixed quasi variational in-
equalities, known as nonconvex mixed quasi variational inequalities in the setting
of g-convexity. We suggest some algorithms for solving nonconvex mixed quasi
variational inequalities by using the auxiliary principle technique. The conver-
gence of the proposed methods either requires partially relaxed strongly mono-
tonicity or pseudomononicity. We also introduce the concept of well-posedness
for the nonconvex mixed quasi variational inequalities. As special cases, we
obtain a number of known and new results for solving various classes of equi-
librium and variational inequality problems. Our results can be considered as a
significant improvement of the previously known results.
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