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Preface

The aim of this book is to present short notes or articles, as well as
studies on some topics of the Theory of means and their inequalities.
This is mainly a subfield of Mathematical analysis, but one can find here
also applications in various other fields as Number theory, Numerical
analysis, Trigonometry, Networks, Information theory, etc. The material
is divided into six chapters: Classical means; Logarithmic, identric and
related means; Integral inequalities and means; Means and their Ky Fan
type inequalities; Stolarsky and Gini means; and Sequential means.

Chapter 1 deals essentially with the classical means, including the
arithmetic, geometric, harmonic means of two or more numbers and the
relations connecting them. One can find here more new proofs of the
classical arithmetic mean-geometric mean-harmonic mean inequality, as
well as their weighted version. The famous Sierpinski inequality connect-
ing these means, or applications of the simple Bernoulli inequality offer
strong refinements of these results, including the important Popoviciu
and Rado type inequalities. One of the subjects is the log-convexity prop-
erties of the power means, which is applied so frequently in mathematics.
The chapter contains also applications of some results for certain arith-
metic functions, the theory of Euler’s constant e, or electrical network
theory.

The largest chapter of the book is Chapter 2 on the identric, logarith-
mic and related means. These special means play a fundamental role in

the study of many general means, including certain exponential, integral



means, or Stolarsky and Gini means, etc. There are considered various
identities or inequalities involving these means, along with strong refine-
ments of results known in the literature. Monotonicity, convexity and
subhomogeneity properties are also studied. Series representations, and
their applications are also considered. Applications for certain interesting
logarithmic inequalities, having importance in other fields of mathemat-
ics, or in the entropy theory are also provided.

Chapter 3 contains many important integral inequalities, as the
Cauchy-Bouniakowski integral inequality, the Hadamard (or Hermite-
Hadamard) integral inequalities, the Jensen integral inequality, etc. Re-
finements, as well as generalizations or extensions of these inequalities
are considered. As the inequalities offer in fact results for the integral
mean of a function, many consequences or applications for special means
are obtained. The classical monotonicity notion and its extension of sec-
tion 1 give in a surprising manner interesting and nice results for means.
The Jensen functionals considered in the last section, offer very general
results with many applications.

Chapter 4 studies the famous Ky Fan type inequalities. As this in-
equality contains in a limiting case the arithmetic mean-geometric mean
inequality, these results are connected with Chapter 1. However, here
one obtains a more detailed and complicated study of these inequalities,
involving many new means. Section 1 presents one of the author’s early
results, rediscovered later by other authors, namely the equivalence of
Ky Fan’s inequality with Henrici’s inequality. Extensions, converses, re-
finements are also provided. The related Wang-Wang inequality is also
considered.

Ky Fan type inequalities will be considered also in Chapter 5, on the
Stolarsky and Gini means. These general means are studied extensively
in sections 7 and 9 of this chapter. Particular cases, as the generalized
logarithmic means, and a particular Gini mean, which is also a weighted

geometric mean, are included, too. This last mean is strongly related, by
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an identity, with the identric mean of Chapter 2, and has many connec-
tions with other means, so plays a central role in many results.

Finally, Chapter 6 deals with means, called by the author as “sequen-
tial means”, which may be viewed essentially as the common limit of
certain recurrent sequences. These are the famous arithmetic-geometric
mean of Gauss, the Schwab-Borchardt mean, etc. Here the classical loga-
rithmic mean is considered also as a such mean, and many other famous
particular means, as the Seiffert means, or the Neuman-Sandor mean, are
studied. Two new means of the author are introduced in the last section.
These means have today a growing literature, and their importance is
recognized by specialists of the field.

All sections in all chapters are based on the author’s original papers,
published in various national and international journals. We have in-
cluded a “Final references” section with the titles of the most important
publications of the author in the theory of means. The book is concluded
with an author index, focused on articles (and not pages). A citation of
type 1.2(3) shows that the respective author is cited three times in section
2 of chapter 1.

Finally, we wish to mention the importance of this domain of mathe-
matics. Usually, researchers encounter in their studies the need of certain
bounds, which essentially may be reduced to a relation between means.
They need urgently some exact informations (on bounds, inequalities,
approximations, etc.) on these means. So, such a work could be an ideal
place and reference for their needs. On the other hand, beginning re-
searchers, students, teachers of colleges or high schools would find a clear
introduction and explanation of methods and results. The primary au-
dience for this work are the mathematicians working in mathematical
analysis and its applications. Since this is a very extensive field, with
many subfields, researchers working in theoretical or applied domains
would be interested, too. Also, since this work contains material with

historical themes, teachers and their students would benefit from the in-
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formations and methods used in this book. This is a very active research
field, and here one can find the basis for further study. The author thinks
that the main strengths of the work are the new and interesting results,
published for the first time in a book form.

I wish to express my gratitude to a number of persons and organiza-
tions from where I received valuable advice and support in the prepara-
tion of this book. These are Mathematics and Informatics Departments of
Babeg-Bolyai University of Cluj (Romania); the Domus Hungarica Foun-
dation of Budapest (Hungary); the Sapientia Foundation (Cluj); and also
to Professors H. Alzer, B.A. Bhayo, M. Bencze, S.S. Dragomir, E. Egri,
M.V. Jovanovi¢, R. Klén, R.-G. Olah, J.E. Pecari¢, T. Pogany, M.S.
Pop, E. Neuman, I. Rasa, M. Raissouli, H.-J. Seiffert, V.E.S. Szabd, Gh.
Toader, T. Trif and W. Wang, who were coauthors along the years, and

who had an impact on the activity and realizations of the author.

The author
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Chapter 1

Classical means

“Mathematics is concerned only with the enumeration
and comparison of relations.”

(C.-F. Gauss)

“Thus each truth discovered was a rule available

in the discovery of subsequent ones.”
(R. Descartes)

1.1 On the arithmetic mean — geometric

mean inequality for n numbers

This is an English version of our paper [2].

In paper [1] we have obtained a simple method of proof for the
arithmetic-geometric inequality for three numbers. This method gave
also a refinement. In what follows, we shall generalize the method for

n numbers. In [1] we used the following simple lemma:

2yt >ay- (v 4y), x,y>0. (1)
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This may be generalized as follows:

1 n—1

"yt > ay- (2" Yy ) = 2"y +y" e, forany n > 2. (2)

Indeed, (2) may be rewritten also as
(@™ =y D@ —y) 20,

which is trivial for any z,y > 0, n > 2.

Let now z; (i = 1,n) be positive numbers, and apply inequality (2).
Let first x = 1 and y successively xo,x3,...,2,; then let © = 25 and
Y = T3,Ty,...,T,; finally let x = z,_1, y = x,,. By adding the obtained

inequalities, we can write
(] +23) + (2} + 25) + ... + (2] + 2)

> () 4+ (T )

(zh+ag)+.. (b +a") > (zerh P a3l D 4 (T ppah )

n—1

n n n—1 -
xn—l + xn Z xn_1$n + xnxn—l

Adding again the inequalities, finally we get:

(n—D)(@l+ay+...+20) > > @t +. 4T+ 42, (3)
=1

where we have used for simplification,

-1 ~n—1 -1
e L i e o s

a sum, where the ith term is missing (thus z" ).
Now let us suppose inductively that, the arithmetic-geometric in-
equality holds true for any positive real numbers of n — 1 terms. Then

we have

~

e R a2 > (n - D) (g T x),

14



so we get by using (4):

(n—1)(a}+ay+.. . +ap) =) w4+ E )
>(n—1)nx ...z, (4)

This is the generalization of inequality ( % ) from [1]. From (4) we get
particularly that

A SR i (% SN o

i.e. for the numbers z,...,x, the arithmetic-geometric inequality
holds true. By the principle of mathematical induction, the arithmetic-
geometric inequality is proved. By letting {/z; in place of x;, from (4) we
get the following:

Theorem.

1 < n-1 1

>Ny ... Ty

For n = 3 we reobtains the result from [1].

Bibliography

1. J. Sandor, On the arithmetic-geometric mean inequalities in case
of three numbers, Matlap 2016/10, p. 370 (in Hungarian).

2. J. Sandor, On the arithmetic mean — geometric mean inequality in
case of n numbers, Matlap 2017 /p, p. 254.
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1.2 A refinement of arithmetic mean

— geometric mean inequality

There exist many proof of the famous arithmetic mean — geometric

mean inequality
G = i < A, = DTt )

where a; > 0(: = 1,2,...,n), see [2]. For a proof, based on an identity
involving Riemann’s integral, see [1].

In what follows, we will offer a new approach, which gives in fact
infinitely many refinements.

Theorem 1. For any x € [0,1] one has

n

1 a; * An
< Z. ) o<
Ls n Z(Gn) - G, (2)

i=1

This implies that

is an increasing function, yielding
"(x) > f'(0) = log —~ = 0.
£ 0= los g

This in turn implies that f(z) is increasing, so f(0) < f(z) < f(1) for
x € 0, 1], giving inequality (2).

16



Since f"(x) = 0 iff % == g—n = 1, there is equality in each side
of (2) onlyifalz...zgn. ! O

1
Remark 1. For z = =, from (2) we get the following simple refine-
ment of (1):
P Vute by A (3)
nv G, Gp

An application

Let dy, ..., d, denote all distinct positive divisors of a positive integer
m > 1. Let ay = d3%, ... a, = d?* (k fixed real number). As
m m
— = =dy ... dp,
dy d,
we get dy - ...-d, = m?, so in our case we get G,, = G,(a;) = m*. Let

os(m) denote the sum of sth powers of divisors of m. From (3) we get

immediately (with o(m) = o1(m) and d(m) = o¢(m))

| < or(m) :
2

oo (m) 4
d(m)-m @

= d(m) - mk

We note that for k& > 1, the left side of (4) was discovered by R.
Sivaranakrishnan and C.S. Venkataraman [3]. The second inequality of

(4) may be rewritten as

NI

O'Qk(m) S m?2 - O'k(m) (5)

We note that in the left side of (4), as well as in (5), it is sufficient to
consider k£ > 0. Indeed, if £ < 0, put £ = —K. Remarking that

it is immediate that we obtain the same inequalities for K as for k in
both of (4) and (5).
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Remark 2. The weighted arithmetic mean — geometric mean inequal-
ity

o
Aa,n =oa; + -+ apay > all "'azn = Ga,n

(with a; > 0,5 € [0,1], a4 + -+ + a;, = 1) can be proved in the similar

manner, by considering the application

- a
R =Y (3
o =30 () lor g

i
a,n
i=1

and f/(0) = 0, all can be repeated, and we get the inequality (for any

x € [0,1]) )
) <5 ©

n a;
1< S g
G
—_ : 1 :
which is an extension of (2), for z = 5 We get an extension of (3):

1< al\/a—i—---—FOzn\/a—n < Aa,n
o Ga,n N Ga,n

Bibliography

1. H. Alzer, A proof of the arithmetic mean — geometric mean inequal-
ity, Amer. Math. Monthly, 103(1996), 585.

2. P.S. Bullen, Handbook of means and their inequalities, Kluwer
Acad. Publ., 2003.

3. R. Sivaramakrishnan, C.S. Venkataraman, Problem 5326, Amer.
Math. Monthly, 72(1965), 915.
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1.3 On Bernoulli’s inequality

1

The famous Bernoulli inequality states that for each real number x > —1

and for a natural number n > 1 one has
(1+2)" > 1+ nz. (1)

This simple relation has surprisingly many applications in different
branches of Mathematics. In this Note we will obtain a new application
with interesting consequences. For example, the well-known arithmetic-

geometric inequality follows.

Let us write (1) firstly in the form (by using the substitution y = z+1)
y'—1=n(y—1), y20. (2)

For the sake of completeness, we shall give also the short proof of (2).

By the algebraic identity
Yy ol=-DE" T+ oy ),
the new form of (2) will be
=D =D+ "7 -D+...+ -1 =0 (3)

The terms in the right parenthesis have the same sign as y — 1 in all cases
(ie. if y > 1, or 0 < y — 1), thus yielding simply relation (3). One has
equality only forn =1or y = 1.

Remark. Inequality (2) (or (1)) is valid also for all real numbers

n > 1, but the proof in that case is not so simple as above. See e.g. [1].
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Let us apply now (2) for

1
y = <E> " where n > 2. (4)
v

After some simple computations we get the following result:
Theorem. Let u, v > 0 be real numbers, and n > 2 a positive integer.

Then one has the inequality

n—1 n

nv —u v
< —. 5
(n—l) T (

Applications. 1) As a first application, put

~—

1
UZEV,u:U,WhereU,V>O.
One gets:
vV-u\"' v
< - . 6
(n—l) — U nn (6)

For V' = wu + 1 this yields that

(U +1)" - n" '
u — (n—1nt

Inequality (7) can be obtained also by studying the function

(U+1)"
U

(by using derivatives), but it is more interesting in this case the simple

U—

way of obtaining this result. For U = 1, V' = n + 1, relation (6) implies

(o) < (1) ©

Thus the monotonicity of the Euler sequence

(1)
T,=(1+—] .
n

20




(For n > 1 one has in fact strict inequality, see the proof of (2)).

2) Let now a; (i = 1,n) be positive real numbers, and

An:a1+a2+...+an’ G, = (aas...ay)

n

S|=

their arithmetic, respectively geometric means. Apply (5) for v = A,,

n = a,. Then clearly
n—u=a,+ ...+ a1,

so one has

33

Ari < o (9)

Gn—l )

n—1

(9) is equivalent to

An—l et An "
<[ == > 2. 1
(&) =(&) = (10)
As a corollary,

(&) =(&)

A
Here =L = 1, so (11) gives, as a simple consequence that
1

Since a,, =

IN

AN
. < (a) , forall » > 1. (11)

A, > G, (12)
i.e. the well-known arithmetic-geometric inequality.
For generalizations and other applications of Bernoulli’s inequality we
quote the monograph [1].
Bibliography

1. D.S. Mitrinovié (in coop. with P.M. Vasi¢), Analytic Inequalities,
Springer Verlag Berlin, Heidelberg, New York, 1970.
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1.4 A refinement of the harmonic

— geometric inequality

Let x = (xy,...,2,), where z; > 0, and put
A:A(I):u, G=G(x) =+T1.. .2y,
n
n
H=H(z)= 35—
—
T1 Tn

for the arithmetic, geometric and harmonic means of z;, i = 1,n. Put

where /z = ({/Z1, ..., {/Zy). Since

() -cty ()t et D)

clearly the inequality

G < M) < A, 2)
is equivalent to
H<N(z) <G, (3)
where
M) = LR, (@)

We will prove that (3) holds true (i.e. (2), too), even with a chain of
improvements.

Theorem. One has the inequalities

H < Ny(z) < Ni(x) < N(z) <G (5)
where
_ HVA _H-A(YR)
MO =m0 T

22



with H = H(x) etc., and N(x) given by (4).
Proof. We will apply the famous Sierpinski inequality (see [1], with

a generalization), which can be written as follows:
H' 'A< GM< AV 'H. (6)
From the left side of (6) we get

HHA <G", ie. HVA<GVH,

thus

H;/ﬁ > VA (%)

Now, the inequality {/A(z) > A ({/x) is valid, being equivalent to

] — 1 —
k=1 k=1

and this follows by Jensen’s classical inequality, for the concave function

flx) =z, (x>0, n>1).

Now
A(Ve) 2 H (Vr),

so by (%), we get the relation

GV > YA A(4m) = 1 (V) (+4

Thus, we get
GVH o
H ({/x)

but by (%), even two refinements of this inequalities, can be deduced.
The right side of (2) is

VH(x) < H (V)

23



1
which with x — — becomes in fact
T

VA(@) > A (V)

and this is true, as we have pointed out before. Thus the theorem follows.
Bibliography

1. J. Sandor, On inequality of Sierpinski, Octogon Mathematical Mag-
azine, Vol. 3, No. 1, April 1995, 21-22.
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1.5 On certain conjectures on classical

means

Let

1 n 1/2

=1

denote the classical means of positive real numbers z; > 0, 7 = 1, n.

In [1], as well as in [2], the following conjectures are stated:

S Qn + Gy, (1)

An >
2

(see Conjecture 1 of [1], and OQ. 1919 of [2]).
Another conjecture is (see Conjecture 4 of [1]):

aA, + bH,
< Y0 P
- a+b 2
for certain a,b > 0. Our aim in what follows is to show, that (1) is not
-1 1
true for all n > 3, and that (2) holds true e.g. with a = n ,b=—.
n n

25



Though, relation (1) is true for n = 2, we can show that even weaker

inequality (by @ > M)
A, > /QuG, (3)
is not generally true for n > 3. For this purpose, select
rHn=r93=...=x,1=1 and z,=n—1.

Then

_ _ . 2
An_wa Gn:n\/n_la Qn_\/n 1+(n 1)7

n

so (3) becomes in this case

4(n —1)?
n2

+

3=
vl

>(n—1)r(n—1)2 = (n—1) (4)

For n = 2, there is equality in (4). By supposing however, n > 3, then
4(n _ 1)37172 > n4n — 7,L47172 . n2

is not possible, as n? > 4 and n*""2 > (n — 1),

Remark. If (1) is not true, one may think that a weaker inequality

_ Qu+H,

An >
2

()

is valid. And indeed, by quite complicated computations (e.g. by using
computer algebra), Cerin, Gianella and Starc [3] have shown, that (5)
holds for all n < 4. However, a counterexample shows that it is false for

n > 5. In [3] are shown also the following facts:

o< it @

26
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is true for all n < 4; false for n > 5;

Gn < VH.Qn (7)

is true for n < 2; false for n > 3;

Gn 2 I
n A’I’L

true for n < 2; false for n > 3;

A,z [t )

true for n < 2; false for n > 3;

2 2
G < ,/Hn+Qn (10)

true for n < 4; false for n > 8.
They conjecture that (10) is valid also for 5 < n < 7.

We now settle, in the affirmative, relation (2). The famous Sierpinski

inequality (see e.g. [4] for a generalization) states that
HP 1A, < G < AVVH,, (11)

Now, the right side of (11) (which is equivalent, by a simple transforma-
tion, with the left side of (11)) implies

G, SA:T_IHn% = A°HP < aA, + BH,, for a = n;l’ ﬂ:%,
by the classical Young inequality
2y’ < ax+ By (x,y>0; a,f>0; a+p=1). (12)
Therefore, we have proved (9), in the following refined form:
G, < A% < 2 1);1" + Hn (13)

The weaker form of inequality (13) for n = 2 and n = 3 is proved also in

[1].

27



We want to point out now, weaker versions of (6)-(10), which are

always true. First remark that
H,<G,<A,<Q@Q,, foralln > 2. (14)

Now, by the first inequality of (13), and the last one of (14) one can write

by an application of (12). Thus, at another hand,
11
Gn < Qn* Hy,¥Vn>2 (15)

which coincides for n = 2 with (7), but unlike (7), (15) is always true;
and at another hand,
-1)Q,+ H,
g, < =D+ Hy (16)

n

which for n = 2 coincides with (6), and is true for all n. By (16), and the

classical inequality

(z1+ 22+ ... +2,)* <ni+...+122),
applied the 1 = ... = 2,1 = Q,, v, = H, one has

((n = 1)Qu + Ho)? < nl(n — 1)Q2 + H2),

so an extension of (10) has been found:

Gn < \/(n _ 1)@% + H72z (17)

n

Unlike (10), this is valid for all n > 2.
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1.6 On weighted arithmetic-geometric

inequality

Let z; > 0, p; > 0 and Zpi =1(=12,...,n, n € N). Since the
i=1
function f(x) = log(1+e”) is convex for all x > 0, by Jensen’s inequality

f(prar + ...+ ppay) <pif(an) + ...+ puf(an), a; €R,
we get
log(1 + ePratFPnany < og(1 4 €™ )P ... (1 + e )P,
By letting e* = x; > 0, we obtain the following inequality:
T+aft o oalr < (T4 x)P o (14 2, (1)
This is in fact, an extended Chrystal inequality (see [1]). Now, let
g(x) = loglog(1 + €").

It is immediate that ¢ is concave, which after some computations is equiv-
alent to
log(1+¢€") < €”.

Now, applying the some procedure as above, we can deduce the following

relation:
log(1+ 2" ... 2P") > log(1 4 x1)™ .. . log(1 + x,)"" (2)

Now, by the weighted arithmetic-geometric mean inequality, it can be

written that:
(I+az) . (I+a,) <p(1+x)+... +p(l +x,)
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By taking into account of (1), (2), (3), the following chain of inequalities
holds true:
Theorem. elos(1+z1)" - log(lzn)f™ | < g1 gpn

<(A4z)" .. (14 z,) —1 (4)

1
For py =ps = ... =p, = —, from (4) we get:
n

n
e \/log(1+m1)..,log(1+mn) 1< Yz, . an

Ty t+x2+ ...+ 2,
<Y tm). (e, -1 = , (5)

which among other contains a refinement of the classical arithmetic-

geometric inequality.
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1.7 A note on the inequality of means

1. Introduction

Let ay,...,, > 0,04+...+a, = 1land xy,...,x, > 0. The weighted

arithmetic mean-geometric mean inequality states that
Go=G(z,a) =z ...20" <oz + ...+ oz, = Az, ) = Ay (1)

This is one of the most important inequalities, with applications and

connections to many fields of Mathematics.

1 1
When (o) = (aq,...,q,) = (—, e —), we get the classical inequal-
n n

ity of means

G:n/—xl'_.%SM:A 2)

n

In 1998 [2] the author introduced the so-called ”tangential mean”

T)= (A1 +mz)...(1+z,) —1

and proved that

G<T<A (3)
In fact, the method of proof immediately gives the more general in-
equality
Go < T < A, (4)
where
Ta :Ta(l’) = (1+]}1)a1 (1+J}n)an -1 (5)

An application of (3) to Wilker and Huygens type inequalities has
been provided in our paper [3].

Recently, Y. Nakasuji and S.-E. Takahasi [1] have rediscovered re-
lation (4), by an application of Jensen type inequalities in topological

semigroups.
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Let a > 0 be an arbitrary positive real number. We introduce a gen-
eralization of T, of (5) by

T =THx)=(a+z2)...(a+2,)" —a (6)
The aim of this note is to offer generalizations and refinements of

inequality (4).

2. Main results

The following auxiliary results will be used:
Lemma 1. If zy,...,2, >0 and y1,...,y, > 0. Then

(1 + y1)™ o (T 4 yn) > 2l oy o, (7)

where («) are as in the Introduction.
Lemma 2. The application f : (0,00) — R given by f(a) = T2 is

INCTeasing.

3. Proofs

Lemma 1. By inequality (1) applied to

T Tn
Ty = gy L =
1+ hn Ty + Yn
we get
x o Ty an x T
( . ) < > <ay - Lt (8)
1+ Tn + Yn T1+ % Tn + Yn
. Y1 Yn

Apply (1) in the same manner to z; := ey Ty = .

1+ n Tp + Yn
We get

o (0773
( o ) ( Yn ) <aj- h +...ta,- Un 9)
T1+ W% Tn + Yn 1+ Tn + Yn
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Now, by a simple addition of (8) and (9), one gets (7).

Lemma 2. By computing the derivative f’(a) one has
fl(a) =ai(a+z)* Ha+x2) ... (a+x,)™
tag(a+21) (a+ 1) L (a+2,)* 4+ .+
tan(a+2)* ... (a+ Tp1)* (a4 2,) = 1.
Now applying inequality (1) to
ri=(a+x)* Hatx)* ... (at+x,)™, ..., Tni=(a+x)* ... (atz,) "
we get that

f’(a) > (IL'I + a)a1(a1—1+a2+-..+an) o (:L,n + a)(oq-l—az-i—...—l—an—l) —1=0

asar+as+...+a, =1.
The main result of this note is:

Theorem. One has:

Go <Ti<A,, fora>0 (10)
Go <T*<T)<A,, when0<a<b (11)
Go <TP <T*< A,, when a>b. (12)

Proof. By applying inequality (1) to =1 := 1 +a,...,x, ==z, + a,

we get
(x14a)™ ... (xp+a)™ < aj(x1+a) .. Fop(T+a) = oz +. . oz, +a,

so the right side of (10) follows.
Applying now Lemma 1 for y; = ... =y, = a, we get
(x14+a) .. (v +a)™ > a2+ a,

so the left side of (10) follows as well.
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Relations (11) and (12) are consequences of Lemma 2, by remarking
that f(a) < f(1) for a <1 and f(a) > f(1) for a > 1.

Remarks. 1) Particularly, when b = 1 we get the following refine-
ments of (10):

Go <T*< Ty < Ay, when0<a<1 (13)

Go <T,<T:<A, whena>1. (14)

These offer infinitely (continuously) many refinements of inequalities
(4) and (3).
Remark. An alternate proof for left side of (10) can be given by

considering the application

g:R—=R, g(z) =In(a +€).

ae”

Since ¢"(z) = —— > 0 is strictly convex, so by Jensen’s
g CEEE . 9 y , 50 by
a-+e
inequality

glayr + ..o+ anyn) < ong(yn) +. o+ ang(Wn), yi,--un €R

we get
(a+e¥)™ ... (a+e¥)* > a+ Myt tonin (15)

Let now y; =Inz; (i =1,2,...,n), where z; > 0 in (15). Then we get
(a+z)" ... (a+xzp)™ >a+z! ...z, (16)

so G, < T follows.
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1.8 On an inequality of Sierpinski

1

Let x;, i = 1,n, be strictly positive numbers and denote their usual

arithmetic, geometric and harmonic mean by

%’ G”(:C):<Ex1> , Hy(r) = nn )

An(z) =

where = = (z1,...,x,).
In 1909 W. Sierpinski ([5]) discovered the following double-inequality:

(Ho(2)" ™ An(z) < (Ga(2))" < (Au(@))" Ha(). (1)

The aim of this note is to obtain a very short proof of (1) (in fact, a
generalization), by using Maclaurin’s theorem for elementary symmetric
functions. For another idea of proof for (1) (due to the present author),
which leads also to a refinement of an inequality of Ky Fan, see [1].
For application of (1) see [4]. Now we state Maclaurin’s theorem as the
following:

Lemma. Let ¢, be the r-th elementary symmetric function of x (i.e.

the sum of the products, r at a time, of different x;) and p, the average

1 1

> > 2 phe

of these products, i.e.

o
N

Then

DN o=
Wl

D1 =Py 2D

See [2], [3] for a proof and history of this result.

37



Our result is contained in the following
Theorem. Let k =1,2,... and define the k-harmonic mean of x by

Then one has the inequalities
(G(@))" < (Ap(2))" ™" Hypo() (3)
(Gn(@))" 2 (Hopo(2))" 7" - Api(a), (4)

where

Z ry1...2k
== <
k
Proof. Apply p; > p’~ from (2), where

Akl e

and we easily get (3).

An,k: ($ ) = Pk

For k = 1 one reobtains the right side of inequality (1). By replacing

1 (1 1
r \xy  ax,)’
and remarking that

“()awm ~G)mw () am

we immediately get the left side of (1) from the right side of this relation.

x by

1
This finishes the proof of (3). Letting — in place of x, we get (4).
x
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1.9 On certain inequalities for means of

many arguments

1. Introduction

Let a; >0 (i =1,2,...,n) and introduce the well-known means of n

variables

Recently, V.V. Lokot and S. Phenicheva [1] have proved the following
inequality: For all n > 3,

ndy > (n—1)G; + Q. (1)

The proof of (1) is based on mathematical induction, combined with
the introduction and quite complicated study of an auxiliary function.
The aim of this note is to provide a very simple proof of (1). A related

result, as well as an extension will be given, too.

2. The proof
Remark that (1) may be written equivalently also as
(ay+as+...+a,)* = (a3 +a3+...+a®) >nn—1)G% (2
Now, the left side of (2) may be written also as 2 Z a;a;, where the

i<j
n(n —1)
2

number of terms is . Apply now the arithmetic mean-geometric

mean inequality

Ay > Gy (s> 1), where Ay = Tt AT
s

n(n —1)

with s = and z1 = a1as9,...,Ts = Qp_10y,.

40



Then, as each term a; appears n — 1 times, we get from (3):

n(n —1)

n(n—1 112
Z a’la] > ) [(a1a2 c an)n 1] n(n-1) — 5

1<j

This proves relation (2), and so relation (1), too.

GQ

n:

Remark. As for n = 2 there is equality in (1), this holds for all n > 2.

3. A related result
Apply now the inequality

n(n —1)

Ay < Qs (s >1), where s = 5

As ZZ(aiaj)Q = <Z a?)Q — Zaf =n’Q% —nR}, where

1<j

we get by (4) the following inequality:

nA2 Q2 anL — Rfl

, n>2

Y

T n—1 n—1

with R,, defined as in (5). By (1) and (6), we get also:

nA2 Q2 anL — Rﬁ

Gig , n>2

n—1 n—1

4. An extension

In analogy with (5) let us define

1/k
Ry — (a’f—l—a’;—i—...—i—aﬁ) '

n
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Now we will prove the following:

Theorem. For all n,k > 2 one has
nFrAR > (n - DGE + Rﬁk.

Proof. We shall use the multinomial theorem, as follows:

(a1 4. 4 a,) = Z <i1 (5 { )allla;z i )

21+12++Zn:]€
11,82,0.,in >0

where the multinomial coefficients

( k )_ k!
i1yins e yin) Vil .. ipl

By letting a; = as = ... = a, = 1 in (9), we get that the sum of all

multinomial coefficients is n*:

2. (zlzzk . zn) =n'. (10)

By letting as = ... = a, = 1, a1 = z in (9) and by taking a derivative

upon z, one has

k .
k(x4+n—1)"1 :Zh(il iy i )fl, (11)

and by putting z = 1 in (11) we get:

/{:-nk_IZZZj(. . g ) (12)
11,02yl

Now, remark that
(ay +...+ap)f = (¥ +... +a) =nFAF - RZI@)

On the other hand, by using (9), we get
nkF(A% — RF ) = E ( b )azf coaliv. o (13)
" i ) . il,ig,...,in "
0<iy <k—1,...,0<in <k—1
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On base of (10), the number of terms of the right hand side of (13) is

n* —n. Now write the sum on the right side of (13) as the sum z1 + x5 +

k

— n, where each term zy, is of the form af ...a"r

...+ x5, where s =n o

(which appears in the sum ( ,

11y...,0lp
T R
Applying inequality (3), we have to calculate the powers of a;,

> times), with iy + ... + 14, = k,

s, ..., a,. We will show that each such power is kn*~! — k. First re-

k
mark that in (9) in such a writing a;, appears Z i1 < ) times,

Zlai27"'7ln
which is kn*~1, by relation (12). But in (13) are missing the terms with

a¥, which appears k times. Thus in 2,25 ... 2, on the right side of (13),
the power of a; will be kn*~! — k. Clearly, the same is true for as, . .., a,.

Now, by (3) we get
nF(AE — RE Y > (nF —n)[(aras . . . a,)Fn" TR/ 05
=n(n" ' = D(aray ... a,)"™ =n(n*' - 1)G*.

By reducing with n, we get the Theorem.
Remarks. 1) For k = 2, we get relation (1). For k = 3 we get:

n*A} > (n* - 1)G3 + RS 5. (14)

2) As by the inequality (z; + ...+ z,)? < n(z?+...+22) applied yo
r1=...=x,_1 = G,, r, = Q, implies

[(n = 1)Gy + Qul* < nf(n — DG + Q7] < n?A7,
by (1); we get the most simple analogy to this relation:
nA, > (n—1)G, + Q. (15)

Such inequalities involving A,,, G, H, (harmonic mean), or Gy, @, H,

are proved in [2].
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1.10 A note on log-convexity of power

means

1. Introduction

Let My(a,b) = (ZEE)V/P (p # 0), Mo(a,b) = Vb denote the power
mean (or Holder mean, see [2]) of two arguments a,b > 0. Recently A.
Bege, J. Bukor and J. T. Téth [1] have given a proof of the fact that for
a # b, the application p — M, is log-convex for p < 0 and log-concave
for p > 0. They also proved that it is also convex for p < 0. We note
that this last result follows immediately from the well-known convexity
theorem, which states that all log-convex functions are convex, too (see
e.g. [2]). The proof of authors is based on an earlier paper by T.J. Mildorf
(see [1]).

In what follows, we will show that this result is well-known in the
literature, even in a more general setting. A new proof will be offered,

too.

2. Notes and results

In 1948 H. Shniad [6] studied the more general means

n 1/t n
Mt(aa 5) - (Z 5#&) (t 7& O)’ Mo(@, 6) = H afia

M_(a,§) =min{a; :i=1,...},

M, (a,§) =max{a; :i=1,...},
where 0 < a; < a;41 (i = 1,...,n — 1) are given positive real numbers,
and & (i = 1, n) satisfy & > 0 and z":& =1.

i=1

Put A(t) = log My(a, ). Among other results, in [6] the following are

proved:
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Theorem 2.1

1
If& > B then A(t) is convex for all ¢ < 0; (1)

1
Ife¢, > 3 then A(t) is concave for all ¢ > 0. (2)

Clearly, when n = 2, in case of M), one has § =& = %, so the result
by Bege, Bukor and Téth [1] follows by (1) and (2).

Another generalization of power mean of order two is offered by the
Stolarsky means (see [7]) for a,b > 0 and x,y € R define

( x T 1/(m—y)
y(a® —b%)
Y, — 0
Lmy_by)} : zy(z —y) #
1 Tlnag — b1
exp(———i—a nj bxnb>, r=y#0
D:r,y<a7b): T a®* — b
a® — b® 1/z

{(lna—lnb)] ’ v#0y=0

\ Vab, r=y=0

The means D, , are called som3times as the difference means, or
extended means.

Let I.(a,b) = (I(a®,b*))"/*, where I(a,b) denotes the identic mean
(see [2], [4]) defined by

I(a7 b) = Dl,l(a’v b) = (bb/aa)l/(b_a) (CL # b)’

I(a,a) = a.

Q|

K. Stolarsky [7] proved also the following representation formula:

Yy
/ log I;dt for x # y. (3)

T

1
log D, , = 7

Now, in 2001 the author [4] proved for the first time that the appli-

cation t — log I, is convex for ¢ > 0 and concave for ¢ < 0.
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This in turn implies immediately (see also [3]) the following fact:
Theorem 2.2

If x>0 andy >0, then D, , is log-concave in both x and y.

(4)

If x <0andy <0, then D,, is log-convexe in both x and y.

Now, remark that
Mp(av b) = D2p7p(a7 b) (5)

so the log-convexity properties by H. Shniad are also particular cases of

(4).

We note that an application of log-convexity of M, is given in [5].

3. A new elementary proof

We may assume (by homogeneity properties) that b = 1 and a > 1.

Let | v 1)/9
f(p)z—n((a; )2

and denote x = aP. Then, as

,  dx

=~ —gPlng =zl
. a’Ina==xlna,

X

from the identity
pf(p) =In(z+1)/2

we get by differentiation

zlna

f(p)+pf(p) = P (6)

By differentiating once again (6), we get

(xln?a)(z+ 1) — 22In’a
(z+1)2 ’

2f'(p) + pf"(p) =
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which implies, by definition of f(p) and relation (6):

p3fl/(p): (:cln2 m)(éill))z_ 1’2 IDZZ'_x _2‘_ 1 l’lnx_(x + 1) In (37 * 1):|

Czlnz+2(x+ 1) n(z+ 1) — 2z(z + 1) Inz
B (z +1) ’
after some elementary computations, which we omit here.
Put

x+1

g(z) = xIn’*x + 2(x + 1)* In( )—2z(z+1)Inz.

One has successively:

1
d(r) =In’z +4(x +1)In (%) —4zlnz,

21 1
g"(z) = T 4 (x;— ) —4lnz,
T

9" (x) =2 [t—1+ (z+1)Inz].

1—Inxzx 2 -2

22 a(r 1)] T 20z +1)

Now, remark that for z > 1, clearly ¢”(x) < 0, so ¢"(x) is strictly
decreasing, implying ¢”(z) < ¢”(1) = 0. Thus ¢'(z) < ¢'(1) = 0, giving
g(z) < g(1) = 0. Finally, one gets f”(p) < 0, which shows that for z > 1
the function f(p) is strictly concave function of p. As x = a? with a > 1,
this happend only when p > 0.

For z < 1, remark that x — 1 < 0 and Inz < 0, so ¢”(z) > 0, and
all above procedure may be repeted. This shows that f(p) is a strictly

convex function of p for p < 0.
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1.11 A note on the ¢ and ¢ functions

1. Introduction
In a recent paper [1] V. Kannan and R. Srikanth have stated the
following inequality

¢(n)w(n) ()P > e, (1)

where ¢(n) and ¢ (n) are the Euler, resp. Dedekind arithmetic functions,
while p(n) is defined by

u(n):% H(1——>+H(1+ ) (2)

pln pln

where p runs through the prime divisors of n.
Recall that ¢(1) =+ (1) = 1, and one has

I o TIe) o

pln pln

The proof given in [1] depends on inequality

(- S oo Bl )20

p|n p|n

In what follows, we shall give another proof of inequality (1), and this

proof offers in fact a stronger relation.

2. The proof

First remark that, by using (3), the expression u(n) given by (2) may

be written as
p(n) +1(n)
on ’

50
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Therefore, the inequality may be rewritten as

(p(n)cp(n) .w(n)w(n) > pr)+em) (6)
The following auxiliary results are needed:

Lemma 1. For any a,b > 0 real numbers one has

a+b
a - b’ > (a;—b) )

Lemma 2. For any n > 1 one has

(7)

p(n) +¢(n) = 2n.

(8)
Lemma 2 is well-known, see e.g. [2]. Lemma 1 is also well-known, but
we shall give here a complete proof.

Let us consider the application f(z) = zlogx, x > 0. Since f”(x) > 0,
f is strictly convex, so by Jensen’s inequality we can write

f(a;rb) < f(a);rf(b)_ ()

There is equality only for a = b. After simple computations, we get
relation (7).

Another proof is based on the fact that the weighted geometric mean
of a and b is greater than the weighted harmonic mean, i.e.

a’ b = 57—, (10)
— +_
a b
where p,q >0, p+q¢=1. Put p = aL+b’ 1= and from (10) we
get (7).

Now, for the proof of (6) apply Lemma 1 and Lemma 2 in order to
deduce:

2

e(n)+i(n)
o(n)?™) 1 (n) ) > (M) > e +n)

(11)

Therefore, in fact a refinement of inequality (6) (and (1), too), is
offered.
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1.12 Generalizations of Lehman’s

inequality

1. Introduction

A. Lehman’s inequality (see [6], [2]) (and also SIAM Review 4(1962),
150-155), states that if A, B,C, D are positive numbers, then

(A+B)(C+D)  AC | BD O
A+B+C+D “A+C  B+D

This was discovered as follows: interpret A, B,C, D as resistances of

an electrical network. It is well-known that if two resistances R; and Rs
are serially connected, then their compound resistance is R = Ry + Ro,
while in parallel connecting one has 1/R = 1/R; + 1/Rs. Now consider

two networks, as given in the following two figures:

All - [e Al e

1 I P 1 O =
\ 1

_ (A+B)(C+D) ., AC  BD

— R =
ATB+C+D ArC ByD
By Maxwell’s principle, the current chooses a distribution such as

to minimize the energy (or power), so clearly R’ < R, i.e. Lehman’s
inequality (1).
In fact, the above construction may be repeated with 2n resistances,

in order to obtain:
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Theorem 1. If a;, b; (i = 1,n) are positive numbers, then

(a1+~--+an)(b1+-~+
a1+---+&n+b1—|—---+

bn) > aby anbn
bn_a1+b1 an+bn

(2)

for any n > 2.

Remark. Since

i ;= H(a,b) is in fact the harmonic mean of two

positive numbers, Lehman’s inequality (2) can be written also as

H(a1+"'+an7bl+"'+bn)ZH<a1ab1)+"'+H(anabn) (3)

2. Two-variable generalization

In what follows, by using convexity methods, we shall extend (3) in
various ways. First we introduce certain definitions. Let f : A C R? -+ R
be a function with two arguments, where A is a cone (e.g. A =R?). Let

k € R be a real number. Then we say that f is k-homogeneous, if

flra,ry) =r*f(z,y) (4)

for any r > 0 and z,y € A. When k = 1, we simply say that f is
homogeneous.
Let F : I C R — R be a function of an argument defined on an

interval /. We say that F'is k-convex (k-concave), if

F(Xa+ ub) é) N (a) + p"F(b), (5)
for any a,b € I, and any \,u > 0, A+ p = 1. If k = 1, then F will be
called simply convex. For example, F(t) = [t|*, t € R is k-convex, for
k > 1, since |Aa + ub|® < N¥la|* + p*|o]F by (u+v)* < uF +0* (u,v > 0),
k > 1. On the other hand, the function F(t) = |¢|, though is convex, is
not 2-convex on R.

The k-convex functions were introduced, for the first time, by W.

W. Breckner [4]. See also [5] for other examples and results. A similar
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convexity notion, when in (5) one replaces A+ = 1 by A\* 4+ pu* = 1, was
introduced by W. Orlicz [12] (see also [8] for these convexities).

Now, let A = (0,+00) x (0,+00) = R% and I = (0,+00). Define
F(t)=f(1,t) for t € I.

Theorem 2. If f is k-homogeneous, and F' is k-convez (k-concave)
then

flar 4+ an, by + -+ + by) (S) flar,b1) + -+ + f(an,by)  (6)
2
for any a;,b; € A (i=1,2,...,n).
Proof. First remark, that by (4) and the definition of F', one has

a"F (S) =adtf (12) = f(a,b) (7)

On the other hand, by induction it can be proved the following Jensen-

type inequality:

F\z+ Xz + -+ Azy,) < )\lfF<$1) + AIQCF(@) +--- 4+ )\ZF(xn)a (8)

(=)

forany z; € I, \y >0 (i=1,n), \y +---+ A\, = 1.
E.g. for n = 3, relation (8)
Put

can be proved as follows:

a = M xr1 + A2
D VIS Vet S VNI W

To, b=w3, A=A+ Ay, = A3
in (5). Then, as A\jx; + Aoxo + A323 = Aa + pb, we have

F()\lxl + )\givg + /\3[E3) < /\kF((I) + ,UkF(b)

M

SRR (PP

)\k
F(x1) + 2——F(x2)| + A5 F (x3)

(A1 + A2)
= M F (1) + M F(22) + NP (a3).
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The induction step from n = m to n =m+1 (m > 2) follows on the

same lines, by letting

A Am
=St T b= T, A=At A 0= A
in (5).
Put now in (8)
bl b2 bn
Ty = —5 T2 = —, y Lp = —,
1 az an
)\IZL7 )\2:L7“'7)\n:L
ay + -+ ap ay + -+ an ap + -+ ap

in order to obtain

b1 b by,

k k k

alF( )+a2F< )+---+anF( )

F (u) (< ai Q3 Qn (9)

ar+---+an ) > (a1+...+an)k

Now, by (7) this gives
flar+ -+ an, by + -+ by) < flar,by) + -+ f(an, by),

i.e. relation (6).

b
Remark. Let f(a,b) = a: . Then f is homogeneous (i.e. k = 1),
a
and t+1
F(t) = (1) =

is 1-convex (i.e., convex), since F”(t) = 2/t3 > 0. Then relation (6) gives

the following inequality:

1 1 1
< ot ——— (10
H(ay+ -+ ap,by+---+b,) = H(ay,b) H(ay,,by) (10)

b t
Let now f(a,b) = aa——i—b' Then f is homogeneous, with F(t) = Pt
which is concave. From (6) (with > inequality), we recapture Lehman’s

inequality (3).

56



The following theorem has a similar proof:

Theorem 3. Let f be k-homogeneous, and suppose that F' is l-convex
(I-concave) (k,l € R). Then

(ay + -4 an) " flay + - 4 an, by + -+ by)

< (Z)all_kf(alv bl) oot aln_kf(am b )

(11)
Remarks. For k =1, (11) gives (9).
For example, let f(a,b) = %, where a,b € (0,00) x (0,00). Then k =0

(i.e. f is homogeneous of order 0), and F'(t) =

o which is 1-convex, since

2
F//(t) = t_?’ > 0.

Thus [ = 1, and relation (11) gives the inequality

(a1+...+an)2

< %
b+ 4by

a a

— 12
, . (12)
Finally, we given another example of this type. Put

a® + b?
b) = )
flah) =
Then £ = 1. Since

2 +1
F(t) ==
t+1

after elementary computations,

F'(t) =4/(t +1)* > 0,
sol =1, and (11) (or (9)) gives the relation

(4 @)+ (bt +b)” _ad +03
a1+"'+(ln+b1+"'+bn

az +0v2
< ..._|_—
ay + by

1
oo, 13
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) CL2 + b? aerl + bp+l
Since Ly (a,b) = (more generally, L,(a,b) = i

the so-called ”Lehmer means” [9], [7], [1] of a,b > 0, (13) can be written

also as

) are

Li(ar+ -+ an, by +---+b,) < Li(ar,b1) + -+ Li(an, by).  (14)

Clearly, one can obtain more general forms for L,. For inequalities on

more general means (e.g. Gini means), see [10], [11].

3. Holder’s inequality

As we have seen, there are many applications to Theorems 2 and 3.
Here we wish to give an important application; namely a new proof of
Holder’s inequality (one of the most important inequalities in Mathemat-
ics).

Let f(a,b) = a'/PbY/1, where 1/p+1/q¢=1 (p > 1). Then clearly f is
homogeneous (k = 1), with F(t) = t'/9. Since

1 1

F'(t)y= -t F'(t) = ——t" /P~ <,
q Pq

so by Theorem 2 one gets
(a1 + - 4 an) 20y + - + b)YV > a)/Pb) 4 -+ a/PB (15)

Replace now a; = AY, b; = B! (i =1,n) in order to get

n n Up / n 1/q
ZAZ-BZ-§<ZA§> (ZBf) , (16)

which is the classical Holder inequality.

4. Many-variables generalization
Let f: ACR"? — R be of n arguments (n > 2). For simplicity, put
p=(x1,...,2,), p = (27,...,2,),
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when p+p' = (zy + 2, ..., 2, + ) and rp = (ra1,...,r2,) for r € R.
Then the definitions of k-homogeneity and k-convexity can be extended
to this case, similarly to paragraph 2. If A is a cone, then f is k-
homogeneous, if f(rp) = r*f(p) (r > 0) and if A is convex set then
f is k-convex, if f(Ap + pup') < Nef(p) + pkf(p) for any p,p’ € A,
A >0, A+ p = 1. We say that f is k-Jensen convex, if

f(p;p’) < f(p) ; (r')

We say that f is r-subhomogeneous of order k, if f(rp) < r*f(p).
Particularly, if & = 1 (i.e. f(rp) < rf(p)), we say that f is r-
subhomogeneous (see e.g. [14], [15]). If f is r-subhomogeneous of order
k for any r > 1, we say that f is subhomogeneous of order k. For
k =1, see [13]. We say that f is subadditive on A, if

flp+0") < flp)+ f(') (17)

We note that in the particular case of n = 2, inequality (6) with 7 <”
says exactly that f(a,b) of two arguments is subadditive.

Theorem 4. If f is homogeneous of order k, then f is subadditive if
and only if it is k-Jensen convex.

Proof. If f is subadditive, i.e. f(p+p') < f(p)+f(p') forany p,p’ € A,

then iy 1 o)+ £0)
f(p 2p> =0 (p+p’)§%7

so f is k-Jensen convex. Reciprocally, if f is k-Jensen convex, then

f(erp/) < )+ f)

2 - 2k ’

SO

s =r[2(B5E)| =2 (B52) < s+ 1),

i.e. (17) follows.
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Remark. Particularly, a homogeneous subadditive function is con-
vex, a simple, but very useful result in the theory of convex bodies (e.g.
”distance function”, "supporting function”, see e.g. [3], [16]).

Theorem 5. If f is 2-subhomogeneous of order k, and is k-Jensen
convex, then it is subadditive.

Proof. Since

fo+p)=f (2 (p;p')) <2ty (p+2p’>7

f(p;p’) < f(p) ;rk (p’)’

we get f(p+p') < f(p) + f(p'), so (17) follows.
Remark. Particularly, if f is 2-subhomogeneous, and Jensen convex,

then it is subadditive. (18)

It is well-known that a continuous Jensen convex function (defined on

and

an open convex set A C R™) is convex. Similarly, for continuous k-Jensen
convex functions, see [4].

To give an interesting example, connected with Lehman’s inequality,
1 1
let us consider A =R, f(p) = H(p) =n/ (_ 44 x_)
T n
Let

1 1 1
g(p) Tn
Then
dg dz;  d%g dg? dx?
- = —, — —2—=—=-2 e
SO

2
1 d? Z”di 2"1 Z”df
5g?:q:<'—1 ::12'> —<‘—1x_i) ('—1 ;?)

(Here d denotes a differential.) Now apply Hoélder’s inequality (16) for
p = q = 2 (i.e. Cauchy-Bunjakovski inequality),
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d2
Then one obtains _39 < 0, and since g > 0, we get d’g < 0. It is well-

g
known ([16]) that this implies the concavity of function g(p) = H(p)/n,
so —H (p) will be a convex function. By consequence (17) of Theorem 5,
H(p) is subadditive, i.e.

H( + 24,00 + oy 4 0) > Hwn, 5, 20)+

FH(#2h, . al), (el > 0) (19)

For n = 2 this coincides with (3), i.e. Lehman’s inequality (1).

Finally, we prove a result, which is a sort of reciprocal to Theorem 5:

Theorem 6. Let us suppose that f is subadditive, and k-convex, where
k> 1. Then f is subhomogeneous of order k.

Proof. For any » > 1 one can find a positive integer n such that
r € [n,n+ 1]. Then r can be written as a convex combination of n and
n+1: r =nA+ (n+ 1)u. By the k-convexity of f one has

frp) = f(nAp + (n + 1)up) < N f(np) + p* f[(n + 1)p].
Since f is subadditive, from (17) it follows by induction that
f(np) < nf(p),
so we get
frp) <ndf(p) + (n+ D" f(p) = [A* + (n+ 1) (p).
Now, since k£ > 1, it is well-known that
A+ (n 4+ Dpl* > (n)* + ((n+ D))",
But (An)* > nA* and ((n+ 1)p)* > (n+ 1)pk, so finally we can write

frp) <+ (n+ D)pl*f(p) =" f(p),

which means that f is subhomogeneous of order k.
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Remark. For £k = 1 Theorem 6 contains a result by R. A. Rosenbaum
[13].

Final remarks. After completing this paper, we have discovered
that Lehman’s inequality (2) (or (3)) appears also as Theorem 67 in G.
H. Hardy, J. E. Littlewood and G. Polya [Inequalities, Cambridge Univ.
Press, 1964; see p.61], and is due to E. A. Milne [Note on Rosseland’s
integral for the stellar absorption coefficient, Monthly Notices, R.A.S.
85(1925), 979-984]. Though we are unable to read Milne’s paper, perhaps
we should call Lehman’s inequality as the ”Milne-Lehman inequality”.

Acknowledgments. The author thanks Professors J. Peetre and H.
Alzer for providing their reprints [2], resp. [1]. He is indebted to Professor
F. A. Valentine for a copy of his book [16], and also to Professors W. W.
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the presentation of the paper.
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Chapter 2

Logarithmic, identric and

related means

“Mathematical discoveries, small or great are never born
of spontaneous generation. They always presuppose a soil
seeded with preliminary knowledge and well prepared by

labor, both conscious and subconscious.”
(H. Poincaré)

“Try a hard problem. You may not
solve it, but you will prove something else.”
(J.E. Littlewood)

2.1 On the identric and logarithmic means

1

Let a,b > 0 be positive real numbers. The identric mean I(a,b) of a
and b is defined by

1 bb 1/(b—a)
]z](a,b)z—-(—) , fora#0b, I(a,a)=a,
e

aa
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while the logarithmic mean L(a,b) of a and b is

b—a
L=7L(ab) = —— f b, L - qa.
(CL, ) logb—loga Ora# ) (CL,CL) a

In what follows it will be convenient to denote the arithmetic mean of a

and b by
a+b

2

A= A(a,b) =
and the geometric mean by

G = G(a,b) = Vab.
More generally, we will use also the mean

ak—l—bk)l/k

mm:Ammm:( .

where k # 0 is a real number. B. Ostle and H.L. Terwilliger [11] and B.C.
Carlson [5], [6] have proved first that
G<L<A (1)

This result, or a part of it, has been rediscovered and reproved many
times (see e.g. [10], [12], [13]).
In 1974 T.P. Lin [9] has obtained an important refinement of (1):

G <L<A1/3) <A 2)

For new proofs see [12], [13]. We note that A(k) is an increasing function

of k, so
L <A(1/3) < A(k) < Afor all k € [1/3,1]

but, as Lin has showed, the number 1/3 cannot be replaced by a smaller
one.
For the identric mean, K.B. Stolarsky [17], [18] has proved that

L<I<A, (3)
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A2/3) <1 (4)

and that the constant 2/3 in (4) is optimal.
Recently inequalities (1) and (3) appear also in a problem proposed

by Z. Zaiming [19]. In [1] and [2] H. Alzer proved the following important

inequalities:
1
\/G~I§L§§(G+I), (5)
A-GLSL-I and A+G>L+1. (6)

We notice that, in all inequalities (1)-(6), equality can occur only for
a="b.

Very recently, H. Seiffert [16] has obtained the following result:

If f:]a,b] = R is a strictly increasing function, having a logarithmi-

cally convex inverse function, then

1
b—a

b
/ F(a)dz < F(I(a,b). (7)

The aim of this note is to obtain some improvements and related
results of type (1)-(7) as well as some new inequalities containing the
identric and logarithmic means. We also define some new means and

prove inequalities involving them.

2

We start with the relation
3
3 3 b
L(a,b) < (\/5%/»

(see (2)), applied with a — a®, b — b?. Since
L(a®,b*) = A(a,b) - L(a,b),
we get by a simple transformation, taking (4) into account, that
VAL <A@2/3)<I (8)
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As for the inequality (5), one may ask (in view of (8)) whether
I< %(A + L)
holds always true. We shall prove that the reverse inequality
I>%(A+L) it oath ()

is valid. For this purpose, let us divide by a all terms of (9) and write

b
r=—>1.
a

Then it is immediate that (9) becomes equivalent to

to= (ot 55 ) <2 e o)

log 2

where g(z) = 2%/,

Since

/o) =90 |15 - o

an elementary calculation show that
2x(x — 1)*(log 2)%g(x) f'(x) = x(z + 1)(log x)® — 2(x — 1)*. (11)
According to a result of E.B. Leach and M.C. Sholander [8], one has
VG (2,y) - Alw,y) < L(w,y), « #y. (12)

Letting y = 1 in (12), one finds that the right side of (11) is strictly

negative, that is, f(z) is a strictly decreasing function for x > 1. Now,

relation

concludes the proof of (10).
Remark. Inequality (9) is better than the right side of (5). Indeed,

1

1
[>§(A+L) and —(A+L)>2L—-G by L<§(2G’+A),

1
2
which is a known result proved by B.C. Carlson [6].
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Let us first note that the proof of (7) (see [16]) shows that, if f is
strictly increasing and f~! logarithmically concave (which we abbreviate
as "log conc” and analogously ”log conv”, for logarithmically convex),
then (7) is valid with reversed sign of inequality (when f is strictly de-
creasing and f~! log conc, then (7) is valid as it stands). It is easy to see
that, for a twice differentiable function f with f/(x) > 0, then f~!is log

conv iff

f'(@) +zf"(x) <0,

and f~! is log conc iff
f(z) +xf"(x) > 0.

If f'(z) < 0 then these inequalities are reversed.

Take now f(x) = z® and notice that
f'(x) =s2°' >0 for s >0
and

f(x) <0 for s <0.

In all cases,
(@) +zf'(x) = s?2°! > 0.
Thus for s > 0 we can write

b
2 ! / x’dx > (I(a,b))®,

yielding (with the notation s + 1 =t)
t(b—a)

bt — at

< (I(a,b))"™ ", t = 1. (13)

Since, for s < 0, f is strictly decreasing with f~! strictly log conv, (13)

is true also for ¢t < 1.
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Using the method in [13], set a = 2*, b = y* (z,y > 0, t # 0) in (1).
We get

/2 ty — )
yt — at

Pty ty—a)

< L <
(x7y) 2 yt—xt bl

(zy) t£0,  (14)

a double inequality attributed to B.C. Carlson [6]. In view of (13) we

obtain
bt —a' a4+ b
L (I <L : : 1
(@.0): (I b)) < Lab) jo—s < 5 020, (19
Some particular cases of (15) are of interest. For ¢ = —1, 1 see (1); for
t = 1/2 one obtains (by (6))
A+G _ L+1
I . 1
> > (16)
For t = 2 we get
b 24 ?
a; Vab < L(a,b) - I(a,b) < ; . (17)

By simple calculation we can deduce the formulae

blogb —aloga ]
b—a

log I(a,b) =

and

_ blogb—aloga Vab(logh — log a)
log 1 (ﬁ’ \/5> T 20b-a) ! 2(b—a)

B G(a,b) 1
—log ](a,b)+m—§

This relation implies, among others, that

IE (\/a, \/5) < I(a,b) (19)
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since G < L. On the other hand, the inequality
L* (Va,vb) < * (Va,vb)

is transformed, via (18), into

et (A46) dooon -

Now, Stolarsky’s inequality (4), after replacing a and b by y/a and Vb,
respectively, and with Lin’s inequality L < A(1/3), easily implies

L(a,b) < (M) <7 (\/6, \/5) < I(a,b) - e ¢~DIL < [(a,b)

(21)
by (18), (19). This improves the inequality L < I.

Some interesting properties of the studied means follow from the fol-

lowing integral representations:

1 b
log I(a,b) = b—/ log zdz, (22)
1 11
= —d 23
L(a,b) b—a/Gxx (23)
1 b
Alab) = 5 / vdz, (24)
1 IS
- i 2
G2(a,b) b—a/a a:de’ (25)

where, in all cases, 0 < a < b.
Using, in addition to (7), some integral inequalities, (22)-(25) give

certain new relations involving the means I, L, A, G.
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For f(z) =1/(x +m), x > m we have
f'x) <0, fi(z) +af"(z) =0,

thus f~! is log conv, so (7) implies

I(a,b) +m > L(a+ m,b+ m), for min(a,b) > m. (26)
Analogously, letting f(x) = log(z +m), m > 0, one obtains

Ila4+m,b+m) > I(a,b) +m, m > 0. (27)

Notice that (26) and (27) written in a single line:

I(a+m,b+m)>I(a,b) +m > L(a+ m,b+ m) (28)

for min(a,b) > m > 0 improve also (in a certain sense) the inequality
I >1L.
The classical Jensen-Hadamard inequality ([10], [14]) states that if

f :]a,b] = R is continuous and convex, then

1(57) <ot [ < OTIO

For f(z) = xlogx, (29) gives
A% < I(a®,b?) < (a® - 0°)VA (30)

If we observe that a simple integration by parts gives

b b2 _ 42
/a zlogxdr = 1 log I(a?, b?). (31)
Since I%(a,b) < A?, (30) refines relation (19):
I*(a,b) < A* < I(a?b?). (32)
Let [a,b] C [0,3) and f : [a,b] — R be defined by
f(x) =log(x/(1 - x))
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By f"(x) = (22 — 1)/2%*(1 — 2)* < 0 and (29) we can derive

A
>
AT

G 1
> —
X, for [a,b] C [0, 2) , (33)

where we wrote

A= A'(a,b) = A(1 — a,1 =),

I'=T1(a,b)=1(1 —a,1—0),

G'=G'(a,b) =G(1 —a,1-0).
This is a Ky Fan type inequality (see [3], [15]) for two numbers, in a
stronger form (involving I and I’).

Furthermore, amongst the many integral inequalities related to our

situation, we mention two results. One is the classical Chebyshev inequal-

ity ([4], [7], [10]):

b , .
bia/a f(z)g(z)dz < bia/a f(x)dx - bia/a g(z)dz (34)

for f, g having different types of monotonicity. Let

1
f(z) =logz, g(x) Tog s
Then (22), (23), (34) yield
L(loga,logb) <logI(a,b) (35)
if we notice that
loglogb —logloga 1 1
b—a "~ L(a,b) L(loga,logh)’

The second result we deal with is contained in the following inequality.

If f:[a,b] = R is positive, continuous and convex (concave), then

[, 1, ., ,
= [ P < 3P+ H@I0 + PO) @
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with equality only for f linear function.
For a proof of (36) denote by K : [a,b] — R a linear function with
the properties

Then . _
_a j—
K(t) = — :
0= =250+ =L fla). 1 ot
Intuitively, the set {(¢,2) : t € [a,b], 2 = K(t)} represents the line
segment joining the points (a, f(a)), (b, f(b)) of the graph of f. The

function f being convex, we have

f(t) < K(t), t € a,b]
and, because f is positive,
F2() < K3(1).

A simple computation gives

/ K>(t)dt = (b—a) - %(F(a) + /(@) f(b) + /().

concluding the proof of (36).
Apply now (36) for f(z) = 1/y/z, 0 < a < b. We get the interesting

inequality
1 2
< =+ = 37
atgm (37)

t~lw

where
2

1 R 1
a b
denotes the harmonic mean of a and b. For another application choose

f(z) = logx

H = H(a,b) =

n (36). One obtains

I3(a,b) > G*(a,b) - eV'oslost, (38)
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Finally, we make two remarks. The mean

1
J=J(ab) = (" ab)V/(b=a)

is related to the mean I. In fact,

1

1Y\’
I[=. =
(1)

Since I(u,v) = I(v,u), L(u,v) = L(v,u), by using certain inequalities

J(a,b) = (39)

for I, we can obtain information about J. Apply e.g.
11 11
I\—,-|>L|(-,-
(a’b) (a’b)

11

22 =

(L1 <L(a’b>
a’ b Gll
a’ b

ﬁ<‘]<f (40)

and

(see (3), (5)) in order to obtain

where we have used the fact that

2(9) =585 o()-ats

The second remark suggest a generalization of the studied means. Let

p:a,b] — R be a strictly positive, integrable function and define

b
/ p(z)log zdx
b

p(z)dz

a
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= (43)
Lp<aa b) / p(l‘)dl‘
/ * p(x)
L), 2?dx
Gl%(a’ b) B ' p(x)d$7 (44)

which reduce to (22)-(25) if p(z) = 1, x € [a,b]. By the well known
Jensen inequality ([7], [10]):

b b
[ twpais [ pe)ios e
log =4— >t (45)
/ p(z)dz / p(z)dx
applied to f(z) = z and f(z) = 1/z, respectively, we get
L,(a,b) < I,(a,b) < Ay(a,b). (46)

From the Cauchy-Schwarz inequality ([7]) we can easily obtain

(/ (Vr@s)- md) <(/ bp<x>/x2dw) (/ bp(x)dw) ,

getting
L,(a,b) > Gp(a,b). (47)
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2.2 A note on some inequalities for means

1

The logarithmic and identric means of two positive numbers a and b

are defined by

b—a
L=L(ab) = — "+ . L(a,a) =
(a,b) b _lna or a # b; (a,a) =a

and

1
I=1I(a,b):=~0"/a®)Y" 9 for a #b; I(a,a)=a

e

respectively.

Let

a+b

A= A(a,b) := and G = G(a,b) :== Vab

denote the arithmetic and geometric means of a and b, respectively. For
these means many interesting results, especially inequalities, have been
proved (see e.g. [1], [2], [3], [5], [6], [7], [10]). Recently, in two interesting
papers, H. Alzer [1], [2] has obtained the following inequalities:

A-G<L-I and L+1<A+CG (1)
1
\/G-[<L<§(G+I) (2)

which hold true for all positive a # b.
The aim of this note is to prove that the left side of (1) is weaker than
the left side of (2), while the right side of (1) is stronger than the right

side of (2). Namely, we will prove:

A-G/I<VG-T<L (3)
L<A+G—[<%(G+I). (4)
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The left side of (3) may be proved in different ways. Apply, e.g. the

well-known Simpson quadrature formula ([4]):

/abf(x)dx = bga [f(a) +4f (a;b> +f(b)] _ Mf(zi)(g)’ (5)

¢ € (a,b), where f : [a,b] — R has a continuous 4-th derivative on (a,b),

for f(r) = —Inx. Since f®(z) > 0, a simple derivation from (5) gives:
P> A*.G (6)

i.e. the desired result. For the method, based on integral inequalities, see
also [7], [8], [9].
A slightly stronger relation can be obtained by the following way:
T.P. Lin [6] and K.B. Stolarsky [10] have proved that for a # b one

has:

1/3 4 p1/3\ 3

L) < (25 )

and
2/3 4 p2/3\ 3/?

(“57) <Han, ®)

respectively. Set a = 2%, b = y* in (7) and remark that
L(z*,y*) = Az, y) - L(,y),
so via (8) we get:
VA-L<I. (9)

Now, it is easy to see that VA - L > v/ A2 - G, since this is exactly a result
of B.C. Carlson [3]:

VG2 A< L. (10)
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For establish (1) and (2), H. Alzer [1], [2] has applied an ingenious
method attributed to E.B. Leach and M.C. Sholander [5]. This can be
summarized as follows:

Let (e.g. in (1)) a = €', b =e7', ¢t € R, and prove (by using certain

hyperbolic functions) the corresponding inequality. Then replace ¢ by

1
In 2 and multiply both sides of the proved inequality by ./zy.

’ In what follows we shall prove by a different argument the following:
Theorem. For a # b one has:
I>2A;G>A;L. (11)
Proof. First we note that the second inequality in (11), written in
the form
L < QG; A (12)

has been proved by E.B. Leach and M.C. Sholander [5].

b
For the first inequality divide all terms by a < b and denote x := — > 1.
a

Then the inequality to be proved is transformed into

r+1yx 3
@) e (13)

where
g(z) = 2%V 2> 1.

Introduce the function f : [1,00) — R defined by

r+ 1+ ‘ L 3
f(‘r)_W7I>17 f(l)—xll}ﬁf(x)—g-
If we are able to prove that f is strictly decreasing, then clearly (13) and

(11) is proved. On has

) = al) - I Inz
g(x) = g() |

rx—1
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and after some elementary calculations, we can deduce:
2z - (2 — 1)2g(x) f'(x)
=2(nz)Vz (z+ 14+ Vz) — 4/z(z — 1) — (2* - 1). (14)

We now show that the right side of (14) is strictly negative, or equiva-
lently
G- (244 G)
A+2G
where in our case L = L(z, 1), etc.
The obvious inequality u/v > (2u®+v3)/(u?+20v%), for u > v applied
for u = VA, v = /G, leads to

L> (15)

G324+ G)?
2A N\
G > (A+2G)?

thus by (10), relation (15) is valid. This finishes the proof of the theo-
rem. Since the right side of (4) is exactly the first part of (11), we have
completed our aim stated at the beginning of the paper.

Remark. By (A+ L)/2 > /A L, (11) gives a refinement and a new
proof for (9).
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2.3 Refinements of certain inequalities for

means

The logarithmic and identric means of two positive numbers a and b

are defined by

L= L(a,b) := ﬁ for a #b; L(a,a) =a
and )
I=1I(a,b):=~0"/a®)Y* 9 for a #b; I(a,a)=a,
e
respectively.
Let

a+b

A= A(a,b) = and G = G(a,b) :== Vab

denote the arithmetic and geometric means of a and b, respectively. For
these means many interesting inequalities have been proved. For a survey
of results, see [1] and [6].

The aim of this note is to indicate some connections between the

following inequalities. B.C. Carlson [3] proved that

2G+ A
- (1

(where, as in what follows, L = L(a, b), etc., and a # b) while E.B. Leach
and M.C. Sholander [4] showed that

L>VG?A (2)

L <

These two inequalities appear in many proofs involving means. H. Alzer

[1], [2] has obtained the following inequalities:
A-G<L-I and L+I<A+G (3)
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1
\/G-I<L<GTJr (4)

J. Séndor [7] has proved that the first inequality of (3) is weaker that
the left side of (4), while the second inequality of (3) is stronger than the

right side of (4). In fact, the above statement are consequences of

I > VAQG (5)
and 24 + G
I> 3* . (6)

Clearly, (6) implies (5), but one can obtain different methods of proof
for these results (see [7]). In [6] J. Sdndor has proved (relation 21 in that
paper) that

G

I
In—>1-——.
no > 7 (7)

Particularly, as application of (7), one can deduce (1) and the right
side of (4). First we note that (e.g. from (1), (2) and (5))

G<L<I<A (8)

Let « > 1. Then L(z,1) > G(z,1) implies Inz < (x — 1)/4/x which

applied to x = 17 > 1 gives, in view of (7):

(I —L)WL>(L-G)VI. (9)

This inequality contains a refinement of the right side of (4), for if we

put a = VI/VL > 1, (9) gives
I < [1++a§}' - [—;G (10)
since the function a — (I +aG)/(1 4+ a) (a > 1) is strictly decreasing.
Now, inequality L(z,1) < A(z,1) for z > 1 yields
2(x —1)
r+1

Inz >
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Since

| I A-L
n—=——
G L
(which can be obtained immediately by simple computations) and
I I L
In—=In——In—
‘T e
L L-G
from In c> 2. e in (7) one obtains
L-G A+G
2. -2 11
I+G¢ -1 (1
By L > G this refines Carlson’s inequality (11), since by L+ G < 2L one
has 2L - G) e
ok S VA Il
L+G ~ L’

so by (11) one can derive

(L-G)? A+2G

"<Titre I

3. (12)

Inequality (6) and (1) improves also the right side of (4). This follows

by
24+ G

I> >2L -G (13)

where the second relation is exactly (1). We note that

VG- T>VG?2- A

follows by (5), so from the left side of (4) one can write:

L>VG-T>VG* A (14)

improving inequality (2). The left side of (4) can be sharpened also, if we

use the second inequality of (3). Indeed, by the identity
I A-1L x—1

In—=—— and lhz<

G~ L /T
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I
applied with z = — > 1 one can deduce

G

I -G
I L < L. 1
\/G<A_L < (15)

Remark. Inequality (6) with (1) can be written also as

2A+G A+ L

1 1
> > (16)
Relation ALl

I> % (17)

L
> VAL, one has

appears also in [6], inequality (9). Since

> VAL (18)

For a simple method of proof of (18), see [7]. As an application of (18)
we note that in a recent paper M.K. Vamanamurthy and M. Vuorinen
[11] have proved, among other results, that for the arithmetic-geometric

mean M of Gauss we have
M < VAL (19)

M <. (20)

Now, by (18), relation (20) is a consequence of (19). In the above men-

tioned paper [11] the following open problem is stated:

t o opt\ Mt
¢t = S(t) for some t € (0,1)7

Is it true that [ <

We note here that by a result of A.O. Pittinger [5] this is true for

2
t = In2. The reversed inequality I > S(t) is valid for ¢ = 3 2 has
been proved by K.B. Stolarsky [10]. The values given by Pittinger and
Stolarsky are best possible, so I and S(t) are not comparable for ¢ < In 2

2 :
and ¢t > 3 respectively.

87



Bibliography

1.

10.

11.

H. Alzer, Ungleichungen fir Mittelwerte, Arch. Math., 47(1986),
422-426.

. H. Alzer, Two inequalities for means, C.R. Math. Rep. Acad. Sci.

Canada, 9(1987), 11-16.

B.C. Carlson, The logarithmic mean, Amer. Math. Monthly, 79
(1972), 615-618.

E.B. Leach, M.C. Sholander, Fxtended mean values, II, J. Math.
Anal. Appl., 92(1983), 207-223.

. A.O. Pittinger, Inequalities between arithmetic and logarithmic

means, Univ. Beograd Publ. Elektr. Fak. Ser. Mat. Fiz., 680(1980),
15-18.

J. Sandor, On the identric and logarithmic means, Aequationes
Math., 40(1990), 261-270.

J. Sandor, A note on some inequalities for means, Arch. Math.,

56(1991), 471-473.

J. Sandor, On certain identities for means, Studia Univ. Babeg-
Bolyai, Cluj, 38(1993), 7-14.

H.-J. Seiffert, Comment to Problem 1365, Math. Mag., 65(1992),
356.

K.B. Stolarsky, The power and generalized means, Amer. Math.
Monthly, 87(1980), 545-548.

M.K. Vamanamurthy, M. Vuorinen, Inequalities for means, J.
Math. Anal. Appl., 183(1994), 155-166.

88



2.4 On certain identities for means

1. Introduction

Let
1
I=1(a,b)==("/a®)Y9 for a #b; I(a,a) =a (a,b>0)
e

denote the identric mean of the positive real numbers a and b. Similarly,

consider the logarithmic mean
L = L(a,b) = (b—a)/log(b/a) for a #b; L(a,a)= a.

Usually, the arithmetic and geometric means are denoted by

a+b

A= Ala,b) = and @ = G(a,b) = Vab,

respectively. We shall consider also the exponential mean
E = E(a,b) = (ae” — be’)/(e® —e’) —1for a #b; FE(a,a) = a.

These means are connected to each others by many relations, espe-
cially inequalities which are valid for them. For a survey of results, as well
as an extended bibliography, see e.g. H. Alzer [1], J. Sandor [6], J. Sdndor
and Gh. Toader [8]. The aim of this paper is to prove certain identities for
these means and to connect these identities with some known results. As
it will be shown, exact identities give a powerful tool in proving inequal-
ities. Such a method appears in [6] (Section 4 (page 265) and Section 6
(pp. 268-269)), where it is proved that

P(vavh) q_p

(et~ L (1)

log

where G = G(a,b) etc. This identity enabled the author to prove that
(see [6], p. 265)

G
2< 7. (a—; ) . e(G-L)/L (2)
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and

I
L<T-eGD/L <i.e. logz >1— %) (3)

In a recent paper [9] it is shown how this inequality improves certain
known results.
In [10] appears without proof the identity
I A-1L
log — = —— 4
08 n= "7 (4)
We will prove that relations of type (1) and (4) have interesting con-

sequences, giving sometimes short proofs for known results of refinements

of these results.

2. Identities and inequalities

Identity (4) can be proved by a simple verification, it is more inter-
esting the way of discovering it. By
blogh — aloga b(logb — log a)

1= 1 —1
b—a b—a +loga (+)

log I(a,b) =

it follows that
I(a,b) =

| —1
L(a,b) +loga ’

and by symmetry,

log I(a,b) = ﬁ%—logb—l (a #b)

ie.
I b I a
log= =2 —1 log> =2 1
og- =7 and 08y =7 (5)

Now, by addition of the two identities from (5) we get relation (4). From
(5), by multiplication it results:
1 I G? A

log = log> = — —2. 241
08 8y T 12 L (6)



and similarly
I I b—-1L
log —/log — = —— 7
og—/logw = — (7)
As analogous identity to (1) can be proved by considering the logarithm
of identric mean. Indeed, apply the formula () to a — ¢/a, b — V/b.

After some elementary transformations, we arrive at:

| P (vavh) ayerar , .
I L (®)

where

€/E+%>3
2

M = A1/3<(l,b) = <

denotes the power mean of order 1/3. More generally, one defines

ak+bk)1/k

1%:m@m:( .

Now, Lin’s inequality states that
L(u,v) < M(u,v)
(see [5]), and Stolarsky’s inequality ([11]) that
I(u,v) > Agsz(u,v).

Thus one has

3 (\3/57 %) > { ((a2/3)1/3 + (62/3)1/3>3}3/2 > 323 12/

2

1/3 2/3

by the above inequalities applied to u = a'/3, v = b'/3 and v = a?/3,

v = b*3, respectively. Thus
3 (\3/57 %) > [3/2(a2/3, b3, 9)
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This inequality, via (8) gives:

L3/2(a2/3, b2/3) < I(CL, b) . 62\/3 G2-M/L-2 (1(])
or 5
1 2V G2 - M
log oo WEEM (11)
L3/2(a2/3 12/3) I

This is somewhat similar (but more complicated) to (3).

Finally, we will prove certain less known series representations of
log — and log —, with applications.
g G g G PP

First, let us remark that
lo A(a’b)—lo a+b—lo E g—l—\/E
“Cat) ~ Pava 2 \Ve T Va )

b— 1
Put z = b+z (Withb>a),i.e.t:%7 Wheret:%

1 \/1+z+\/1—z 1
2 1—2 142 /1= 22

and
1 1 1
logl/(\/l—z2):—ilog(l—z2):§z2+1z4+...
u? ol
by log(l —u) = —u— — — — — ...), we have obtained:
2 3
Ala,b) =1 <b—a)2k
= — (12)
G(a,b) ;216 b+a
In a similar way, we have
A _a+b (logb—1loga 1 142
Z_l_ 2 ( b—a )_I_Q_ZIOgl—z_l
1 22 2
= —arctanhz — 1 = — + — + ...
Zarcanz 3+5+ ;
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implying, in view of (4),

I(a,b) = 1 b—a\>*
o8 ) = 2341 (b+a> (13)

k=1

The identities (12) and (13) have been transmitted (without proof) to
the author by H.J. Seiffert (particular letter). We note that parts of these
relations have appeared in other equivalent forms in a number of places.
For (13) see e.g. [4]. (Nevertheless, (4) is not used, and the form is slightly
different).

Clearly, (12) and (13) imply, in a simple manner, certain inequalities.

By

22 22 4 2 22 1

z
— < — 4+ — 4. < —(1 2 ) =2
3<3+5+ <3(—|—z+z+ ) T 12
we get

L4 (b—a)2/3(b+a)? < logé <14 (b-a?/12ab  (14)

improving the inequality I > G. On the same lines, since

22 22
2

_ 22 1
2 2

2, 4 _Z
(42" +..) = T

N | —

2’4 <
one obtains

S0 —a2/(b+a)” < log & < (b— a)*/Sab. (15)

3. Applications

We now consider some new applications of the found identities.
a) Since it is well-known that logz < x — 1 for all > 0, by (4) we
get
A-G<L-I (16)

discovered by A. Alzer [1]. By considering the similar inequality
1
logz >1—— (z >0),
x
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via (4) one obtains

A G
—+=>2 1
L+I> (17)

due to H.J. Seiffert (particular letter).
b) The double inequality G(z,1) < L(z,1) < A(z,1) for x > 1 (see
the References from [5]) can be written as

x—1<1 <x—1
ogx
r+1 & NI

1
Let x = c> 1 in (18). By using (4) one obtains:

2.

(x> 1) (18)

I-G A-L I1-G

. < < . 19

I+G L VIG (19)

These improve (16) and (17), since
—2(I_G) >1—§ and -G < !
I+@G I VIG  G—1
Let us remark also that, since it is known that ([1])
I-G<A-1L,
the right side of (19) implies
I-G
VIG < -L <L, (20)

A-L
improving VIG < L (see [2]).

c¢) For another improvement of (16), remark that the following ele-
mentary inequality is known:

2
e$>1—|—x+%(x>0) (21)

This can be proved e.g. by the classical Taylor expansion of the exponen-
tial function. Now, let x = A/L — 1 in (21). By (4) one has

A+1 4 12—1G 1+A2
L 2\L 2 2 )
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Thus we have

G-A<%-%(L2+A2)<L~I, (22)

since the left side is equivalent with 2LA < L?+ A2 This result has been
obtained in cooperation with H.J. Seiffert.

d) Let us remark that one has always
I 1
log — - log — < 0,
a b
since, when a # b, I lies between a and b. So, from (6) one gets
G+ 17 <241, (23)

complementing the inequality 24 - L < A% + L?.
e) By identities (1) and (4) one has

2G + A 14 (\/5\/5>

=3+1 . 24
I o8 )  Glab) (24)
In what follows we shall prove that
(i)
>1 25
I(a,b) - G(a,b) — (25)
thus (by (24)), obtaining the inequality
I < 2G;— A (26)

due to B.C. Carlson [3]. In fact, as we will see, a refinement will be
deduced.

Let us define a new mean, namely
S = S(a,b) = (a®- b*)/?4 = (a® - pb)/(a+D) (27)

which is indeed a mean, since if a < b, then a < S < b. First remark that
in [6] (inequality (30)) it is proved that

A% < I(a?,b?) < S%(a,b). (28)
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(However the mean S is not used there). In order to improve (28), let us

apply Simpson’s quadrature formulas (as in [7])

/abf(ﬂl?)da:: b;a {f<a)+4f (a—gb> +f(b)} _ %fw(g)’

¢ € (a,b), to the function f(x) = xlogx. Since f®(x) > 0 and

b b2 o a2
/ xlogxdr = 1 log I(a?, b?)
(see [6], relation (3.1)), we can deduce that
I}a®,b*) < 5% A% (29)

Now, we note that for the mean S the following representation is valid:

I(a?,b?)

S(a,b) = T(ab) "

(30)

This can be discovered by the method presented in part 2 of this paper
(see also [6]). By (29) and (30) one has

(a2, %) < A*/I*(a,b) (31)

which is stronger than relation (25). Indeed, we have

I*(a,b)

2 12 < 4 /712 <
‘[<a 7b>—A /I (GJb)— GQ(a,b)7

since this last inequality is
P> A% G (32)

due to the author [7]. Thus we have (by putting @ — /a, b — /b in

(31))
F(a) ()

I(a,b) - G(a,b) = 72 <\/5, \/5> I(a,b)

>1 (33)
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giving (by (1)):

G Ay At (\/5M5>
2 <\/a, \/5) - I(a,b)

> 3, (34)

improving (26).
f) If a < b, then a < I < b and the left side of (5), by taking into

account of (18), implies

a I—A b—L I—a I
1—=2<92. < < <--1 35
1= ( T+a ) L = Va "a (35)
Remark that the weaker inequalities of (35) yields
b a
-+ =>2 36
7 (36)
Similarly, from (5) (right side) one obtains:
a b
—+->2. 37
77 (37)

g) For the exponential mean E a simple observation gives
log I(e”, e) = E(a,b),

so via (4) we have

Ae?, e)
E-A=—-"2<-1. 38
L(e®, eb) (38)
Since A > L, this gives the inequality
E>A (39)

due to Gh. Toader [11]. This simple proof explains in fact the meaning
of (39). Since I* > A2G (see [6]), the following refinement is valid
A+ 2log A(e?, €b)
>
3
where the last inequality holds by (e? + €b)/2 > e(@+9/2 ie. the Jensen

convexity of e®.

E > A, (40)
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2.5 Inequalities for means

1

Let a,b > 0 be positive real numbers. The ”identric mean” I(a,b) of
a and b is defined by

1
I=1(a,b) = =(b"/a")/*) for a # b; I(a,a) = a;
e
while the ”logarithmic mean” L(a,b) of a and b is
L(a,b) = (b—a)/(logh —loga) for a #b; L(a,a) = a.

Denote
al + bt

1/t
Mt:Mt(a,b): ( ) fOI't#O

the root-power mean of a and b. Plainly,
M (a,b) = A(a,b) =t, My(a,b) = 111% M;(a,b) = G(a,b) =G
—

are the arithmetic and geometric means of a and b, respectively.
B. Ostle and H.L. Terwilliger [8] and B.C. Carlson [3], [4] have proved
first that
G<L<A. (1)

This result, or a part of it, has been rediscovered and reproved many
times (see e.g. [6], [9], [10]).
In 1974 T.P. Lin [6] has obtained an important refinement of (1):

G<L<M;<A (2)

For new proofs, see [9], [10], [11]. We note that M is an increasing
function of k, so L < M3 < M, < A for all k € [1/3,1] but, as Lin
showed, the number 1/3 cannot be replaced by a better one.

For the identric mean, K.B. Stolarsky [13], [14], has proved that

L<I<A. (3)
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M3 <1 (4)

and the constant 2/3 in (4) is optimal.

Recently, inequalities (1) and (3) appear also in a problem proposed
by Z. Zaiming [16]. The relations G < L < M,/ < I < A have been
proved also by Z.H. Yang [15].

In [1] and [2] H. Alzer proved the following inequalities:

1
VG T<L< (G+1) (5)
A-G<L-T and A+G>L+1. (6)

We notice that, in all inequalities (1)-(6), equality can occur only for
a="b.

In [12] the following integral inequality is proposed. If f : [a,b] — R
is a strictly increasing function, having a logarithmically convex inverse

function, then

b
[ Heds < 1) ")

Finally, we recall that ([10], Theorem 2, k = 2), for a 4-times differ-
entiable function, having a continuous 4-th derivative on [a,b], with
f@(x) >0, z € (a,b), one has

s s () (). @

This is a refinement of the famous Hadamard inequality, and has inter-

esting applications for the exponential function and logarithmic means
(see [10], [11]).

2

Applying (8) for f(t) = —logt, t > 0, an easy calculation shows that

Aa,b) 1 a 2
log T(a.b) >6<1_A(a,b)) > 0. (9)
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Remarking that

b
1
/ xlogxdx = Z(b2 —a®)log I(a®, b?),

and letting f(z) = zlogx in (8), we get

A%(a,b) 1 a \°
log T(a2 12) < -3 (1 " A b)) < 0. (10)

As a simple consequence of (10) and (1), (3), we note that:
I*(a,b) < A*(a,b) < I(a®,b%). (11)

Inequality %(a,b) < I(a?, b*) follows also from the representation

. I (ﬁ, \/5) _ G(a,b) — L(a,b) (12)
g I(a,b) L(a,b)

which can be obtained e.g. by writing

_ blogb—aloga B

log I(a,b) 2
—a

1.

On the other hand, the inequality
12 (Va, V) < I* (Va, vb)

is transformed via (12) into

L*<1- (A+ G) e G-LI/L, (13)

2
where L = L(a,b), etc.

3

Using the method of [10], set a = z*, b = y* (x,y > 0, ¢ # 0) in (1)
we get

tly—x) b+

(zy)"Pt(y — )
< L(z,y) < f .t g

yt—at y
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a double-inequality attributed to B.C. Carlson [4].
Let now ¢ > 1 and f(z) = x'~!. Then f is increasing with f~! log.

conc. (i.e. logarithmically concave). The proof of (7) shows that (7) is

valid also in this case, with reversed sign of inequality. So, on account of

(14) we obtain

bt —at a4+ b

th—a) = 2

L(a,b) - (I(a,b))"" < L(a,b) - , t#0,1. (15)
Since for t < 1, f is strictly decreasing with f~! strictly log. convex,
(15) is valid also for ¢ < 1.
Some particular cases for (15) are of interest to note:
For t = 1/2 one obtains (by (6)):

A+G L+1
I . 1
> (16)
For t = 2 we have:
b 2402
o -\/ab<L(a,b)-I(a,b)<a; . (17)

Let us first remark that, when f(x) > 0 and f has a second order

derivative, a simple computation proves that f~! is log. conv. iff
F @) () + 2 f"(x)] <0

and f~!is log. conc. iff
f'@)0f (@) + 2 f"(x)] > 0.

The proof in [12] can entirely be repeated in order to see that, in (7) we
have the sign of inequality:
<, if />0, f~!log. conv. or f' <0, f~!log. conc. (18)
18
> if f/ >0, f~!log. conc. or f' <0, f~!log. conv.
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where the sign of inequality is strict whenever f~! is strictly log. conv.
or log. conc.
Let f(x) = (logx)/z. Then

1 —logx

8L fie) 1 of(x) = B2

2

() =

T €T

Using (18), we can derive the relations

G! > I* for a,b € (e, 00),

(19)
G! < I* for a,b € (0,€?)

For a generalization of the studied means, let p : [a,b] — R be a

strictly positive, integrable function and define:

b
/p(x)logxdx
Ip(a,b) = exp ~*— (20)

p(:v)d:v

/bxp
| vt
/

f=al

(21)

b
p(z)/xdx

1/L,(a,b) (22)



When p(z) = 1, we get the classical means I, A, L, G. By the well-known
Jensen inequality ([5], [7])

(z)p(x)dx p(z)log f(z)dx
WALLGLN!

3 (24)
/ p(z)dz / p(z)dx
applied to f(z) = z and f(z) = 1/x respectively, we obtain
Ly(a,b) < Ip(a,b) < Ap(a,b). (25)
By the Cauchy-Schwarz inequality [5] we can find easily
b 2 b b
([ Vot vitmas) < ([ stoysatas) ([ o).
getting
Gp(a,b) < Ly(a, b). (26)

Finally, we note that these results have been obtain by the author in
1989 [17].
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2.6 Inequalities for means of two

arguments

The logarithmic and the identric mean of two positive numbers x and

y are defined by

y—x

L=1L = if L =
(2,9) gy logs o ° #y, L(z,z) ==,
| [\ M) (1.1)
I=1I(z,y) ::g(ﬁ> , it x££y, I(r,z)==x,

respectively.

Let A = A(z,y) == (¢ +y)/2 and G = G(x,y) := /Ty denote the
arithmetic and geometric mans of  and y, respectively. Many interest-
ing results are known involving inequalities between these means. For a
survey of results (cf. [1], [3], [4], [11], [13], [14]). Certain improvements
are proved in [5], [7], while connections to other means are discussed, (cf.
6], [8], [9], [10], [15]). For identities involving various means we quote the
papers [6], [12].

In [5], [8], the first author proved, among other relations, that

(AG)Y3 < 1, (1.2)
U2
(PG <1 < 0 (1.3)
where )
8A% + G2\ *
U:wﬁw:(—i}—>. (1.4)
We note that a stronger inequality than (1.2) is (cf. [5])
2A
;G<L (1.5)
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but the interesting proof of (1.2), as well as the left-hand side of (1.3), is
based on certain quadrature formulas (namely Simpson’s and Newton’s
quadrature formula, respectively). As a corollary of (1.3) and (1.5), the
double inequality

4A* +5G? < 917 < 8A? + G? (1.6)

can be derived (see [8]). Here and throughout the rest of the paper we
assume that = # y.

The aim of this paper is twofold. First, by applying the method of
quadrature formulas, we will obtain refinements of already known in-
equalities (e.g., of (1.2)). Second, by using certain identities on series
expansions of the considered expressions, we will obtain the best possi-

ble inequalities in certain cases (e.g., for (1.6)).

2

Theorem 2.1. If x and y are positive real numbers, then

exp ((2;82)2) A exp ((2;3)2) , (2.1)

1
exp (<x1;8:g)2) < é < exp <<x1;rg)2> , (2.2)
exp ((18—0324> < (A2é)1/3 < exp (%) , (2.3)
exp ((xggszz/)z) _ \/3A221—|— G2 < exp ((xgng)z) 7 (2.4)

where r = min{z,y} and s = max{x,y}.
Proof. Let f:[0,1] — R be the function defined by

f(t) = log(tz + (1 = t)y).

Since
(x —y)?
(tx + (1 —t)y)?’

() = — (2.5)
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we have
my = min{—f"(t) |0 <t <1} =

(2.6)
My :=max{—f"(t)|0<t <1} =

Applying the ”composite midpoint rule” (cf. [2]) we get

! 1 & 2 — 1 1
/0f<t>dt=5;f( 1+

nzf//<5n>> 0<§, <1 (2.7)

Remarking that

I = exp (/01 log(ta + (1 — t)y)dt) |

relation (2.7) via (2.6) gives

exp (1/712]‘((21’ - 1)/2n)>

mo i=1 M,
exp (24n2) < 7 < exp (24n2) . (2.8)

Letting n = 1, we get the double inequality (2.1). For n = 2, after a

simple computation we deduce (2.4).

In order to prove (2.2), we apply the ”composite trapezoidal rule”
(see [2]):

[ i =550+ 501 5w 0<n <1 @9)

As above, taking into account (2.6), relation (2.9) yields (2.2).
Finally, (2.3) follows as application of the ”composite Simpson rule”

(see [2], [9]):

[ =i+ 21(3) + 250 - 590, 0<c<1 210

We omit the details. O
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Remarks. Inequality (2.8) is a common generalization of (2.1) and
(2.4). The left-hand side of (2.3) is a refinement of (1.2), while the left-
hand side of (2.4) implies the inequality

417 < 3A% + G2, (2.11)

which slightly improves the right-side of (1.6). However, the best inequal-
ity of this type will be obtained by other methods.

In [6] the following identities are proved:

I < 1
log — = 2k 2.12
%G ; %+ 1- (2.12)
A 1
k=1
I A

where z = (x —y)/(z + ).

Relation (2.14) is due to H.-J. Seiffert [11]. With the aid of these and
similar identities, strong inequalities can be deduced. We first state the
following.

Theorem 2.2. The following inequalities are satisfied:
exp <é (i;i)j < ? < exp ((2;;;)2) : (2.15)
exp (% (i;i)Z) < é < exp ((3312_;;)2> , (2.16)
exp (% (i—;‘z)ll) < m < exp (120(5#3:?/1;)2) . (2.17)

Proof. We note that (2.16) appears in [6], while the left-hand side of
(2.15) has been considered in [12]. But proved first in 1989 by J. Sandor,
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Inequalities for means, Proc. Third Symp. Math. Appl., Timisoara, 3-4
nov. 1989, pp. 87-90. We give here a unitary proof for (2.15), (2.16) and
(2.17), which in fact shows that much stronger approximations may be
deduced, if we want.

We assume that z > y, that is, 0 < z < 1. Taking into account that

2 X 52 . . 52
S <Zn )= 2.18
3 ];%H <gUta+st )=y 219

from (2.12) we obtain the double-inequality (2.16).
On the other hand, (2.12) and (2.13) yield

A & 1
log ==Y - — % 2.1
&7 kz:; ok(2k + 1) (2.19)
Since
2 > 2 , 2
= ‘1 2.2
< D) 2l<;+1 St rat ) =gaT gy (220

k=1

via (2.19) we get at once (2.15).
To prove (2.17), let us remark that from (2.12) and (2.19) we have

I = k-1
e = —_— . 2.21
G~ P (H 3k(2k + 1) ) (2:21)
Since
kol 1fo all integers k > 2, (2.22)
—_— r all integer .
Se(2k+1) = 30 &
from (2.21) we get as above (2.17). O

Remarks. Inequalities (2.15), (2.16) and (2.17) improve (2.1), (2.2)
and (2.3). From (2.14), taking account of (2.16), one can deduce that

Y2 +ay+y?) A 22+ 10xy +y?

< =< . 2.23
3(z+y)? L 12xy (2.23)
In [4] it is proved that
ogL~1-¢ (2.24)
g+ T :
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Inequality (2.24) enabled the first author to obtain many refinements of
known results (see [7]).
If one uses the estimations

22+Z4<i ! 2"3<22+24(1+2+4+ )
—+ = —_—2 —+ = 2242+
6 20 <& 2k(2k 4+ 1) 6 20
2 o
= — 2.25
6 Ta01= =) (2.25)
as well as
2 =1, 22 A
—+ =< <=4+ —(1 2 LI
3—|—5 ;2k+1z 3+5(+z+z+ )
22 24
==+ —F0 2.26
3 PRI (2.26)
one could deduce the following inequalities:
1 (x—y 1 =y 4 A
—_ _ < J—
exp(6 (:r;—l—y) +20 <x+y) 1
L(z—y\* (z—y)
< — i A—
- (6 (I+y) " S0wy(r 92 )
(2.27)

1 /fx—y 2+1 T —y ! <I
exp| = [ —— - —
P 3\xr+vy d\x+y G

1(z—y\° (a—y)
< - 7 .
exp (3 (:c + y) + 20zy(z +y)?

The next theorem provides a generalization of (2.17).

Theorem 2.3. If p and q are positive real numbers with 2q > p, then
2¢—p (z—y\*  dg—p (x—y\"\ I
exp + <
6 r+y 20 T4y ArG1
2—p (z—y\*  4¢—p (z—y)
< . . 2.28
P ( 6 (:c+y> 80 ry(z +y)? (2.28)
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Proof. We assume that x > y, that is, 0 < z < 1. From (2.12) and
(2.19) we can deduce the following generalization of (2.21):

Pt o 2kq—p o
= —_— : 2.29
ArGgs — P <; o2k + 1) (2.29)
Since ol A
q—7p q—p .
< for all int k>2 2.30
HEEET) S 20 or all integers k > 2, (2.30)
we have
20-p 5, 44-p 4 _~x~ 2ka—p
< e —
T ;2k(2k+1)z
20—p 5  4q—p 2
. : 2.31
ST ST 1oz (2:31)
The above estimation together with (2.29) yields (2.28). O

Remark 2.4. For p =2/3 and ¢ = 1/3, (2.28) gives (2.17), while for
p=q=1/2 we get

2 4
1 [z — 3 [x— I
exp | — 4 + — i < —
12 \x+y 40 \z+y VAG

L(e—y\ 3 (z—y)
< — _— =] . 2.32
P (12 (x —i—y) " 160 ry(x + y)? (2:32)

Theorem 2.5. If x and y are positive real numbers, then

exp<1 (x—y)4) 5 m<exp( 1 (z—y)*

HB\z+y V3I 180 ay(z + y)2> - (@%)

45
Proof. Assume that x > y, that is, 0 < z < 1. We prove first the
following identity:

VaA? + G2 X1 1 1
log vesd + 67 Z — — . 22k (2.34)
Va+11 2k \ 2k +1 (a+1)

112



for all positive real numbers «. Indeed, since

2
log VaA2 + G? = log /7y + log \/1—1—% (\/§+ \/%) , (2.35)

letting z = (z — y)/(x + y) we obtain

|
log VaA? + G = log G + 5 log (1+ : a 2)

1 1
=logG + élog(l +a—2%) — §log(1 — %),

(2.36)
By the well-known formula
= uF
log(1 — —, 0<u<l1 2.37
og(1 — u) kz o 0<u<l, (2.37)
we can deduce
, 2k
log(l+a—2%) =log(l+a)—> 77, AEE
x ok (2.38)
1 — %) = —.
og(l —2%) Z ?
k=1
Thus
VaA?Z+ G2 N1 1
log YO _Z—( ——k)z% (2.39)
vVoa+1 G — 2k (a+1)
This identity combined with (2.12) ensures the validity of (2.34).
For a = 2, (2.34) yields
\/2A2 +G? 1 1\ o
k=1
Since ) . ) .
o (Qk 1 3—) < for all integers k > 2, (2.41)
we have , .,
z = 1 1 1Y\ o z
— — — = < —. 2.42
45<;2k(2k+1 3k)z 15(1 — 22 (2.42)
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This estimation together with (2.40) gives (2.33). O
Remarks. From (2.33) it follows that

317 < 2A% + G2 (2.43)

This inequality refines (2.11) and it is the best inequality of the type

o 1
I’ < A2+ — G2 2.44
a—+1 + a—+1 ( )

Indeed, the function f :]0,c0[— R defined by

a 1
— A2 2
f(e) a+1 +a+1

is increasing because A > G. Taking into account (2.43) we get

I?< §A2 + %GQ < QLHAQ + %HGQ (2.45)
whenever o > 2. On the other hand, if 0 < a < 2, from (2.34) it follows
that (2.44) cannot be true for all positive numbers = # y.

The fact that (2.43) is the best inequality of the type (2.44) can be
proved also by elementary methods, without resorting to series expansion
(2.12). Indeed, letting t = (1/2)(z/y — 1), and assuming that x > y, it is
easily seen that (2.44) is equivalent to

0<2t—(1+2t)log(1+2t)+tlog (1 + 2t + i 1t2) (2.46)
a

whenever ¢ > 0. Let g, :]0, co[— R be the function defined by

«

ga(t) = 2t — (1 + 2t) log(1 + 2t) + tlog <1 + 2t + 1t2) . (247)

o+

We set, for convenience, g; := g. Easy computations give

2 + (4/3)t2 2,
(t) = log(1+2t+212) —2log(1+2t
90 = T @/zp el og(1+21),
(2.48)
8t?
g"(t) =

9(1 4 2t)(1 4 2t + (2/3)t2)*

114



Since ¢”(t) > 0 for all ¢ > 0, ¢’ must be increasing. Therefore, ¢'(t) > 0
for t > 0, because ¢’(0) = 0. Consequently g is increasing, too. Hence
g(t) > 0 whenever t > 0, because g(0) = 0. This guarantees the validity
of (2.46) for a = 2. Thus (2.43) is proved.

On the other hand, since

8t3
log(1 + 2t) = 2t — 2t% + =+ o(t?),

. . . . (2.49)
log (1+2t+ = 1t2> :2t+mt2—§ (2t+a—+1t2) +o(t?),
it follows that
galt) = (ai . ;) B+ o(t). (2.50)

Therefore (2.46) cannot be true for all positive real numbers ¢ if 0 <a <2.
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2.7 An application of Gauss’ quadrature

formula

The aim of this note is to point out a new proof of a result from
[6] on the theory of means, by application of Gauss’ quadrature formula
with two nodes. The fact that quadrature formulae are of interest in the
theory of means has been first shown by the author in [4], where

- Simpson’s quadrature formula:

[ r@e ="t 1@+ 47 (452) +50)

(b—a)
2880
with £ € [a, b], has been applied.

- The Newton quadrature formula:

[ rwas =2t 1w -7 (25 <o (22 + )

(b—a)®

e A (2)

has been applied in [5]. Further, (1) has been applied, in [7], too. We now

() (1)

offer an application to the

- Gauss quadrature formula, with two nodes (see e.g. [1], [2], [3])

[y =232 [r (52155 ) es (54252 9)

1

a0 ) (3)

Here \/_ \/_
— 3—V3 b(3 3
xl:a;—b+b6a‘\/§:a( : )+ (-g )
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and
b b— 3 3 b(3—+v3
2 6 6 6
are the roots of the corresponding Lagrange polynomial of order 2.

To =

Let
= Ia,b) = é(bb/a“)l/(b_“) (@#£b), I(a,b)=a

denote the identric mean of a,b > 0; and put, as usually,

A:A(a,b):a;rb, G = Gla,b) = vab

for the arithmetic, respectively geometric means of a and b. The following
result appears in [6].

Theorem. For a # b one has
317 < 2A% + G2 (4)

We offer a new proof to (4). Put f(z) = —logz in (3). As

b

fPE) >0 and log zdx = log I(a,b),

b—a /,
we get
1 12+ 6v/3 12 — 63 1 a? + b? + 4ab
I’ < Za? b b+ - =———
s0f o ab+ \/a_+6 ;
_(a+b)?42ab  4A*+2G* 247+ G?
6 - 6 N 3

i.e. relation (4).

Remark 1. Inequality (4) is the best possible relation of type

1
LAz
a—+1 +a—|—1

I’ < G?, (5)
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where o > 0, see [6].
Remark 2. An improvement of another type for (4) follows by the
series representation (see [6])
V2AT TGP il 1 1\ (a—b\*"
og —mMmM ™ = F— [ —
& V3 =2k \2k+1 3%/ \a+b
Remark 3. In [4] it is shown also that

2A
1> ;—G.

(6)

Together with (4) this implies

4A% + 4AG + G? 2A2% + G?
i 5 + <12<T+. (7)

The two extrem sides of (7) give a best possible inequality, namely

(A-G)?>0.
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2.8 On certain subhomogeneous means

A mean M : Ry xR, — R, is called subhomogeneous (of order one)

when

M (tz, ty) < tM(z,y),

for all t € (0,1] and x,y > 0. Similarly, M is log-subhomogenous when
the property
M(z',y") < M'(z,y)

holds true for all ¢ € (0,1] and x,y > 0. We say that M is additively

subhomogeneous if the inequality
Mzx+ty+t) <t+ M(z,y),

is valid for all ¢ > 0 and x,y > 0. In this paper we shall study the subho-
mogeneity properties of certain special means, related to the logarithmic,

identric and exponential means.

1. Introduction

A mean of two positive real numbers is defined as a function
M:R, xR, - R,
(where R, = (0,00)) with the property:
min{z,y} < M(z,y) < max{x,y}, for all x,y € R,. (1)

Clearly, it follows that M (z,x) = x. The most common example of a

mean is the power mean A,, defined by

P +yP z
Ap(x,y):( 5 ),forp%o;

Ao(z,y) = oy = G(z,y) (the geometric mean).
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We have:
Ai(x,y) = A(x,y) (arithmetic mean),

A_y(x,y) = H(xz,y) (harmonic mean),

and, as limit cases:

A_o(z,y) =min{z,y}, Ai(z,y) = max{z,y}.
The logarithmic mean is defined by

r—y

L(z,z) =z, L(z,y)= logz —logy

, for x #£ vy,

and the identric mean by

e \x*

1 [y s
I(l‘,m):.’lﬁ; I(ﬂ?,y):— . ,fOI":L‘;éy.

For early result, extensions, improvements and references, see [1], [2], [10],

[11]. In [22] and [13] the following exponential mean has been studied:

re¥ — yey

E(z,x) =2 and E(z,y)= —1forz #y.

et —
Most of the used means are homogeneous (of order p), i.e.

M (tx,ty) = tPM(x,y) for t > 0.

For example A, H and [ are homogeneous of order p = 1, while L is

homogeneous of order p = 0. There are also log-homogeneous means:
Mzt y') = M'(x,y), t > 0.
For example, the mean G is log-homogeneous. In [10] it is proved that
I(2*,y*) > I*(z,y)

and in [13] that
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These relations suggest the study of a notion of subhomogeneity. In [13]

a mean M is called t-subhomogeneous when
M(tz,ty) <tM(x,y), z,y > 0,

holds true, and it is shown that for M = E, this holds true for ¢t =

log 8"

2. Subhomogeneity and log-subhomogeneity

The mean A, is clearly log-subhomogeneous, since it is well known

that A, < A, for p < ¢. We now prove the following result:
2

Theorem 1. The means L, and — are log-subhomogeneous.
Proof. First we note that the log-subhomogenity of L and I follows
from a monotonicity property of Leach and Sholander [7] on the general

class of means

70— ya b ﬁ
Sa,b(x7y) = ( a : ) y

Z’b—yb

if a,b € R, z,y > 0 and ab(a — b)(x — y) # 0. It is known that .S can be
extended continuously to the domain {(a,b;z,y) : a,b € R, z,y > 0}
and that

L(l’,y) = 51,07 [(xay) = Sl,l(may)'

Then the log-subhomogeneity of L and I is equivalent to

Sio(x,y) < Sio(z,y) and Sii(z,y) < Spi(x,y) for t > 1.

2
However, this result cannot be applied to the mean T of L, for x # y

we have . .
T =y

=L
t(logz — logy) (z.9)
Since in [10] (relation (13)) it is proved that

L(z',y") =

zt —

> 7z, y) for t > 1,
tx—y) (@3)
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by the above identity, we get
L(z',y") > L(z,y) I (z,y) > L'(z,y),

since
I>1L (*)

Thus, we have obtained (in a stronger form) the inequality
L(z*,y") > L'(z,y) for t > 1. (2)

Another proof of (2) is based on the formula

d (log L(z',y") 1. I y')

Sl =k Sl AV U PO Sl . A

dt ( / 28 Ty T

which can be deduced after certain elementary computations. Since I >
L, the function

log L(2', y")

t— , t>0,

is strictly increasing, implying

log L(z', y")

; > log L(x,y) for t > 1,

giving relation (2). A similar simple formula can be deduce for the mean
I, too, namely
d (logI(z y") 1 G?(xt,yt)
— | ——— | ==|1-—""5]>0 by L>G.
dt < t 12 L2(xt, yt) Y
Thus
I(z',y") > I'(z,y) for all t > 1. (3)

2
we now study the mean T This is indeed a mean, since by L < I, we

L? L?
have T < I. On the other hand, it is known that T > (. Thus

L*(a,b)
I(a,b)

min{a, b} < G(a,b) < < I(a,b) < max{a, b},



giving (1).
Let us consider now the function

which has a derivative

) h(t) I’ G*

where I = I(z',y"), etc. (we omit the simple computations). Now, in [10]

(inequality (21)) the following has been proved:

L<IeT,
or with equivalently
I G
log—>1——. 4
g 7 T (4)

By (4) we can write

I? 2G G\ 2
log—>2-"Z>1- (=
o> 20 (L)

L
Remark 1. A refinement of (3) can be obtained in the following

2
by <g - 1) > 0. Thus A'(t) > 0, yielding h(t) > h(1) for ¢t > 1.

manner. Let I . t)

1z y .

f(t) - L(th,yt)’ t > 07 7é ?J

Then f( ) )
o (T

o= G

So we can write:

>0 by L>G.

> xy)’ fort > 1,



which according to (x) gives

L(z', ") (x,y)
L(z,y)

Remark 2. By using the function

s(t) = (L(2",y"))

I(a',y") > > I'(z,y), t> 1. (5)

1 1
t t

— (I(2"?,y"?))

and applying the same method (using inequality (4)), the following can

be obtained:
Liz'y) _ L',y 6
[(zt/2, yt/2) = Tt(z1/2,y1/2)’ (6)

for any t € (0, 1].

Theorem 2. The mean E is subhomogeneous and additively homo-

geneous.
Proof. Let Bltr.t
oty = ) 4oy
Since

/10 = o [( - ) - t2et<w+y>] 7

t2(etr — ety T —y

(we omit the elementary computations), it is sufficient to prove ¢'(t) > 0
for ¢ > 0. We then can derive

E(tx,ty) > tE(x,y) for any t > 1,

i.e. the mean F is subhomogeneous. Let ¢! = A > 1. The classical

Hadamard inequality (see e.g. [10], [26])

1 x
/ F(t)dt>F(x+y)
r—yJ, 2
t

for a convex function F' : [z,y] — R, applied to the function F(t) = A,

A > 1, gives
A* — AY

> (logA)~AxT+y,
r—Yy
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giving
el — et ta+y)
> te 2
r—y

thus ¢'(t) > 0, by (7). The additive homogeneity of E is a consequence
of the simple equality
B+t y+t)=t+E(z,y).

Theorem 3. The means L, I, L*/I, 21 — A, 31 — 2A are additively
superhomogeneous, while the mean 2A — I is additively subhomogeneous.

Proof. ; o

E[L(x%—t,y—i—t)—t]:@—l,

d I

@ty y+t)—t]=7 -1,
d L2(x+y,y+t)_t L 2_L2_1 .
dt | I(x +y,y +1) I\ G? :
d of
—Rlrt+yy+t) - Alx+y,y+t) —t]= 7 =2,
dt 7
d 31
E[?’[(x‘i‘yay—i-t)—2A(a:+y,y+t)—t]:f_g,’
d I
S2A@ Yy ) Iz tyy+1) — =17,

dt
where in all cases I = I(x + y,y + t), etc. From the known inequalities

G < L < I, some of the stated properties are obvious. We note that
2] — A and 31 — 2A are means, since

A+ L
L<2—A<A by I> ;

(see [10]) and I < A. Similarly,
24+ G
3

(see [11]), gives G' < 3] — 2A < A. We have to prove only the inequality

L (2L 1) >1
L\ G?

I >
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L2
(implying the additive superhomogeneity of 7) Since L? > IG (see [2]),

L
we have 7 > T Now

G 2L2_1 _2L_G>1
L\ G2 G L

G L
1 1+—<2<2— L.
since 1 + 7 <2< e by G <
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2.9 Monotonicity and convexity properties

of means
1
Let a,b > 0 be real numbers. The arithmetic and geometric means of
a and b are

a+b

A= A(a,b) = and G = G(a,b) = Vab.

The logarithmic mean L is defined by
b—a

L=1L = ;L =

while the identric mean is
1
I'=1I(a,b) = g(bb/a“)”(b_“), (a#0b), I(a,a)=a.

For history, results and connection with other means, or applications,
see the papers given in the References of the survey paper [1]. The aim
of this paper is to study certain properties of a new type of the iden-
tric, logarithmic or related means. These properties give monotonicity or

convexity results for the above considered means.

Let 0 < a < b and fix the variable b. Then
d b b a\ 2
L L) =2 -1082 -1 (1 —). 1
ottt = (2 tog? 1)/ (tog 1)
(We omit the simple computations), so by the known inequality
logr<z—1 (>0, x#1),
) b
with x := — we have proved that:
a
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Proposition 1. The mean L(a,b) is a strictly increasing function of
a, when b is fixed.
Consequence 1. The mean L of two variables is a strictly increasing

function with respect to each of variables.

3

An analogous simple computation gives

d loga —log I(a,b)
—1 =1 . 2
L ra,b) = 1(a,p) |18 )

Since [ is a mean, for 0 < a < b one has a < I(a,b) < b, so from (2) we
obtain:

Proposition 2. The mean I(a,b) is a strictly increasing function of
a, when b is fived.

Consequence 2. The identric mean I of two variables is a strictly

increasing function with respect to each of its variables.

4
d? d?
We now calculate @L(a, b) and d_aQI(a’ b). From (1), (2) after cer-

tain elementary computations one can obtain:

d> 2 a—>b a+b

—L(a,b) = _

da? (a,) a*(loga —logb)? |loga — logb 2 (3)

b
&2 (loga —log I(a,b) — 1)? — .
—1(a,b) =I(a,b . 4
& rah) = 1) s (@)
a+b

By L(a,b) <
log I(a,b) we get the numerator in (4) 1s

d2
= A(a,b), clearly ﬁL(a, b) > 0. By application of
a

B2 b blab— L?)
i a= 75 <0 by G(a,b) = Vab < L(ab),
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which is a known result. Thus, from the above remarks we can state:
Proposition 3. The means L and I are strictly concave functions

with respect to each variables.

5%
As we have seen in paragraph 1 and 3, one can write the equalities:
I' loga—1logl
o7 Ter 5
1 a—>b (5)
and
L 1 1 1

(6)

where I and L’ are derivatives with respect to the variable a (and fixed
b). Since

f:a—b_loga—logb.a’

bl —
ogb ozloga_i_17
b—a

loga —log I =loga —
we get the identity:
b
1oga—log.f:—z+1 (7)

so that (5) and (6) can be rewritten as:
I 1 b
T_a—b(_z+1> (®)

%_aib(1_§>’ ©)

b L
Here -7 > —— (equivalent to G < L). Thus, via a — b < 0 we get
a

and

I r
7 < f for 0<a<hb.
" . a,b) . . .
Proposition 4. The function a — (0. b) 15 a strictly decreasing
a7

function for 0 < a <b.
Remark. From (8) and (9) we can immediately see that, for a > b

the above function is strictly increasing.
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From the definition of L and I we can deduce that (for 0 < a < b)

a—1
L(a,]) = ————
(a,1) loga —log I’
which by (5) yields
L~ =1L (10)
o a—b I

d -1

where [’ = d—[(a, b) and I = I(a,b), etc. By 0 < a_b < 1 a corollary
a a—

of (10) is the interesting inequality

I/

L(a,I) < T (11)
which holds true also for a > b. Similarly, from (9) and the analogous
identity of (7) we obtain:

I L

log e (a — b)f
Thus, from the definition of the logarithmic mean,

I-B I/
— T (13)

(12)

L(b, 1) <

I—b
Clearly 0 < p— < 1, thus a consequence of (13) is the inequality

L/

Lb.D) < 7 (14)

similar to (11).

7

We now study the convexity of L and I, as functions of two arguments.

We consider the Hessian matrix:

92L 9L
a2 Oadb

VQL ,b — )
(a,5) 2L L
obda  Ob2
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where as we have seen (see (3))

0L —2 a+b
= — L(a,b
da?  a?*(loga — logb) ( 2 (a ))

oL b
B (loga — log b+ i 1) /(loga — logb)?
0*L -2 a+b
— — L(a,b) | .
o b*(loga — logh) < 2 (a, >>
It is easy to deduce that
0*L _ —a 0?L
obda b a?’
. .. 9*L .
and since by Proposition 3 we have a2 < 0, and by a simple computa-
a

tion det V2L(a,b) = 0, we can state that L is a concave function of two
arguments.
For the function I, by (2), (4) etc. we can see that det V2L(a,b) = 0.
We have proved
Proposition 5. The functions L and I are concave functions, as

functions of two arguments.

L L
Corollary. L (a ;_ < b —; d) > (a,b) + L(c, d)

for all a,b,c,d > 0.

We now consider a function closely related to the means L and I. Put

fla) = ]a(; 5) and g(a) = arctg \/%.
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It is easy to see that

, b
g'(a) = 1AG
where A = A(a,b) etc. On the other hand, by (8) we get
, b
flla) =7

Thus, for the function h, h(a) = f(a) — 4g(a) we have

by Alzer’s result AG < IL. Thus:

Proposition 6. The function h defined above is strictly decreasing.

Monotonicity or convexity problems can be considered also for func-
tions obtained by replacing the variables a and b with z* and v, where x
and y are fixed (positive) real numbers, while ¢ is a real variable. In the
same way, we are able to study similar problems with a = x+t, b = y+t.

We introduce the functions
1
I(t) = ;logl(w'iyt), t#£0;, 1(0)=G
and X
L(t) = log L(z',y"), t#£0;  L(0) =G.

By the definition of I and L, it is a simple matter of calculus to deduce

the following formulae:

logm —nlogn — (m — !
mlogm —nlogn — (m—n) _ —logI(m,n)  (15)
t(m —n) !

SlogL(z',y') =

(m —n)(mlogm — nlogn) — mn(logm — logn)?
t(m —n)?

d
—log I(z',y") =
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where m = 2!, n = y'. By using these relations, we get

d 1 1 d 1 G?
%L(t) =plegr, ZIt)=4 (1 - ﬁ) ;

where G = G(z%,y"), etc. By I > Land G < L we get L'(t) > 0, I'(t) > 0
for all ¢ # 0.
By extending the definition of L and I at t = 0, we have obtained:
Proposition 7. The functions t — L(t) and t — I(t) are strictly
increasing functions on R.

10

Closely related to the means L and [ is the mean S defined by
S = S(a,b) = (a“bb)#b.

By the identity

we get
_log S(2',y")

S(t) = 2=

= 21(2t) — I(1),

so from (15) we can deduce

S'(t) = tf; (1 - j—z) (16)

where G = G(z",y"), etc.
By extending the definition of S to the whole real line by S(0) = G,

we can state:

Proposition 8. The function t — S(t) is strictly increasing function
on R.
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11

I(z',y")
By logarithming and using relations (15), the following can be proved:
f(t
=18 e 20 (17)

where L = L(z*, y").
Proposition 9. The function t — f(t) defined above is strictly in-
creasing for t > 0 and strictly decreasing for t < 0 (thus t = 0 is the

single minimum-point of this continuous function).

12
Let )
LQ(l’t yt) n
s(t):( - ) L t#0; s(0)=e".
I(at, )
By log s(t) = 2L(t) — I(t) and from (15) we easily get:
s'(t) 1 I? G?
log = — 14 — 1
s(t) (Og T (18)
where L = L(z*,y") for t # 0. By
]2 GQ
log i 14 Iz >0

(see [1]), with the assumption s(0) = ¢, we obtain:

Proposition 10. The function t — s(t) is strictly increasing on R.
L?
(«%,y) > @) fort > 0.

Corollary W
13

In what follows we will consider the derivatives of forms

d
—M t,b+t
dt (a+ ) + )7
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which will be denoted simply by M’ (where M is a mean). We then will
be able to obtain other monotonicity and convexity properties. It is a
simple exercise to see that

A=1 G ==,

Ql

where G = G(a +t,b+ 1), etc. Indeed,

F’:i (a+t)(b+1) =

+
dt va-+t 2vb+t

N | —

Similarly one can show that

L?
/—— /:—
L_G2’ ! L

For the mean S the following formula can be deduced:

o1 1
v=s(3ry)
a—>b

2
where k = <T) > (. Thus

, I ,_A I
(A-D)=1-3<0, (G-D'=5-7>0
(since A> 1, L > G,so AL > GI);
20AL — I?
2oy = 2AL=T)

L
by the known inequality

A+ L
1> ;r >VAL.

From AGL < A*G < I® (see [1]) and

(G* 1% =3 (AG - %3)
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we can deduce (G® — I3)" < 0.

These remarks give:

Proposition 11. A — I, G* — I?, G — I® are strictly decreasing
functions, while G — I 1is strictly increasing on the real line.

(Here A = A(a+t,b+1) etc., t € R).

For an example of convexity, remark that

T = 1 / = i 1— L_2
L L? G?)’
L? 2L2
iz
(we omit the details), so we can state:
Proposition 12. The functions L and I are strictly concave on the

real line.

Corollaries. 1. Fort > 0 one has:
Gla+t,b+t)—I(a+t,b+t) > G(a,b) — I(a,b)
G*a+t,b+t)—Pla+t,b+t) <G*(a,b) — I*(a,b),

Ala+t,b+1t)—I(a+t,b+1t) < Aa,b) — I(a,b).

9 I(a+t1,b+t1)+[(a+t2,b+t2 ( t1+t2 b+t1+t2)
) 2 ’ 2

for all ty,ty >0, a,b > 0.

14

Let
a—>

4 arctan <\/%> -7

This mean has been introduced by Seiffert [2]. It is not difficult to

show that ,
P = ﬁ 1 - =1
AG’ P AG’
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Since (1> = _—1, we get:
1 IL
Proposition 13. — — — s a strictly increasing function of t, where
P=Pla+tb+t), etc
Indeed, this follows from the known inequality AG < LI.

Corollary.

1 1 1
Iatt.b+1) Plattb+i)  Iab) Plab)

forallt >0, a#b.

Finally, we prove:

P
Proposition 14. The function 7 18 strictly increasing on R.

Proof. We have
P _pP(P 1
1) T1\AG L)

Now, it is known that GA < LP ([3]) implying the desired result.
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2.10 Logarithmic convexity of the means [;
and L;

In paper [3] we have studied the subhomogeneity or logsubhomogene-
ity (as well as their additive analogue) of certain means, including the
identric and logarithmic means. There appeared in a natural way the

following functions:

_log L(z', y")
N t

1 ]’ t 0t
and g(t) = 2 (fc,y)’

(0 t

where x,y > 0 while ¢ # 0. The t-modification of a mean M is defined
by (see e.g. [4])
Mt(xa y) = (M<xt7 yt))l/t'

Therefore,

f(t) =log Li(z,y) and g(t) =logLi(x,y),

where L and [ are well known logarithmic and identric means, defined

by
L b)——b_a (b>a>0), L(aa)=a
“0 T b —Ina @Y 2G4 =4

1
I(a,b) = g(bb/a“)l/(b_“) (b>a>0), I(a,a)=a.

In paper [3] we have proved that

7(6) = (1) (1)
and .

(1) = 5h(t) )
where

2

G
h(t)=1-— 7z and ¢(t) = log

where in what follows G = G(z', "), etc.

Iz
L’
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Our aim is to prove the following result.

Theorem. L; and I; are log-concave for t > 0 and log-convez for
t<0.

Proof 1. First observe that as G = \/z%yf, one has

1 1
G =———=@@'nz-y +9y'Iny-2") = ¢ HG.

24/ xtyt t

Similarly, since
2t — yt
tz—y)

L(z',y") = L(z,y)

we easily get
_ LlogI

t

L/

blnb—alna

(where we have used the fact that log I(a,b) = 2 —1). Now,
—a
2—-G (G'L-LG 2G? 1
!/
= = l —
W) == ( 12 ) 12 * G

after using the above established formulae for G’ and L'. By calculating

th() — 2h(t)
]

g"(t)

after certain computations we get

1 [/2G? I 2G?
q"(t) (— log — 4+ — — 2)) )

e \2 te I
I A-1L b
Since log o= 1 (where A = A(a,b) = at> denotes the arithmetic
mean; for such identities see e.g. [2]), we arrive at

-5 (1), ®)

Since by a result of Leach-Sholander [1], G*A < L2, by (3) we get that
g"(t) <0 fort>0and g¢"(t) >0 fort <O.
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Proof 2. First we calculate I'. Let a = 2%, b = 3. By

Inb—al
log[(a,b):bn?)&_l
—a

one has /
blnb—alna

I'(a,b)=1I(a,b) | ———MM | .

(@0) = 1(o.) (M0

Here
blnb—alna\’ 1 |blnb—alna Inb—Ina\’
- | = |— —ab| —F ,
b—a t b—a b—a

after some elementary (but tedious) calculations, which we omit here.

Therefore X o
[’:z](logl%—l—ﬁ).
Now )
7= (%) = e 0= 2000,
where

,(t)_L I\' L(rL-rr1\ 1 &
IWET\L) T\ )T\

(after replacing L' and I’ and some computations). Therefore

G? I?
In our paper [3] it is proved that
2 G2
log Iz >1— Tz

L2
(and this implies the logsubhomogenity of the mean T) Thus f(t) <0

for t > 0 and f”(t) > 0 for t < 0. This completes the proof of the

theorem.
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2.11 On certain logarithmic inequalities

1. Introduction

In the very interesting problem book by K. Hardy and K.S. Williams
[1] (see 3., page 1) one can find the following logarithmic inequality:

Inz <1 r+1
-1 3 a3+2’

(1)

where x > 0, # 1.

The proof of this surprisingly strong inequality is obtained in [1] by
using a quite complicated study of auxiliary functions.

We wish to note in what follows, how inequality (1) is related to the
famous logarithmic mean L, defined by

La,b) = =0 (a # b); L{a,a) = )
C T e —mp™ 84 = 4

where a and b are positive real numbers. We will show that, in terms of
logarithmic mean, (1) is due in fact to J. Karamata [2]. For a survey of

results on L and connected means, see e.g. [4], [5], [6].

b
Let A(a,b) = ot , G(a,b) = vab denote the classical arithmetic,

resp. geometric mean of a and b. It is well known that, the logarithmic

mean separates the geometric and arithmetic mean:
G<L<A, (3)

where G = G(a,b), etc. and a # b. For the history of this inequality and
new proofs, see [5], [15], [17], [18], [19].

As inequality (3) is important in many fields of mathematics, (see e.g.
9], [12], [15]), the following famous refinement of left side of (3), due to
Leach and Sholander [3] should be mentioned

VG2 -A<L (4)
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Now, let us introduce the following mean K by

K@m_%%$g? (5)

3

Letting x =
and (5):

% (a # b), inequality (1) can be written, by using (2)

L(a,b) > K(a,b) (6)

This inequality is due to Karamata [2].
We will show that inequality (6) refines (4). Also, we will give new

proof and refinements to this inequality.

2. Main results

The first result shows that (6) is indeed a refinement of (4):

Theorem 1. One has
L>K>VG2A (7)
Proof. We have to prove the second inequality of (7); i.e.

a\3/5+b\/a> o <a+b>
Vb+ a 2

Putting @ = u?,b = v3, this inequality becomes

wv + vu sjud 4+ 03
—_— > -
U+ v 2

or after elementary transformations:
2t +v°)% > (u+v)* - (v + %) (9)

This inequality, which is interesting in itself, can be proved by alge-
braic computations; here we present an analytic approach, used also in

our paper [11]. By logarithmation, the inequality becomes
In2 + 3In(u* +v*) — 3In(u +v) — In(u® +v%) = f(u) >0 (10)
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Suppose u > v. Also, for simplicity one could take v = 1 (since (9) is

homogeneous). Then one has

6u 3 3u? (u—1)3
w?+1 u+1l w41 (w24 1)(ud+1)

f(u) = >0,

after elementary computations, which we omit here. Thus

flu) > f(1) =0,

and the result follows.

Remark 1. Inequality & > v/G2A has been discovered by the author
in 2003 [10]. For the extensions of (9), see [10] and [[16].

Theorem 2. Inequality L > K 1is equivalent to inequality

3AG

L>53ita (11)

Proof. By letting a = v, b = v* the inequality L(a,b) > K(a,b)

becomes the equivalent inequality
L(u?,v*) > K(u®,v%).

Now, remark that

2 2 2, .2
L 0% = Llu,0) - F 0 a0ty = W)
3 U+ v
so we get the relation
2,2
Lu,v) > 3uv(u® + v°) (12)

(u+v)(u? + uv + v?)

Let now u = /p,v = /q in (12), with p # ¢ positive real numbers.
Remarking that

L(Vp,Vq) = ﬁ - L(p, q),
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after certain computations, (12) becomes

3vpq(p +q)
Mn@>;:;:ﬁ% (13)

As
Ve =G, q), p+q=2A(p,q),

inequality (13) may be written as

3AG

el (14)

where L = L(p,q) etc. Clearly, this inequality is independents of the
variables p and ¢, and could take L = L(a,b), A = A(a,b),G = G(a,b)
in inequality (14). This proves Theorem 2.

Remark 2. For inequalities related to (11), see also [11].

Now, the surprise is, that, though (6) is stronger than (4), inequality
(4) implies inequality (6)!: One has

Theorem 3.
3AG

2A+ G
Proof. The first inequality of (15) is the Leach-Sholander inequality

L>VG2A >

(15)

(4)

Now, remark that v/ G2A = geometric mean of G and
A=VG-G-A,

which is greater than the harmonic mean of these three numbers:

3 3 3AG

1 1 1 7 2 1 .
ctota cta 24+6G

Therefore, inequality (15) follows.
Theorem 4. One has

L>§/(A+G>2_G>3G(A+G)> 3AG (1)

2 A+5G 2A+ G
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Proof. The first inequality of (16) is a refinement of (4), and is due
to the author [7]. See also [13].

The second inequality of (16) follows by the same argument as the
A+G A+G a

2 72

proof of Theorem 3: the geometric mean of the numbers

is greater than their harmonic mean, which is

3 _ 3G(A+G)
535G+ A

2 2 1
e taete
Finally, the last inequality is equivalent, after some computations with
A2 —2AG+G*>0,0r (A—G)*>0.
Remark 3. Connections of L with other means are studied in papers
6], [8], [14].
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2.12 A note on the logarithmic mean

1. Introduction

The logarithmic mean L(a, b) of two positive real numbers a and b is
defined by
b—a
L=1L(a,b) = —— for a # b, L(a,a) = a. (1)

" Inb—1Ina

b
Let A := A(a,b) = a—g and G := G(a,b) = vab denote the arith-

metic, resp. geometric means of a and b.

One of the basic inequalities connecting the above means is the fol-
lowing;:

G<L<A, fora#b. (2)

Among the first discoveries of this inequality, we quote B. Ostle and
H.L. Terwilliger [2] (right side of (2)) and B.C. Carlson [1] (left side of
(2)). See also [4], [5] for other references.

Inequality (2) has been rediscovered and reproved many time (see e.g.

3], [4], [5], [6]).
The aim of this note is to offer a new proof of this inequality. The

method is based on two simple algebraic inequalities and Riemann inte-

gration.

2. The proof

Lemma. For allt > 1 one has
4 1 1 1
s < - <=+ —. 3
t+1)2 "t 2/t 2Vt ®)

Proof. The left side of (3) holds true, being equivalent to (t—1)% > 0,
1 1
while the right side, after reducing with v/ to —= < =, or ¢t > 1.

2/t 2
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Now, let b > a > 0, and integrate both sides of inequalities (3) on
[1,b/al. As

b/a . b/a 1 b
/ 2 gt aand/ —dt:\/j—l,
1 <t+1)2 b"—CL 1 2\/Z a
b/a 1 a
——dt = —/=-+1,
/1 2t\/1 \[b
b—a
<b a)<lnb—lna<\/7 \/; (4)

Relation (4) implies immediately (2) for b > a. Since L(a b) = L(b,a),
(2) follows for all a # b.

we get:
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2.13 A basic logarithmic inequality, and

the logarithmic mean

1. Introduction

Let a,b > 0. The logarithmic mean L = L(a,b) of a and b is defined

by

L = L(a,b) = lnl;%na for a # b and L(a,a) = a. (1)

b
@t denote the classical

Let G = G(a,b) = Vab and A = A(a,b) =
geometric, resp. logarithmic means of a and b.

One of the most important inequalities for the logarithmic mean (be-
sides e.g. a < L(a,b) < b for a < b) is the following:

G<L<Afora#b (2)

The left side of (2) was discovered by B.C. Carlson in 1966 ([1]) while
the right side in 1957 by B. Ostle and H.L. Terwilliger [2].

We note that relation (2) has applications in many subject of pure or
applied mathematics and physics including e.g. electrostatics, probability
and statistics, etc. (see e.g. [3], [4]).

The following basic logarithmic inequality is well-known:

Theorem 1.

Inx <z —1 forall x > 0. (3)

There is equality only for x = 1.
(3) may be proved e.g. by considering the auxiliary function

flz)=z—Inzx —1,
and it is easy to show that x = 1 is a global minimum to f, so

flz)> f(1)=0.



Another proof is based on the Taylor expansion of the exponential
2

t
function, yielding e! = 1+t + 3 e’ where 0 € (0,t). Put t =z — 1, and
(3) follows.
The continuous arithmetic, geometric and harmonic means of posi-

tive, integrable function f : [a,b] — R are defined by

1 b
Af:b—a/f(x)dx’ Gy = era Ju /@

and ;
Hy = ;a’

[ s

By using (3) we will prove the following classical fact:

where a < b are real numbers.
Theorem 2.
Hp < Gy < Ay (4)

Then, by applying (4) for certain particular functions, we will deduce
(2). In fact, (2) will be obtained in a stronger form. The main idea of

this note is the use of very simple inequality (3) in the theory of means.

2. The proofs

Proof of Theorem 2. Put
(b—a)

/f

in (3), and integrate on t € [a, b] the obtained inequality. One gets

(b— a) [ f(t)dt

/Gmf( dt—(( /f dt)) (b—a) /f —(b—a)=0.
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This gives the right side of (4).
1
Apply now this inequality to ? in place of f. As

1
In — = —1n f(?),
TOR
we immediately obtain the left side of (4).

Corollary 1. If f is as above, then

(Lo ([ )zu o

This follows by Hy < Ay in (4).
Remark 1. Let f be continuous in [a, b]. The above proof shows that

there is equality e.g. in right side of (4) if

0=t [ s ()

By the first mean value theorem of integrals, there exists ¢ € [a, b]
such that

Since by (6) one has f( f( ) for all t € [a,b], f is a constant
function.

When f is integrable, as

/bln (b—a)bfL dt =0,

/ o

a

(b—a)f(t)

b

/ F(t)dt

a

> () one has

[ s
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it follows by a known result that g(t) = 0 almost everywhere (a.e.).
Therefore

1) =5 [ s

a.e., thus f is a constant a.e.

Remark 2. If f is continuous, it follows in the same manner, that in
the left side of (4) there is equality only for f = constant. The same is
true for inequality (5).

1
Proof of (2). Apply Gy < Ay to f(z) = —. Remark that
T

1
b—a

where a < I(a,b) < b.

b
/ Inxdx =1nI(a,b),

This mean is known in the literature as "identric mean” (see e.g. [3]).

1
As f(z) = . is not constant, we get by

Gy =

I(a,b)’
that
L<I (7)
Applying the same inequality Gy < A to f(z) = x one obtains
I <A (8)

Remark 3. (7) and (8) can be deduced at once by applying all rela-
tions of (4) to f(x) = x. Apply now (5) to f(t) = e'. After elementary

computations, we get

eb —e® a+b

P ez 9)

As f(t) > 0 for any t € R, inequality (9) holds true for any a,b € R,

b > a. Replace now b := Inb, a := Ina, where now the new values of a
and b are > 0. One gets from (9):

L>G (10)
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By taking into account of (7)-(10), we can write:
G<L<I<A, (11)

i.e. (2) is proved (in improved form on the right side).

Remark 4. Inequality (4) (thus, relation (10)) follows also by Gy <
Ay applied to f(t) = e’

Remark 5. The right side of (2) follows also from (5) by the appli-
cation f(t) =t. As

b 2 _ 2 b
b- — 1
/ tdt = 5 2 and / ;dt: (Inb —Ina),

the relation follows.

Remark 6. Clearly, in the same manner as (4), the discrete inequality

nx;
- (xl,...,xn>0).

of means can be proved, by letting r = ———
T1+...+x,
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2.14 On certain inequalities for means in

two variables

1. Introduction

The logarithmic and identric means of two positive real numbers a

and b with a # b are defined by

LeLab) = —"2"%  and I=1I(ab) =2 (a—a)w ’ ,
logh — aloga e \ b
respectively. These means have been the subject of many intensive re-
search, partly because they are related to many other important means
and because these means have applications in physics, economics, meteo-
rology, statistics, etc. For a survey of results, with an extended literature,
see [3], [6]. For identities involving these, and other means, see e.g. [8],

[10]. Particularly, the identity
I(a?,b%)/1(a,b) = (a® - )/ = § = S(a,b)

leads to the weighted geometric mean of a and b, denoted by S(a,b) in

[6], 3], [9].
In paper [12] there are proved the following two inequalities

Gla, b) exp (% (Z;ZY) < I{a,b) < A(a,b) exp <_% (Z;ZY) |

(1)

where a # b, a,b > 0.
In paper [3] by H. Alzer and S.-L. Qiu appears among many other

relations, the following one:
1/b—a\’ 1/b—a\’
G(a,b) exp (6 (b—i—a) > < L(a,b) < A(a,b)exp <_§ (b—i—a) ) :
(2)
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a+#b,a,b>0.
We note that, the right hand side inequality of (1) was first proved
by the author in 1989 [5]. In that paper it was shown also the following

A%(a,b) 1/b—a\’
I(a?,b?) =P (_g (b—l—a) ) ‘ 3)

The aim of this note is to prove that the above inequalities are con-

inequality:

nected to each other by a chain of relations, and that, in fact, all are

consequences of (3).

2. Main results

First write in another form all the inequalities. The left and right

sides of (1) many be written respectively as

1/b—a\’ I(a,b)
exp <§ (b+a) > < Gla.b)’ (4)
1/b—a\’ A%(a,b)
exp (5 (b+a) ) = T2(a,0) (5)
while the inequalities of (2) as
1/b—a\*\  IL*a,b)
exp (5 (b+a) ) = @ (a,b) (6)
1/b—a\’ A(a,b)
xp (5 (b+a) > < T(a,b) (7)
Finally note that, (3) may be written as
1 (b—a\*\ _I(a?b®) I(a,b)S(a,b)
xp <§ (b+a) ) S 2000 A%(ab) (®)

Theorem 1. The following chain of implications holds true:
8) = (5) = (7) = (4) = (6).
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A? Al
< T2 Ot S < ek This inequality

Proof. (8) = (5)

is proved in [9] (see Theorem 1 there).
2

A A
(5) = (7) by - < T ie. I> > A- L. For this inequality, see [7]
(Relation (9)).
A T
(7) = (4) by <@ ie. A-G < L-1,see[1].

(4) = (6) by é < é—z, i.e. VGI < L, see [2].

Therefore all implications are valid.

We note that inequality (8) was a consequence of an integral inequal-
ity due to the author [4], (discovered in 1982), to the effect that:

Theorem 2. Let f : [a,b] = R be a 2k-times (k > 1) differentiable
function such that f@*)(x) > 0. Then

(b AR +0b
[ S ot (50

For k = 2 we get that if f is 4-times differentiable, then

%a/:f@)dw f (“;b) L0 ;4“)21"" (“;b>. (10)

Clearly, (9) and (10) are extensions of the classical Hadamard in-

equality, which says that, if f is convex on [a, b] then

%a/abf(x)dx > f (a;b) - (11)

Applying (10) for f(z) = zlogx, and using the identity

b
1
/ zlogxdr = 1(b2 —a*)log I(a?b?) (12)

(see [6]), we get (8). Applying (10) to f(x) = —logz, we get (5), i.e. the
right side of (1) (see [5]). For another proof, see [11].
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2.15 On a logarithmic inequality

1. Introduction

In the recent paper [1], the following logarithmic inequality has been

proved (see Lemma 2.7 of [1]):
-1
Theorem 1. For any k > 1 and t € [to, 1), where ty = ¢ 1
e

has: Uk
I+t 141
— 1 < — .
log(l_tl/k> _klog(l_t> (1)

The proof of (1) given in [1] is very complicated, based on more sub-

one

sequent Lemmas on various hyperbolic functions. We note that (1) has
important applications in the study of quasiconformal mappings and re-
lated vector function inequalities [1].

The aim of this note is to offer a very simple proof of (1), and in fact

to obtain a more general result.

2. The proof

Our method will be based on the study of monotonicity of a certain
function, combined with a well-known result related to the logarithmic

mean

r—y
L=1L = L = .
(@9) = oy (@ #0). Liaa) =z

The following result is well-known (see e.g. [2]):

Lemma. One has L > G for any x,y > 0, x # y, where

G = Gla.y) = iy

denotes the geometric mean of x and y.
1 1
Zi_l and L= in (1). Then the

1
Put now t = —, where 1 < p <

inequality becomes

€T

1
f(z) = zlog (p +1> < f(1), where 0 < x <1,
Pt =
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1
andf(l):log(]i > 1.
p—1

Now the following result will be proved:

Theorem 2. Assuming the above conditions, the function f(x) is
strictly increasing on (0, 1].

Particularly, one has f(z) < f(1) for0 <z < 1.

Proof. An easy computation gives

p*+1 2zp® log p | a+1 2aloga
— = 10 — =
p*—1 p*r —1 Sla—1 a?—1

fuuzbg(

: e+1
where a = p®. Since 0 < z < 1, a < p and as p <
6_

1 1
a< ct , l.e. log ot > 1. This implies
—1 a—1
2alog a alog a?
>1-— =1- 0
9la) 2 a?—1 a?—1 ’

as this is equivalent with L(a? 1) < G(a?, 1) of the Lemma.

Since f’(x) > 0, the function f is strictly increasing, and the proof of
Theorem 2 is finished.

Remarks. 1) Particularly, by letting py = % we get f(1) = 1,

T+ 1 1
mgc%+ )s— ©)
xr

po—1

and the inequality

1 1
follows. For x = z and py = o with the use of (2) an easier proof of

0
Lemma 2.9 of [1] can be deduced.
2) Let 0 <z <y < 1. Then

p*+1 pY+1 p+1
xlog(pz_1)§y10g<py_1 <log 1) (3)

1 1
This offers an extension of inequality (1) for x = % and p = .
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2.16 Series expansions related to

the logarithmic mean

1. Introduction

In what follows, we let x € (—1,1). The well-known series expansion

for the logarithmic function

x? a2t

log(l+a)=a— — 42 2 4. 2.1
og(l+z)==x 2+3 4+ (2.1)

(discovered for the first time by N. Mercator (1668), see e.g. [3]) applied

13

to “—x” in place of x gives
log(l—z)=—-0———— — — — e (2.2)

By subtracting equations (1) and (2) we get the Gregory series (J.
Gregory (1668), see [3])

1+x e T L
1 _9. Ty 2.
0g T (x+3+5—|—7—|— (2.3)

The Newton’s binomial expansion (stated for the first time by I. New-
ton (1665), and considered later also by L. Euler (1748) states that for

any rational a one has

(1+x)“:1+<?)x+(3)x2+(C;)x?’-k---, (2.4)

(a) ala—1)-(a—k+1)

where

k)~ k!
denotes a generalized binomial coefficient.

1
Particularly, for a = —3 we get

(—1/2) :(_l)k‘l-B-...-(Zk—l)

k 2k . k! ’
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and for “—z?” in place of z in (4), we get the expansion

1 1-3-...-2k—1
(1_1,2)71/2:1_|__x2+§x4+‘__+ 3 ( >$2k

2 8 ok . J! +os (25)

which we will need later.
The logarithmic mean of two positive real numbers a and b is defined
by
Lab) = —2"% (b ta)L(a,a) =a (2.6)
logh — loga
This mean has many connections and applications in various domains
of Mathematics (see e.g. [1]; [4]-[16]). Particularly, the following classical

relations are true for a # b :

G<L<A (2.7)
L < Al/g, (28)
where )
T r\ 1/7
Ar:AT(CL)b): (a 0 ) ;
2
b
Azmmwzag,

G = Ap(a,b) = lir%Ar(a,b) = Vab

are the classical power mean, resp. arithmetic and geometric means of a
and b. Many applications to (7) and (8), as well as new proofs are known
in the literature. New proofs to (7) and (8), based on integral inequalities
have been obtained by the author in [6], [10]. For recent new proofs of
(7), see [14], [15]. For the history of (7), see [2], [7], [13].

In what follows, we will show that the Gregory series (3) and Newton’s
series expansion (5) offer new proofs to (7), as well as to (8). Such a

method with series, for the arithmetic-geometric mean of Gauss, appears
in [9].
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2. The proofs

Since the means L and A, are homogeneous, it is easy to see that (7),

resp. (8) are equivalent to

t—1 t+1
t < < — 7
Vi logt 2 ()
resp.
t—1 1\
< (VLY (®)
logt 2

b
where t = — > 1 (say)
a

Now, to prove the right side of (7’) remark that for z = 1 € (0,1)

1
in (3) we have, by t = 1+—§ that

1+=x
logt — 1 : .
ogt =T t+1

This gives immediately the right side of (77) for ¢ > 1.
For the proof of (8’) apply the same idea, by remarking that

ﬁ)__ t—1 ?4+t+1 4
7)) = Z

logt > 2- — . .
°8 <x+ t+1 (t+1)2 3
As (t —1)(#*+t+1) =3 — 1, we get the inequality
#—-1  [t+1)°
< 877
3logt ( 2 ) (8)
Now, to get (8") from (8”), it is enough to replace ¢ with /¢, and the
result follows.

For the proof of left side of (7’) we will remark first that for the kth
terms in the right side of (3) and (5) one has

2 1.3 (2k—1) g
- 9.
dr1 o il v (2.9)
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Since 0 < x, it is sufficient to prove the inequality
1-3-...-2k—1)(2k +1) > 2" - k! (2.10)

This follows immediately e.g. by mathematical induction. For k = 1,2

it is true; and assuming it for k, we get
1-3-...-(2k+ 1)(2k + 3) > 2% - k!(2k + 3) > 25T (k + 1)1,

where the last inequality holds by 2k + 3 > 2k + 2.
Therefore, we get the inequality

3 2P 1 3
4T 4 < 14+ 224 Zp4 4. 211
T+ gt x(+2x—|—8x+ ), (2.11)

= ¢ > 1 we obtain

t—1 t+1
logt <2-(—— | —F=,
& (t—i—l) 2¢/t

1
and by letting | R

so the left side of (7°) follows, too.
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2.17 On some inequalities for the identric,

logarithmic and related means

1. Introduction

Since last few decades, the inequalities involving the classical means
such as arithmetic mean A, geometric mean G, identric mean [ and
logarithmic mean L and weighted geometric mean S have been studied
extensively by numerous authors, e.g. see [1], [2], [4], [7], [8], [15], [16],
[17].

For two positive real numbers a and b, we define

A:Awm:a;ﬂ G = G(a,b) = Vab,

a—>b
L=Meb = i - “7"

L/ g\ @b
Jznmm:—(a) . a#b,

e \ B

S = S(a,b) = (ab®)/(@+?),

For the historical background of these means we refer the reader to [2],
[4], [5], [12], [15], [16], [17]. Generalizations, or related means are stud-
ied in (3], [8], [7], [10], [12], [14], [18]. Connections of these means with
trigonometric or hyperbolic inequalities are pointed out in [3], [13], [6],
[14], [17].

Our main result reads as follows:

Theorem 1.1. For all distinct positive real numbers a and b, we have

1< N < i (1.1)
VI(A2,G?) e
Both bounds are sharp.
Theorem 1.2. For all distinct positive real numbers a and b, we have
212

I<TreE=~¢

(1.2)

171



where ¢ = 1.14.... The bounds are best possible.
Remark 1.3. A. The left side of (1.2) may be rewritten also as

I>Q(AG), (1.3)

where Q(z,y) = /(2% 4+ y?)/2 denotes the root square mean of = and y.
In 1995, Seiffert [25] proved the first inequality in (1.1) by using series

representations, which is rather strong. Now we prove that, (1.3) is a
refinement of the first inequality in (1.1). Indeed, by the known relation
I(z,y) < A(z,y) = (v +y)/2, we can write

I(A%,G?) < (A*+G?)/2 = Q(A,G)?,

so one has:
I>Q(AG) > \I(A%2 G?). (1.4)

As we have I(z% y*) > I(x,y)? (see Sandor [15]), hence (1.4) offers also
a refinement of

1> 1(AG). (1.5)

Other refinements of (1.5) have been provided in a paper by Neuman and
Sandor [10]. Similar inequalities involving the logarithmic mean, as well
as Sandor’s means X and Y, we quote [3], [13], [14]. In the second part
of paper, similar results will be proved.

B. In 1991, Sandor [16] proved the inequality

I>(2A+G)/3. (1.6)

It is easy to see that, the left side of (1.2) and (1.6) cannot be compared.
In 2001 Sandor and Trif [21] have proved the following inequality:

I* < (24 + G?)/3. (1.7)

The left side of (1.2) offers a good companion to (1.7). We note that the
inequality (1.7) and the right side of (1.2) cannot be compared.
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In [25], Seiffert proved the following relation:
LA%,G?) > 17, (1)

which was refined by Neuman and Séndor [10] (for another proof, see [8])

as follows:
L(A,G) > L. (1.9)

We will prove with a new method the following refinement of (1.8) and
a counterpart of (1.9):
Theorem 1.4. We have

L(A%,G?) = @L(A,G) L UAEG e (1.10)
L(I,G) < L, (1.11)
L<LU,Ly<L-(I-L)/(L-aq). (1.12)

Corollary 1.5. One has
G-1/L<VI-G<L(I,G)<L, (1.13)
(L(I,G))?* < L-L(I,G) < L(I*,G*) < L- (I + G)/2. (1.14)

Remark 1.6. A. Relation (1.13) improves the inequality
G-I/L < L(I,Q),
due to Neuman and Séndor [10]. Other refinements of the inequality
L<(I+@G))2 (1.15)

are provided in [19].
B. Relation (1.12) is indeed a refinement of (1.15), as the weaker inequal-
ity can be written as (I — L)/(L — G) > 1, which is in fact (1.15).

The mean S is strongly related to other classical means. For example,
in 1993 Sandor [17] discovered the identity

S(a,b) = I(a® b*)/I(a,b), (1.16)
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where [ is the identric mean. Inequalities for the mean S may be found
in [15], [17], [20].

The following result shows that I and S(A, G) cannot be compared,
but this is not true in case of I and S(@Q, G). Even a stronger result holds
true.

Theorem 1.7. None of the inequalities I > S(A,G) or I < S(A,G)
holds true. On the other hand, one has

S(Q,G) > A>1, (1.17)

1(Q.G) < A (1.18)

Remark 1.8. By (1.17) and (1.18), one could ask if I and I(Q, G)
may be compared to each other. It is not difficult to see that, this becomes

equivalent to one of the inequalities

< (or >)

0 1.19
tanh(z)’ S (1.19)

where y = y/cosh(2z). By using the Mathematica Software [11], we can
show that (1.19) with “< ” is not true for x = 3/2, while (1.19) with

“>” is not true for x = 2.

2. Lemmas and proofs of the main results

The following lemma will be utilized in our proofs.
Lemma 2.1. For b > a > 0 there exists an x > 0 such that

A I
a= cosh(x), o= e®/ tanh(2) -1, (2.1)

Proof. For any a > b > 0, one can find an = > 0 such that a =e*- G

and b = e~ - G. Indeed, it is immediate that such an x is (by considering
a/b = e*),
x = (1/2)log(a/b) > 0.
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Now, as
A=G - (e"+e")/2 =G cosh(x),

we get

A/G = cosh(x).
Similarly, we get
I=G-(1/e)exp(z(e® +e77)/(e®" —e™)),

which gives /G = e¥/tanh(@)=1,
Proof of Theorem 1.1. For x > 0, we have

I/G = e*/tanh@-1  and  A/G = cosh(x)

by Lemma 2.1. Since

aloga — blogb
_]_7
a—>b

log(I(a, b)) =

we get

log(v/T(AJG)Z. 1)) = cosh(z)”log(cosh(z)) 1

cosh(z)? — 1 2
By using this identity, and taking the logarithms in the second identity

of (2.1), the inequality
0 <log(I/G)—log(/I(A/G)%, 1) <log2—1/2
becomes .
5 < f(z) <log2, (2.)
where log(cosh(z)
.z log(cosh(x
f(x) = tanh(z) tanh(z)?2

A simple computation (which we omit here) for the derivative of f(x)

gives:
sinh(x)?f'(x) = 2 cosh(x) log(cosh(x)) — x sinh(x). (2.3)
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The following inequality appears in [6]:
log(cosh(z)) > gtanh(x), x>0, (2.4)
which gives f'(x) > 0, so f(x) is strictly increasing in (0, 00). As
ii_r)r(l)f(x) =1/2 and :}Lrgof(x) = log 2,

the double inequality (2.2) follows. So we have obtained a new proof of
(1.1). O
We note that Seiffert’s proof is based on certain infinite series repre-
sentations. Also, our proof shows that the constants 1 and 2//e in (1.1)
are optimal.
Lemma 2.2. Let

2 cosh(x)? +1

Then
2 < f(z) < f(1.606...) =2.1312.... (2.5)

Proof. One has (cosh(z)? +1)/2f"(z) = g(x), where
g(x) = sinh(x) cosh(z)*xz cosh(z)? + sinh(x) cosh(x) — x

— cosh(z) sinh(x)32 sinh(x) cosh(x) — x cosh(z)?,

by remarking that
sinh(x) cosh(z)® — cosh(x) sinh(z)® = sinh(x) cosh(z).
Now, a simple computation gives
¢'(x) = sinh(z) - (3sinh(z) — 22 cosh(z)) = 3sinh(z) cosh(z) - k(z),

where k(x) = tanh(x) — 22/3. As it is well known that the function

tanh(x)/x is strictly decreasing, the equation tanh(z)/z = 2/3 can have
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at most a single solution. As tanh(1) = 0.7615... > 2/3 and tanh(3/2) =
0.9051... < 1 = (2/3)-(3/2), we find that the equation k(x) = 0 has
a single solution zy in (1,3/2), and also that k(z) > 0 for z in (0, zo)
and k(z) < 0 in (zo,3/2). This means that the function g(x) is strictly
increasing in the interval (0,z() and strictly decreasing in (zg,00). As
g(1) =0.24 > 0, clearly g(zo) > 0, while g(2) = —3.01.. < 0 implies that
there exists a single zero x; of g(x) in (zo,2). In fact, as g(3/2) = 0.21 >
0, we get that z; is in (3/2,2).

From the above consideration we conclude that g(z) > 0 for = €
(0,21) and g(z) < 0 for x € (x1,00). Therefore, the point z; is a max-
imum point to the function f(z). It is immediate that }CILI(l) f(z) = 2.
On the other hand, we shall compute the limit of f(x) at oco. Clearly

t = cosh(x) tends to oo as = tends to co. Since
log(t* + 1) — log(#?) = log((t* + 1)/t%)
tends to log1 = 0, we have to compute the limit of
I(x) = 2z cosh(z)/ sinh(x) — 2log(cosh(x)) + log 2.

Here

cosh(x)
sinh(x)

T
cosh z

~ 910g(cosh(z)) = 2log (exp(x cosh(z)/ Sinh(x))> ‘

Now remark that
(x cosh(z) — xsinh(x))/ sinh(z)
tends to zero, as
x cosh(z) — zsinh(x) = xexp(—x).

As exp(z)/ coshz tends to 2, by the above remarks we get that the the
limit of {(z) is 2log2 + log2 = 3log2 > 2. Therefore, the left side of
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inequality (2.5) is proved. The right side follows by the fact that f(z) <
f(z1). By Mathematica Software® [11], we can find x; = 1.606... and
fz) = 2.1312. ...

Proof of Theorem 1.2. By Lemma 2.1, one has

(I/G)?* = exp(2(z/ tanh(z) — 1)),

while (A/G)* = cosh(z)?, = > 0. Tt is immediate that, the left side of
(2.5) implies the left side of (1.2). Now, by the right side of (2.5) one has

I? < exp(ey) (A% +G?)/2,

where ¢; = f(z1) —2 =0.13---. Since exp(0.13---) = 1.14, we get also
the right side of (1.2). O
Proof of Theorem 1.4. The first relation of (1.10) follows from the
identity
L(z*,y*) = ((z +9)/2) - L(z,y),
which is a consequence of the definition of logarithmic mean, by letting
x = A,y = G. The second inequality of (1.10) follows by (1.9), while the

third one is a consequence of the known inequality
L<(A+G))/2. (2.6)

A simple proof of (2.6) can be found in [12]. For (1.11), by the definition

of logarithmic mean, one has
L(I,G) = (I - G)/og(1/G),
and on base of the known identity
log(I/G)=A/L—1
(see [15], [22]), we get
L(IG) = (I-G)/(A- L)L < L,
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since the inequality (I — G)/(A — L) < 1 can be rewritten as
I+L<A+G

due to Alzer (see [15]).

The first inequality of (1.12) follows by the fact that L is a mean
(i.e. if x < y then o < L(z,y) < y), and the well known relation L < I
(see [15]). For the proof of last relation of (1.12) we will use a known

inequality of Sandor ([15]), namely:
log(I/L) >1—G/L. (2.7)

Write now that L(/, L) = (I — L)/log(//L), and apply (2.7). Therefore,
the proof of (1.12) is finished. O

Proof of Corollary 1.5. The first inequality of (1.13) follows by
the well known relation L > +/GT (see [2]), while the second relation is
a consequence of the classical relation L(z,y) > G(z,y) (see e.g. [15])
applied to x = I,y = G. The last relation is inequality (1.10).

The first inequality of (1.14) follows by (1.10), while the second one
by

L(I*,G* =L(I,G)- (I +G)/2

and inequality L < (I + G)/2. The last inequality follows in the same

manner. U

Proof of Theorem 1.7. Since the mean S is homogeneous, the

relation I > S(A, G) may be rewritten as /G > S(A/G, 1), so by using

logarithm and applying Lemma 2.1, this inequality may be rewritten as
x cosh(z) log(cosh(z))

-1 . 2.
tanh(z) ~ 1 + cosh(x) , #>0 (28)

By using Mathematica Software® [11], one can see that inequality (2.8)
is not true for x > 2.284. Similarly, the reverse inequality of (2.8) is
not true, e.g. for x < 2.2. These show that, I and S(A,G) cannot be
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compared to each other. In order to prove inequality (1.17), we will use
the following result proved in [20]: The inequality

S>Q (2.9)

holds true. By writing (2.9) as S(a,b) > Q(a,b) for a = Q, b = G, and
remarking that Q(a,b) = /(a2 + 02)/2 and that (Q? + G?)/2 = A%, we
get the first inequality of (1.17). The second inequality is well known (see
[15] for history and references).

By using I(a,b) < A(a,b) =

(a+b)/2 for a =@Q and b = G we get
1(Q,G) < (Q+G)/2
On the other hand by inequality
(a+b)/2 < /(a2 +b2)/2 and (Q*+ G?)/2 = A%

inequality (1.18) follows as well. This completes the proof. i
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2.18 New refinements of two inequalities

for means

1. Introduction

The logarithmic and identric means of two positive numbers a and b

are defined by

b—a
L=1L = — ; L =
(a,b) g (a #b); L(a,a) =a
and .
I =1I(a,b) = =(0"/a)/*=%) (a £ b); I(a,a) = a,

e

respectively.
Let A = A(a,b) = 2 0 nd G = G(a,b) := Vab denote the arith-

metic and geometric means of a and b, respectively. For these means
many interesting inequalities have been proved. For a survey of results,
see [1], [3], [7], [11], [12]. It may be surprising that the means of two
arguments have applications in physics, economics, statistics, or even in
meteorology. See e.g. [3], [6] and the references therein. For connections
of such means with Ky Fan, or Huygens type inequalities; or with Seiffert
and Gini type means,we quote papers [13] and [14]; as well as [5], [8], or
[12].

In what follows we shall assume that a # b. In paper [2] H. Alzer
proved that

G+1
VGI < L < T+ (1)
and in [1] he proved that
AG < Ll and L+1 < A+G. (2)

In paper [8] the author proved that the first inequality of (2) is weaker
than the left side of (1), while the second inequality of (2) is stronger than
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the right side of (1). In fact, these statements are consequences of

I > VAG (3)
and oA 1 O
I> 3* . (4)

Clearly, by the weighted arithmetic-geometric mean inequality, (4)
implies (3), but one can obtain different methods of proof for these results
(see [8]). In [7] J. Sandor has proved that

I G

and this was used in [9] to obtain the following refinement of right side

of (1): Lo Tac
L< ra < ; , (6)

1+a
where a = VI/VL > 1.
In paper [11] the following refinements of left side of (1) has been also

proved:

-G
VIG < G L< L (7)

The aim of this paper is to offer certain new refinements of other type
for inequalities (1).
2. Main results

The main result of this paper is contained in the following:

Theorem. One has

A L A+L+2 I
L<\/( +G)(L+G) _A+L+2G _1+G )
4 4 2
and
, A 2
L>y G( ;G) > VGI. (9)
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Proof. First we note that the second inequality of (8) follows by

Ty < a ;— y’ applied to

_A+G . L+G
- 2 y - 2 )

X

while the last inequality can be written as

A+ L
1>—§f (10)

This appears in [7], but we note that follows also by (4) and

2A A+ L
. (11)

which can be written equivalently as

2G+ A
3 )
due to B.C. Carlson [4] and G. Pélya and G. Szegé [6].
Thus we have to prove only the first inequality of (8).

L <

(12)

For this purpose, we shall use inequality (5) combined with the iden-

tity
I A-L
In—=-—=- 13
due to H.J. Seiffert [15]. See also [9] for this and related identities.
2(x — 1
Since Inz > % for z > 1 (equivalent in fact with the classical
x
L
inequality L(z,1) < A(z, 1)), by letting x = el and by
I I L L L-G
In—=In——-In—, In—= > 2

L G GG T LyaG

and (13) combined with (5) gives the following inequality:

L-G _A+G

"I+G¢ 1 ! (14)
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which after some elementary computations gives the first inequality
of (8).

Remark. The first and third term of (8) is exactly inequality (12).
Therefore, the first two inequalities provide also a refinement of (12).

Now, for the proof of relation (9) remark first that the first inequality
has been proved by the author in paper [10]. The second inequality will
be reduced to an inequality involving hyperbolic functions. Put a = ¢*G,
b= e "G, where z > 0 (for this method see e.g. [1]). Then the inequality

to be proved becomes equivalent to

I (cosh;:—i— 1> - Z <xcoshcc — sinhx) ‘ (15)

sinh x

Let us introduce the function

h 1
M) —3zcothx 4+ 3, = > 0.

f(z)=41In (
An immediate computation gives

(coshz + 1) sinh?z - f'(2)

= sinh® x — 3sinh x + 3z coshx + 3z — 3sinh x coshx = g(z).
One has

¢'(x) = 3sinh z(sinh z cosh z + x — 2sinh z).
Now, as it is well known that sinhx < x cosh x, we can remark that

inh h
sinhx < vV sinh x coshx < T+ s ;UCOS 3: by vuv < u;v‘

This in turn implies ¢'(z) > 0, and as g(z) can be defined for x > 0
and ¢(0) = 0, we get g(x) > 0, and g(x) > 0 for z > 0. Thus f'(z) > 0
for x > 0, so f is strictly increasing and as glclg% f(x) =0, inequality (15)
follows.

This finishes the proof of the Theorem.
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2.19 On certain entropy inequalities

1. Introduction

1. Let p, g be a positive real numbers such that p4+¢q = 1. The entropy
of the probability vector (p, q) introduced in [7] is

H(p,q) = —plnp — qlng.

In the note [1] a new proof of the following double inequality (see [7])
has been provided:
Theorem 1.1. One has

(np-Ing) (1.1)

Inp-lng < H <
np-lng < H(p,q) < o

Our aim in what follows is twofold. First, by remaking a connection
with the logarithmic mean, we will obtain improvements of (1.1), in fact,
a new proof. Secondly, the connection of H with a mean S introduced

and studied, for example in [2], [4], [6], will give new relations for the

entropy H(p, q).

2. Main results

2. Let p, ¢ be as above. First, we will prove the following relation:
Theorem 2.1.

Inp-Ing < (v/p++q)Inp-Ing
< H(p,q)
< A(p,q)lnp-Ing

Inp-Ing

2 ¢ —1
A(p, q) / ds.
p

where

:q—p Ins
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Proof. We note that, since g—1 = —p and p—1 = —¢, one can write

-1 -1
q +p '
Inq Inp

H(p,q) = (¢q—1)Inp+ (p—1)Ing = (Inp)(Ing) {

-1
Now, ql— is equal to L(q, 1), where L(zx,y) is the logarithmic mean of
ng
x and y (x # y) defined by
r—1Y
Liz,y) = —— Y
(z,9) Inz —Iny

For the mean L there exists an extensive amount of literature. We shall

use only the following relations
G <L<A, (2.2)

where N
G=Glay) = ey and A=Al,y) ="

respectively denote the geometric and arithmetic means of x,y (see e.g.
2], [5]). By the left hand side of (2.2) one has

L(p, 1)+ L(qg,1) > P+ 4.

Here /p + /q > 1 since this is equivalent to

(Vo+va)>1, ie p+q+2ypg=1+2ypg>1,

which is trivial.
Therefore, the left sides of (2.1) are proved. For the right side, let us
introduce the following function:

flp) = ph?;’ pe(0,1).

An easy computation shows that

;o phmp—p+1 o 2(p—-1)—(p+1)Inp
f(p)——pln2p f'(p) = RN :
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By the right side of (2.2), one has

pt1

L(p, 1
(p,1) < 5

ie. 2(p—1)> (p+1)Inp.

Since In® p < 0, we get that f”(p) < 0. Therefore, f is a concave function
on (0,1). Now, by the Jensen-Hadamard inequality, one has

ﬂw+f@>sqiplaﬂw%§f(3§3>,

2
SO
1 1
L(p,1)+ L(g,1) < A <2L(=,1)=—
(p,1) + L(g, 1) < A(p,q) < (2, ) ol
completing the proof of the right side inequality in (2.1). O

3. We now obtain an interesting connection of the entropy H(p,q)
with a mean S, defined by (see [2], [6])

S =5S(a,b) = (a® V)5, a,b> 0. (2.3)

Let p,q be as in the introduction. Then (2.3) implies the interesting

relation
1

S(p.q)

Since there exist many known results for the mean S, by equality (2.4),

H(p,q) =In (2.4)

these give some information on the entropy H. For example, in [6], the

following are proved:

2 b2 2
a; < S(a.b) < 2, (2.5)
A_c 5 -
—a Shgs—aa (26)
a2 — G
S < a1 (2.7)

where S = S(a, b), etc. By (2.4)-(2.7) the following results are immediate:
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Theorem 2.2.

1 1 1
22+ 5 ln(pg) < H(p,q) < 5102 — 5 In(1 — 2pg),

dpg—1 1 1
—=1 <H <4dpg—1-——=1
N A n(pq) < H(p,q) < 4pq 5 In(pa),
2-12
H >In| —— .
(p,q) 2 In (1—\/ﬂ>
Proof. Apply (2.5)-(2.7) and remark that
pt+q 1

(2.10)

g

The following result shows a connection with the so-called identric

mean [, defined by

fzma,b):z(b_b)b*, i

e \ a®

In the paper [3], the following identity appears:

S(a,b) =
By (2.3), the entropy H is connected to the mean I by

H(p,q) =InI(p,q) —InI(p® ¢°).

Since
4A?% — G?
31 -
(see [6]), the following holds.
Theorem 2.3.

A4
1< 75

4In2+43Inl(p,q) < H(p,q) <In3+1nl(p,q) —In(1 — pq).
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4. Finally, we shall deduce two series representations for H. In [6],

the following representations are proved

S 1
In— = — % 2.14
" ;%(2/{—1) “ (2.14)
S 1 ok
lna—zzk_l-z , (2.15)
k=1
where z = _T_a. Now, let a = p, b = ¢ with p + ¢ = 1. Then, by (2.3),
a
one can deduce:
Theorem 2.4.
— (—g)™
H =In2-— —_ 2.1
(p.q) =In ;%(%_D (2.16)
and
H l 2.1
(p.q) = 5 In(pg) ; %_1 (2.17)
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Chapter 3

Integral inequalities and

mearns

“Mathematics is not a dead letter which can be stored in
libraries, it is a living thinking.”
(J. Leray)

“I love inequalities. So, if somebody shows me a new
inequality, I say, “Oh, that’s beautiful, let me think about
it”, and I may have some ideas connected with it.”

(L. Nirenberg)

3.1 Some integral inequalities

The aim of this note is to prove some integral inequalities and to find
interesting applications for the logarithmic and exponential functions.
These relations have some known corollaries ([3], [4], [5], [8]).

Theorem 1. Let f : [a,b] — R (a < b) be a differentiable function

with increasing (strictly increasing) derivative on [a,b]. Then one has the
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following inequalities:

[ sz 0-ar (50) (1)

/ i < (0= a)f (@)+(¢5—¢a) (VBS0) +Var@) (@

(Here 0 < a < b).

Proof. The Lagrange mean-value theorem implies:

fly) = f(x) > (y —x)f'(x) for all z,y € [a,]].

>)

Take x = (a + b)/2 and integrate the obtained inequality:

[ rwar-0-ar () = 7 (50) [ (1= 25 a-o

i.e. relation (1).

In order to prove (2) consider as above the inequality
fly) = (=) 5 (y —2)f'(v)
with = = v/ab. Integrating by parts on [a, b] we get
[ 1y 0y (Vab) < (- vab
a (<)

which easily implies (2).

/f

Remark. Inequality (1) is called sometimes ”Hadamard’s inequality”

and it is valid for convex functions f as well with the same proof, but
b b
using f’ (%) instead of f’ @t (see also [1]).
In applications is useful the following generalization of (1) (see [9]).

Theorem 2. Let f : [a,b] — R be a 2k-times differentiable function,
having continuous 2k-th derivative on [a,b] and satisfying

@R (1) (2) 0 fort € (a,b).
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Then one has the inequality:

b (b—a)*! a+b
| s > 222p e (). e

Proof. Apply Taylor’s formula (with Lagrange remainder term) for

b
f around %) and integrate term by term this relation. Remarking

that \ S
b\ "
/ (x—a;— ) de =0, m=1,2,3,...
we obtain

[ =001 (432) G (°5°)
I Gl G C (aTer>

22k=2(2k — 1)
b r—(a 2k

Taking into account f*)(¢) > 0, we get the desired inequality (3).
>)
1
Applications. 1) Let a > 0, b=a+ 1, fi(t) = n and fo(t) = —1Int
n (1). We can easily deduce the following double inequality:

2 + 2 1
at S (4)

<
2a + 1 ( 1> a
14—
a

containing inequalities studied by E.R. Love [4] and G. Pélya- G. Szegd

[7]. Using Bernoulli’s inequality we have

5/2

14t 12 14t fra>o
— I .

2+ 1 la+2= Tg s

Hence we have:




2) By repeating the same argument in (3) for k = 2, b = a+1, (a > 0),

1

fl(t):¥> f?(t>:_1nt7

we obtain

(1 .
a
This inequality implies for a > 0 e.g. that

ez(1-2) « ¢ 5(1-5)

(1+2>a
A, = (% “nlne/ (1 + %)n) — 0(1/n)

which can be compared with the more familiar lim A, = 0.
n—oo

and so

3) Apply (1), (2) for f(t) = % to deduce

b
\/ab<L(a,b)<a;L ,
where .
—a
Lia,b) = ——&
(a,0) Inb—1Ina

202 e e L
2a + 1 1) a

(6)

(7)

denotes the logarithmic means (see [2], [3]). The right-hand side of this
inequality is due to B. Ostle and H.L. Terwilliger [6]. The left-hand in-
equality was stated by B.C. Carlson [2]. (8) was rediscovered also by A.

Lupasg [5].

4) Select f(t) = —Int in (2). This application yields the following

improvement of the right-hand side of (8):

L(a,b) < (“;b + \/%) /2.
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5) An interesting remark is that one can use (8) (and also (9)) to
obtain refinements of this inequality. Indeed, let us consider a = /x,
b=/y in (8). It follows that

VTy < xy (M) < L(z,y) < (@)2 < fETW (10)

With the same argument we can derive (on base of (9)):

e <5 (V) 1 0E B v

6) In order to arrive to a better refinement, we can consider the rela-
tion (3) for f(t) =1/t, k=2 (0 < a < b). It results

3 (a+b)?
L(a,b -
@0 <3 Erar e
Letting a = /x, b = ¥y, this is just one of the Lin [3] and Riithing [§]
inequalities:

Liz,y) < (@) . (12)
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3.2 Some simple integral inequalities

1. Introduction

Integral inequalities have a long history. For many remarkable results
see e.g. the monographs [4], [1], [6], [7], etc. For more recent inequalities
of the author, with applications, see [10], [11], [12], [13].

We will consider here some simple inequalities for monotonous func-
tions. An application f : I — R is called monotonous increasing on
interval I, if x <y = f(z) < f(y) for all x,y € I. Clearly, this condition

may be written also as

(z —y)(f(x) = f(y)) = 0 for all z,y € I. (1)

The function f is strictly increasing, if (1) holds with strict inequality
for = # y. If the inequality, or strict inequality of (1) is reversed, then we
speak of decreasing, or strictly decreasing functions on 1.

Let p : I — R be a given function. We will say that the function
f I — R is p-increasing, if the relation

(p(x) —p(y)(f(x) = f(y) =0, Vo,yel (2)

holds true. The other similar notions can be introduced for the corre-
sponding signs of inequalities of (2).
Clearly, when p(z) = z, we reobtain the classical notions of mono-

tonicity. However, it should be noted that e.g. a p-increasing function f

3
is not necessarily increasing in the usual sense. Take e.g. [ = (g, ;),
p(z) = sinz, f(zr) = cosz. Then the function f is strictly p-increasing
on I, but clearly it is strictly decreasing.
If the function f satisfies (1), then it is Riemann integrable, a well-
known fact of real analysis (see e.g. [9]). This is not true for functions

satisfying (2), as it is shown by the example

f(z) = { ]S(w)’ li ’ Zg where p(t) =0 for t¢& Q.
: if x
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If z,y € Q, then (2) becomes (p(z) —p(y))? > 0; while z € Q, y € Q,
then

p(x)p(z) >0, 2¢€Q, yc Q= (—p(y)(-py)) >0.

For example, when p(z) = 1 for x € @, we obtain the well-known
Dirichlet function, which is not integrable.
Therefore, when dealing with integral inequalities for p-increasing

functions, we must suppose that p and f are integrable on I.

2. Main results

Theorem 1. Let f : [a,b] — R be an increasing function. Then for

any positive integer n > 1, one has

/ab (x _ ‘; b)%_l f(z)dz > 0. (3)

Particularly, for n =1 we get

/a ey > 2 / (e (4)

When f is strictly decreasing, all inequalities are strict. The inequali-
ties are reversed, when f is decreasing, resp. strictly decreasing functions.

Proof. We shall apply the following remark:

Lemma. When ¢ : [a,b] — R is an integrable, odd function, then

/abcp(:p—a;—b)dx:(). (5)

a+b

Proof. Put z —

[e(==52) = [ st [ st

= 9. Then




bh—
where u = Ta. Now, letting y = —z, and using ¢(—z) = —p(z), one

. I= /_:: e(y)dy = —/uu p(—z)dz = —/_z p(2)dz;

so 21 =0, giving [ = 0.
Particularly, when ¢(z) = 22"~ by (5) we get

/ab <x—“;b)2n_ld:@:o. (6)

+b

a
Since f is increasing, by letting y =

in (1) we have

13 (o250

2n—2
which multiplied with (x — a—2|— ) > 0 gives

) o ()

Relation (7) implies

2n—1 2n—1
(x_a—gb) f(w)Ef(a;_b) (x_a—;b) |

which by integration, and taking into account of (6) implies relation (3).

When n = 1, (3) implies immediately (4).
a+b

When f is strictly increasing, for z #

one has strict inequality
in (7), so by integration we get strict inequality.

Remark. The proof shows that in fact the following general result is
true:

Theorem 2. Let ¢ : [a,b] — R be an integrable, odd function such
that ¢(t) > 0 fort > 0. Then

/abgo<x—a;—b)f(x)dx20 (8)
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for any increasing function f. The inequality is strict, when f is strictly
mcreasing, etc.

Proof. Write

as

o(t)

We first prove that 4 > 0 for any ¢ # 0.
When t > 0, this is true by assumption, while when t < 0, put t = —p,
p > 0. Then
p(=p) _ =) _ »()

= >0,
-p —-Pp p

as required.

This means, that for all z in [a, b] one has

o(o-257) (- 1(*57)) 20 )

and the procedure may be repeated.

Theorem 3. Let p, f : [a,b] — R be integrable functions, and suppose
that f is p-increasing. Then

/ab o) = (5| rre = 1 (50 / o) - (50| o
(10)

When f is strictly p-increasing, there is strict inequality in (10); etc.
Proof. Write

o -r (50| [0 - (50)] 20
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and integrate after multiplication. When f is strictly p-increasing, (11)

b
holds with strict inequality for all x # ot ; thus the integral of left side
of (11) will be > 0.

Remarks. 1) It is well-known from textbooks of real analysis that

(see e.g. [9]) if F': [a,b] — R is integrable and nonnegative, then

b b
/F(x)dxz() and /F(x)dx:O

holds true if and only if F(z) =0 a.e. in = € [a, b].

Thus we have also strict inequalities in (4), (8), (10), if instead of strict

- - : a+b
monotonicity we suppose that e.g. f is increasing and f(z) # f < 5 )

for almost every x € [a, b].

2) When p(z) = z, (10) coincides with (4). When f(z) = cosz,

3
p(z) =sinz, [a,b] C g, ?ﬂ , however; we obtain a new type of result.

3. A refinement

Suppose now that f is an increasing (decreasing) continuous function
on [a,b]. In this case we are able to prove the following result connected
to (4):

Theorem 4. If a < b < ¢, and if f is continuous and increasing

(decreasing) on |a,c|, then

/acxf(x)dx z (&"2“3) /acf(x)dx+/abxf(a:)d:p— (“"2”’) /abf(x)dx

ate /Cf(x)dx. (12)

>
< 2

When f is strictly increasing, all inequalities are strict.

Remark. Inequality (12) refines (4) on the interval [a, ].
Proof. Put

F(t):/atmf(m)dx— (“"2”) /atf(x)dx.
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Then (12) may be rewritten as F(c) > F(b) > 0. While the last
of these inequalities is in fact (4), the first one requires that F' is an
increasing function (as ¢ > b).

Since f is continuous, the integrals are differentiable, so we may use

derivatives. One has

a—+t
2

Fi =103 [ -0 = [0 -a - [ @) 2

Since f is increasing, we have
t t
[ #@n < [ sae=pioe o),
so we get F'(t) > 0, and the result follows. When f is strictly increasing,

[ swnte < [ s,

so F'(t) > 0. This finishes the proof of Theorem 4.
c b c
Remark. As / = / + / , the first inequalities of (12) can be
a a b

written also as

[ (-5 =32 [ s,

Cib/:(x_a;C)f(m)dCUZ/abf(x)dx (13)

When f is decreasing, (13) holds with reversed sign of inequality.

clearly

i.e.

4. Applications

1) The simplest inequalities of all paper are clearly contained in The-
orem 1. We will show that this elementary inequality has surprizing ap-

plications.
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K|~

a) Put f(z) =

, (0 < a < b), which is strictly decreasing. As

b
/ f(z)dz =logb —loga,

we get with reversed sign in (4) that

b—a a+b
= b b 14
10gb—10ga< 2 (a,6>0, a7b) (14)
Here
b— b
L:L(a,b)——a and A:A(a,b):a+

~ logb—loga
represent the famous logarithmic, resp. arithmetic means of a and b.

1
b) Letting f(r) = —, we get
T

b—a - 2ab
logb—loga a+0

(15)

Put now v/b and v/a in place of a,b in (15). Since

we get

L > Vab, (16)

which is another important inequality, with v/ab = G(a,b) = G denoting
the geometric mean. The inequalities G < L < A are frequently used
in many fields of science (even applied ones, as electrostatics [8], heat
conductors and chemistry [15], statistics and probability [5], etc.).

c¢) Another noteworthy mean, related to the above means is the so-
called identric mean I = I(a,b) defined by

1
I(a,b) = E(bb/a“)l/(b_“) for a#b.
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It is easy to see that

1 b
b—a /,

log xdx = log I(a, b) (17)

and ,
1 b
—— | xlogxdr = ra
b—a J,

(see [11], [12] for details). Since f(z) = logz is strictly increasing, we get

log I(a®,b?) (18)

from (4) the inequality
I(a*,0") > (I(a,b))?, (19)
first discovered by the author in [11]. See also [12].
d) Let f(z) = €* in (4). Put

be® — ae®
E=Eab=2"2 1
(ab) = 5=
an exponential mean introduced in [16]. From (4) we get (Toader’s in-
equality):

E>A (20)

Applying (4) with reversed sign to f(x) = e, we get

E<A (21)
where -
- ae’ — be®
F=Flab)=———+1
(@,b) = —— +1,

is a ”"complementary” exponential mean to E (see [14]).
e) Let f(z) = x*, where k > 0. Since f is strictly increasing, we get
from (4):
Vit2 —abt? a4 b k42

e R B A (22)
For k =1 this implies
b\>  a®+ab+ b2
(a—Ql—) _a +c;+ ’ (23)
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while for £ = 2 that
a® + ab + b? - a’® + b
3 2
Note that (23) and (24) give a refinement of the frequently used ele-
. a+b\> a2+10?
mentary relation 5 < :

(24)

2

a+b\> a?+ab+b  a>+b?
25
( 2 ) ST 3 T2 (25)
1
2) f) Apply now the first part of (12) to f(z) = —.
x
For a < b < c one gets
2 _a? 2— g
20c—b) < = C (26)

g) For f(x) = log z, by taking into account of (17)-(18) we can deduce
from (12) that:

2 g2 b2 g2
/T2 2 T2 b2
1< (LC)) < (L) for a<b<e, (27)

I(a,c) I(a,b)

which is a refinement of inequality (19).
I(a?,b%)
I(a,b)

(see e.g. [11], [12], [14]) we get from (27)

By using the mean S(a,b) = ,ie. S(a,b) = (a® - b))/ (atd)

I(a,b) I(a,c) = I(a,c) s & — a?
b= S(a,b) ” <S(a,c)) ~ S(a,c)’ o ! (28)
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3.3 Generalization of the Hadamard
integral inequalities

The famous Hadamard (or Hermite, or Hermite-Hadamard, or
Jensen-Hermite-Hadamard) inequalities for integrals states that if f :

[a,b] — R is convex and continuous, then for all x,y € [a, b] one has

f<a:+y> —x/f dt< f@)+ fy) f() ety (1)

Let a1 < ay < ... < a, be elements of I = [a,b]. Applying (1) to x = a;,

Y = a;41 one gets

() s e [ < A )
Q1 a; Jq

2 2

i

Applying (2) for i = 1,2,...,n, after term-by-term additions we get that

a1 + az as + as Qp + Gpi
f< ! )+f< ! )+...+f<—2 )

Ak+1
< t)dt
Zak+1_ak/ f)
a Qnp,
< T80 4 plan) 4ot flan) + L0 ®)
But f being convex,
a1 + as an+an+1
+ ..+
f<a1+a2)+.“+f(an+an+1)znf 2 2
2 2 n

So by (3) one gets:
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Theorem 1. For f and (a;) satisfying the stated conditions, one has:

a, Ao+ ...+ a, Qpy 1 1 /“’““
— < — _— t)dt
f(2n+ n +2n)_nz /)

ey Wk+1 Tk Jay
g%[@w(azw...u(annﬂ%’”l)]. (4)

Clearly, inequality (4) is a generalization of the Hadamard inequali-
ties, as for n = 1 we get (1) for = a;, y = as. Apply now inequalities
(2) fori =1,3,...,2n— 1. By the same procedure, as above one obtains:

Theorem 2. If f and (a;) satisfy the stated conditions, then

f (%(al +a2+...+an)) < %Z;/a:kl f(t)dt

a9k, — A9k—
k=1 2k 2k—1

< 2 1f(a) 4.+ Flazm)]. (5)

— 2n
Inequality (5) has been first discovered by I.B. Lackovié¢ ([1]).
Let now i = 2,4,...,2n in relation (2). After applying the same
procedure, we can state the following:

Theorem 3. If f and (a;) are satisfying the stated conditions, then

n

1 1 G2k+1
f<a2+a3+2n +a2n+1) SEZ / F(t)dt

iy Q2k+1 — A2k Jay,

< flaz) + f(as) ;‘n -+ flagni1) (6)

Clearly, inequalities (4), (5), (6) can be applied to many particular f

and (a;). We invite the interested reader to perform such applications.
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3.4 Applications of the Cauchy-
Bouniakowsky inequality in

the theory of means

1. Introduction

Let f,g : [a,b] — R be two integrable functions. The classical in-
equality of Cauchy-Bouniakowsky states that

</abf(x)g(x)dx)2 < (/ab f2(x)dx> (/ab 92(35)611;) ' (1)

One has equality in (1) iff there exists a real constant & € R such
that f(x) = kg(x) almost everywhere in x € [a,b]. When f and g are
continuous, equality occurs when the above equality holds true for all
x € |a,b] (see e.g. [2]).

Let x,y > 0 be positive real numbers. Let us denote by

A= Az,y) = m—2|—y and G := G(z,y) = Jxy

the classical arithmetic resp. geometric means of x and y.

The logarithmic and identric means L and I are defined by

L:= L(z,y) = % (¢ #y), Lz,x) =z (2)
and |
Ii=I(z,y) = (" /2") /") (@ £ y), I(e,2) =2, (3)

respectively (see e.g. [4], [5], [11]).
One of the most important inequalities satisfied by the mean L is:

G<L<Aforz+#y (4)

Though the left side inequality of (4) is attributed to B.C. Carlson,
while the right side to B. Ostle and H.L. Terwilliger (see [5] for refer-
ences), the author has discovered recently ([13]) that (4) was proved in
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fact by Bouniakowsky in his paper [1] from 1859. In the proof, inequality
(1) was used for certain particular continuous functions. The author has
obtained more direct and simplified proofs of (4).

The aim of this paper is to obtain other applications of inequality (1)
in the theory of means. Other means, besides L and I will be defined,
when necessary.

Though there exist many integral inequalities with applications in
the theory of means (some of them may be found e.g. in [5]) we will
restrict here our interest only to the inequality (1) (in honour of V.

Bouniakowsky).

2. Applications

1) Let g(z) =1, x € [a,b] in (1). Then one obtains

</abf(a:)da:>2 < (b—a) /ab F2(z)dz, with a < b, (5)

where equality occurs in case of continuous f, when f is constant.

1
a) For a new proof of (4), apply (5) for f(z) = - One obtains

(Inb—Ina) < (b— a) G - %) _ & ;b“)z,

where the inequality is strict, as the function is not constant. The left
side of (4) follows:
G(a,b) < L(a,b).

b) Apply now (1) for f(z) = €, implying:
b—a

(68— e)? < TR el = en)(el + ),

SO




Replace a =Inz, b = Iny in (6), obtaining
L(z,y) < A(z,y),

i.e. the right side of (4).

¢) Apply now (5) for f(z) = —. One obtains

Bl

4(Vb - v/a)? < (b—a)(Inb—Ina),

or
2
b—a - b—a 2_ Va+ Vb )
Inb—Ina 20vb—a)] 2 -
T br 1/r
where A, = @+ is the Holder mean of ¢ and b.

As A, is a strictly increasing function of r, we have obtained the

following refinement of right side of (4):

L<A1/2<A (7)
A+G

In fact Ay =
deduced in [4], too.

d) Let now f(x) = 2", where r # —1 and —1/2 (these cases have
been applied in a), resp. ¢)). Then one obtains the inequality:

, and inequality (7), with another method, has been

(8)

[ prl gl r pr+l _ g2+l
( ) (

b—a)(r+1 b—a)(2r+1)
By denoting by L, = L,(a,b) the usual r-th logarithmic mean

br—i—l _ ar+1 1/r
—_— f —1 0
(r+1)(b—a)} rrg-lrz
(and L_y = lim1 L.(a,b) =1L, Ly = liH(l] L,(a,b) = I), relation (8) can be
r—— r—

rewritten as L < L2" or

Lia.t)= |

Ly < Ly, (9)
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When r > 0, particularly (9) contains the inequality L, < Lo,..
e) Let f(z) =Inx in (5). It is well-known that (see e.g. [5])

1 b
b—a/a Inzdr =1nI(a,b) (10)

On the other hand, by partial integration we can deduce

1 b, bln’b —aln’a
b—a/a In® xdx = P— —2In1I(a,b), (11)

where we have used (10). Therefore, by (5) we get:

bln’b —aln’a

n?7 <
& b—a

—2In1, (12)

which seems to be new. Remark that (12) may be rewritten as

2, 12
(Inl+1)2 <22 z_‘;ln 21 (13)

Now we shall prove that the expression K (a,b) given by

27 9.2
an(a,b)—i—lz\/bln l; aln"a (14)
—a

defines a mean. Indeed, by the mean value theorem of Lagrange one has

for the function g(z) = z In?

w =In*¢ +2In¢, with € € (a,b).
Therefore,
\/M tl=Ing+1
b—a

which lies between Ina + 1 and Inb + 1.
ThusIna+1<InK +1 <Inb+ 1, implying

a< K <bfora<b. (15)

217



Since K (a, a) = a, this means that K is indeed a mean. By (13) and (14)
we get the inequality

I <K, (16)
where
1 In®b — aln’
K := K(a,b) = - -exp \/bnb ana+1)'
e b—a
f) Let f(x) ! in (5). Then we get
= : W
z(a+b—x) &

1 b 1 ’ 1 b1 1 1
d S Z d
b—a/a Var(a+b—x) ! <b—a/a (x+a+b—x>a+b “

(17)
where we have used the remark that
1 (1 N 1 1
vla+b—z) \z at+b—2)a+b
Remark also that
1 b1 1 b 1 1
b—a/Gxx b—a/aa—i-b—xx L(a,b) (18)
On the other hand one has
1 b 1 1
= , 19
b_a/a r(a+b—1x) Plab) (19)

where P = P(a,b) is the Seiffert mean, defined by (see e.g. [10], [14], [15],

[16])
a—b

. a—b
2 arcsin
a+b
For the integral representation (19) of the mean P defined by (20),
see e.g. [14]. Now, by (17), (18) and (19) we get the inequality

P(a,b) = fora # b, P(a,a) =a (20)

P?>L- A, (21)
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discovered by more complicated arguments in [3].
Particularly, by the right side of (4), from (21) we get

P>1L (22)
r+(a+b—x

Clearly, by y/a(a+b—1z) < 5 = A from (19) we get
A>P, (23)

therefore (22) and (23) improve the right side of (4).

Remark 1. For improvements of (21) with stronger arguments, see
[12].

As (21) is equivalent, with the following inequality (see [3]):

L*>>P-G (21')

inequality (21’) here follows by the proved inequality (21).
By (21) and (21") one can deduce also

P?.L* > (LA) - (PQ),
which implies the inequality
P-L>A-G, (217)

one of the main results in [16] (and proved by more difficult means).

1 1
2) Applying (1) for f(z) = —= and ¢g(r) = ———=, and usin
) Applying (1) for f(z) NG g(x) N g
(19) we can deduce again relation (22). We note that by the left side of
(4) and (22) we get

P> G, (24)

but this follows also from the observation that for any ¢ € [a, b] one has
t(a+b—t) > ab, or equivalently (t —a)(b—t) > 0. Now, using this fact,
and the integral representation (19), we get (24).
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b) Let f(x) = \/hl%, g(x) =Valnz in (1), where x > 1. As

b 1 "Inz 1
1 =In/ = In®b — In?
b—a/a nzdr =1InlI(a,b), b—a/a xdaz 2(b—a)(nb n-a)
and
1

’ A 2 72
b_alxlanEIHI(a,b)

(see e.g. [7]), we get:

Inb—1 A A
27 < nfa”a G- l(@% ) = o G-I (@, B?).
Let S = S(a,b) be the mean defined by
S = (aa . bb)l/(a+b) (25)

Then it is known (see [5], [7]) that

I(a?,b%)
b) = ’ 26
By using (26), from the above relations we get the inequality
2 A
In I<ﬁ'lnG~ln(S-I), (27)

which seems to be new.

Remark 2. As in the definitions of f and g we must suppose x > 1,
clearly (27) holds true for b > a > 1, where I = I(a,b), etc.

c¢) An exponential mean £ = F(a,b) is defined and studied e.g. in [6],
[9] by

b a
B = E(ab) = 2= 4 (28)

eb_ea

Apply now inequality (1) for f(z) = ve* and g(z) = zv/e.
Remark that

b
/ ve"dr = be’ — ae” — (e’ — e%),
a
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b b
/ 22etdr = be? — a’e® — 2/ ze®dx
a a

and that these imply

b b
/ ze®dr = (e’ — e")E, / redr = b?e — a?e” — 2(e’ — e")E,

so we get:
(e —e*)?E? < (e — e)[b*e” — a’e® — 2(e” — ) E] (29)
or
(e — e")(E* + 2F) < b%e’ — a?e”,
i 2.6 2
b _ a
(E+1)2<ﬁ+1 (30)
Define a new exponential mean F' by
2.0 _ 2.4
F:F(a,b)z\/%ﬂ—l (31)
By (30) we get
E<F (32)
1 1
d) Let f(x) = and g(x) = =% i (1). As
rlnx x
"1
/ xlnxdx =In(Inb) — In(Ina)
and ,
1 1
/ D g = 5(1112 b—1Ina),
e T
we get

(Inb — Ina)* < [In(Inb) — In(Ina)] - %(lm2 b—1In’a),
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or
Inb—Ina < [In(lnbd) — In(lna)] - %(lnb +Ina).

By letting Inb = y, Ina = x, this gives a new proof of right side of (4).

B 1 1
= —\/E-lnx’ g(x) = ﬁ,

Applying (1) for f(x) *
b 1 1 1
/a :)31n2:1cdm T lnz Inb’
we get
Inb—1Ina
J— 2 - T
In(Inb) — In(Ina)]” < (Inb —Ina) Inb-lna’

which by notation Inb = y, Ina = x, gives a new proof of left side of (4).

e) Let f(x) =z, g(x) =z -Inz in (1). As
21,2
/xlnzxd:c: z 1; a —/:clna:d:v,

by the formula used in b) we get:

A? b —a? [*In’b— a’In’a A
—_— 2-—- 2 . —_— —_— - —_— .
(b—a) 1 In“(S-1)< 5 [ 5 (b—a) 5 In(7 - S)
(33)
blnb—alna :
As Inl = . 1l and InS = alna+ bInb2A, after certain
—a
transformations, we get from (33):
In?*(S-1I)+2mn(S-1)<4(1+Inl)-InS (34)
Put u =1In7, v =1nS in (34). It is easy to see that
v=InS>Inl=u (35)

becomes equivalent, after elementary transformations to
ab(Inb* — Ina?) < b* — a?, or L(a* b*) > G(a*V?),
which is the left side of (4).
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Now, (34) can be written as
(v +u)? +2(v+u) < 4v(l +u), or v* 4+ u* + 2u < 2v + v,

(v —u)® < 2(v —u) (36)

as, by (35), v —u > 0, we get from (36) that v —u < 2, i.e.
S<er I (37)

Therefore, inequality (37) is a consequence of the Cauchy-Bouniakowsky
inequality.

3) We have shown by more applications of the inequality (1) that
holds true relation (4). Now, this implies the logarithmic inequality

Inz <z-1, (38)

with equality only for = 1. Indeed, let © > 1. Then by L(z,1) > G(z,1)

— -1
onehasx > x,solnx<xT<x—1.IfO<x<1,thenapply
x
1-— 1 1 1—
L(l,z) < A(1,z),i.e. T < Tt , where Tt < 1. Thus T < 1,
—Inz 2 —nx

sol—xz < —Inzorlnz < x—1. There is equality in (38) only for x = 1.
Let Ay(z) = p11 + ... + pray, Gp(a) = a8 ... 2P and

denote the weighted arithmetic, geometric resp. harmonic means of the
positive real numbers z1, ..., x, > 0, where the positive weights p; (i =
1,2,...,r) satisfy p1 + ... +p, = L.

Apply now inequality (38) for z = Ax(i 7 and multiply both sides
»(x
with p;:
T biT;
p; In < — i (39)
Ap(z) = Ap(z)
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After summation in (39) we get

aft b <p1x1—|—...+p,,a:r

Ap($)p1+~--+p'r - AP(ZL‘)

In —(p1+ ...+ D)

Aspi+...+p. =1, we get the weighted arithmetic-geometric inequality.

This in turn gives also the weighted harmonic-geometric inequality:
Hy(x) < Gylx) < Ay(a) (40)

The left side of (40) follows by applying

o (1) <)

1 1 1
where — = (—,...,—).
x 1 X,

There is equality in both sides only if

i

Ap(z)

:1f0raui:17--‘7r7

which means that xr1 = ... = z,.
The continuous analogue of inequality (40) can be proved in the same
manner. Let f,p : [a,b] — R be two positive Riemann-integrable func-

tions.

b
Suppose that / p(z)dr =1 and define

b
b
A= [ PO, Gy = eSO |

b; (41
/@dm‘
o f(z)

Hp,f < Gp,f < Ap,f' (42)

Then one has

Particularly, when p(z) = b e get
—a

B 1
f_b—a

b—a
[ s

b
/fmm,epw@ﬁww Hy = (43)
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SO
Hp < Gy < Ay (44)

There is equality in both sides of (41) (or (44)) only if f is a constant
almost everywhere. If f is continuous, the equality occurs only when f
is a constant function.

For the proof of (42) apply the same method, as in the proof of (40),
but in place of summation, use integration.
in (38), and multiply both sides with p(z) > 0:

)

Therefore, let x =

Ap,f
L2 < 20N (15)
p.f '

By integration in (45) we get the left side of (42). Then apply this in-
1
equality to 7 in place of f in order to deduce the left side of (42).

There are many applications to the discrete form (40), or continuous
form (42) of the arithmetic-geometric-harmonic inequalities.

We will be mainly interest in the means studied before.

a) For the means A, G, L, I and S, the following identities are easy to
prove (see also [7], [8]):

2
uS 128 a

A-L=A(a,b) - L(a,b) = L(a*,b*) and G*(a,b) = G(a* b,

by replacing a with v/a and b with /b in (47), one obtains

S G ,
1n7(\/a,¢13):1—z (47"

In base of identities (46) and (47’) one can state the following:

L<AsI>d (48)
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G<L&S>1 (49)

Therefore, inequalities (4) are equivalent to the following:

G<I<S (4"
Applying (44) to f(z) = = we get

L<I<A (50)

On the other hand, applying the left side of (40) for r = 2 and

a b
7p2_al+b

, L1 = aQ, xQZba

one has
1

a 1 b 1

aib a arb D

< aa/(a—f—b) . bb/(a—i—b)’

which gives
A<S, (51)

see e.g. [8].
In fact, relations (4), (4'), (50) and (51) may be rewritten as

G<L<I<A<S (52)

b) By (22) and (23) P lies between L and A, but we can strengthen
this fact by applying the right side of (44) to
1

Vala+b—z)

b b
As / In(a + b — z)dz :/ Inxzdx =Inl, by (19) we get

fz) =

P<I (53)
Therefore, (52) may by completed as
G<L<P<I<A<S (54)

226



Remark. Inequalities L. < P < I have been obtained for the first
time by H.-J. Seiffert [15], by using more complicated arguments.
Let us apply now the left side of (44) to the same function f as above.

Let us introduce the new mean

J= J(ab) = bia/ V(@ + b= z)dz (55)

As G < \/z(a+b—1x) < A (see 1f) and 2a)), we get also

G<J<A (56)
By the left side of (44) however, the left side of (56) may be improved to
I<J (57)

Therefore the chain (54) may by rewritten as
G<L<P<I<J<A<S (54")

Remark 3. By inequalities (21) and (21’) one can strengthen the

first two inequalities:
G<VP-G<L<VL-A<P

¢) Let us introduce another new mean R by

1 b 1
R=R(a,b)=1 . / dx 58
=1 (b —' ). o ) (58)
As VG < x(a+b—z) < VA, clearly
G < R<A, (59)
1
too. By inequality (5) applied to f(x) = we get, using
va(a+b—x)
(19), that
P<R (60)
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Applying, as in b) the right side of (44) to this function, we get
R<1I (61)
Therefore, a completion of (54) is valid:
G<L<P<R<I<J<A<S (54")

with two new means J, resp. R defined by (55), resp. (5

8).
2z 1
d) Apply now (41) for p(z) = FRpe] and f(x) = ot As

’ 2 1
A, r= / p(z) f(x)dx = m(b —a) = T

Gps= Sl p@)Inf(2)de _ =5 [ wlnade _

CQ\v

as , A
/ rlnzdr = (b—a) - Eln(I-S).

On the other hand,

H, ;= — : _

i b p(x) 2 B4ab+a®  He(a?1?)’

/ D) 4o
o fl@)

1 b? — a? 3 A
(

where N N
T+ Ty +vy
He(z,y) = 3

denotes the Heronian mean of x and y. One obtains the double in-

A2<I-S<(%2’bz)>2 (59)

The left side of (59) has been proved also in [8], while the right side seems
to be new.

equality:

For an extension of (59) repeat all above computations with

)

- bn_an'

p(x)
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Since by partial integration we get

’ b" —a")InI(a",b"
/x"‘llnxdx:< a")In I{a”,b") (60)

n2

from (42) we get

b" —a” N — n
Y < A/ I(a™, ) <

n—i—l' b — am

bn-l—l _ an—i—l

(61)

This new inequality extends (59), as for n = 2, by I(a*b?) = I - S, one
reobtains (59). Here n is a positive integer, but as the proof shows, it

holds true by replacing n with any r» > 1, i.e.

bv—a’ r br—l—l _ ar—i—l

,r.(br—l _ ar—l)

< (I(a", ")V < ,r>1. (62

r+1 b —ar
By putting a” = z, b" = y in (61), this inequality appears as
n+1)/n n+1)/n

— ( —
y—x noy T
< /I(z,y) < : . (61
nly(n=1/n — gn=1)/n] () n+1 y—x (67
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3.5 On some exponential means

1. Introduction

A mean of two positive real numbers is defined in [3] as a function
M - ]R%r — R, with the property:

mln{x,y} < M([L’,y) < max{:p,y}, v T,y € R-i-'

Of course, it follows that M (z,z) = x.

Two means M and M’ are sometimes comparable. We write M < M’ if
M(z,y) < M'(z,y) for z # y.
The most common example of mean is the power mean A,, defined by:

Ap(z,y) = ((2¥ +y")/2)!7, for p # 0
Ag(z,y) = G(z,y) = (zy)? (the geometric mean).

We have:

Ai(z,y) = A(x,y) (the arithmetic mean)
A1 = H(z,y) (the harmonic mean)

and, as limit cases:

A_o(x,y) = min{z, y}
A, ooz, y) = max{z,y}.

It is proved in [3] that:
A, <A, forp<gq (1)

so that for a given mean M one looks for his place between two power

means:
A, <M < A,
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but p or ¢ (or both) can be infinite.

As it is shown in [7], a general method of construction of means is
offered by the mean-value theorem for integrals. If f is a monotone and
continuous function on R, and g is a positive continuous function on R
which is not identical zero on any interval, then for any z,y € R, there

is an unique z € R, such that:

£(2) / " g(tydt = / " F gty

So, one can define a mean Vy , by:

/ " F(0)g(t)dt

Viglw,y) =71 | =g
/ g(t)dt
For example, taking f(t) =t and g(t) = e' we get the mean:

xe® — yeYy

E(x,y) = -1

er —eY

which was studied in [8]. As it was proved there:
Al=A< EF < Ay (2)

but, while the upper bound is strong (A, is not comparable with E for
p > 5/3), it is conjectured that the lower bound can be lifted up to As/3.
In this paper we want to indicate some relations of the mean F with

other means.

2. The identric and the logarithmic mean
For x # y, the identric mean [ is defined by:
I(z,y) = e ' (y" fa®) =)
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and the logarithmic mean L by:

r—1Y
Liz,y) = ———Y¥
(z.9) logxz — logy

Improving some other results, T.P. Lin has proved in [4] that:
A() =G<L< Al/g

and the indices 0 and 1/3 are sharp, that is L and A, are not comparable
for 0 < p < 1/3. Also, in [5] A.O. Pittenger proved that:

Agjz < T < Ajgo (3)
and again the indices are sharp. Of course, it follows that:
L<1. (4)
We remind also two results of H. Alzer:
A-G<L-1 (5)

proved in [1] and:
G-I<L? (6)
proved in [2].
In what follows we shall use also a result of J. Sdndor from [6]:

P(z,y) < A%(z,y) < I(2*,y°) for © #£ y. (7)

Finally we remind that compounding a mean M with a bijection f we

can construct a new mean M’:
M'(z,y) = f~H(M(f(x), f(y))).
We shall use two means obtained on this way:
Flz,y) = log(L(e", ¢¥))

and
By(z,y) = log(Ay(e”, e”)).
We denote also B; = B.
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3. Main results

We start with the remark that:

ylogy — xlogx
log(1(zy)) = "B —T0ET

hence:
E(x,y) = log(I(e", e)).

Using this relation, (4) becomes:
E>F. (8)

The inequality (8) improves the first part of the inequality (2) because
G < L implies, by logarithmation A < F. That is

E>F> A
Also putting in (3) z = e*, y = e” and logarithming, we get
Bg/g < FEF< BlogQ- (9)

From (5) we have
E>A+B-F (10)

which is another refinement of the first inequality from (2), because, by

Hadamard’s inequality for the convex function f(t) = e*, we get (see [6]):
A<F<B.
On the same way, (6) gives:
E<2. F— A (11)
Hence, from (10) and (11) we have:
A+B-F<E<2-F—-A
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Another relation for £ we can obtain from (7). Putting z = e, y = €
and logarithming, we get
E(2u,2
E(u,v) < B(u,v) < %
that is
E(a,b)
5

E(a/2,b/2) < (12)

4. Homogeneity properties

This last relation suggest the study of a property of subhomogeneity.

Most of the used means are homogeneous (of order one):
M(tx,ty) =t - M(z,y), t > 0.
There are also some log-homogeneous (logarithmic-homogeneous) means:
Mz, y") = M'(z,y), t > 0.

For example GG. But I and E haven’t these properties.
The relation (12) suggest the following definitions: for a given ¢t > 0,

the mean M is called t—subhomogeneous (¢t — log —subhomogeneous) if:
M (tz,ty) < tM(z,y) (vespectively M(a',y") < M'(z,y)).

If the inequalities are reversed, the mean is called t—superhomogeneous
respectively ¢ — log —superhomogenous. Of course, if M is t—subhomo-
geneous then it is 1/t—superhomogeneous.

From (1) we deduce that A, is ¢ — log —subhomogeneous for ¢ < 1
and B, is t—subhomogeneous for ¢ < 1.

Applying the first inequality of (9) to z = 3u/2, y = 3v/2, we get:

B(u,v) < (2/3) - E(3u/2,3v/2).
From the second inequality of (9) with x = u/log2, y = v/log2 follows:
(log2) - E(u/log2,v/log2) < B(u,v)
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thus:
(log2) - E(u/log2,v/log2) < (2/3) - E(3u/2,3v/2)

hence E is t—subhomogeneous for ¢t = 2/log 8. In fact is valid the follow-
ing property.
4.1. Theorem. The mean E is t—subhomogeneous and the mean [

is t — log —subhomogeneous for t > 2/log8 = 0.961 . ..

Bibliography

1. H. Alzer, Ungleichungen fir Mittelwerte, Arch. Math., 47(1986),
422-426.

2. H. Alzer, Two inequalities for means, C.R. Math. Rep. Acad. Sci.,
Canada, 9(1987), no. 11-16.

3. G.H. Hardy, J.E. Littlewood, G. Pdlya, Inequalities, Cambridge
Univ. Press, 1967.

4. T.P. Lin, The power mean and the logarithmic mean, Amer. Math.
Monthly, 81(1974), 879-983.

5. A.O. Pittenger, Inequalities between arithmetic and logarithmic
means, Univ. Beograd Publ. Elektr. Fak. Ser. Mat. Fiz., 680(1980),
15-18.

6. J. Sandor, On the identric and logarithmic means, Aequationes
Math., 40(1990), 261-270

7. Gh. Toader, Mean value theorems and means, Conferinta Nationala
Mat. Aplicate si Mecanica, Cluj-Napoca, 1988, 225-230.

8. Gh. Toader, An exponential mean, Babes-Bolyai Univ. Preprint
7(1988), 51-54.

236



3.6 A property of an exponential mean

Let x,y > 0. The following exponential mean E = E(x,y), has been
introduced by the second author in [2]. Their properties and/or connec-

tions to other means are studied in the papers [3] and [1].

M_l (x #y), Ex,z)=ur. (1)

Theorem. For all0 <a <b, 0 <z <y one has

Elw,y) = ——

min{z — a,y — b} < E(x,y) — E(a,b) < max{x —a,y —b}. (2)

Proof. Put

x x re ™ —ye Y

g(r) = ) h(x) = T flz,y) =

et —e Y
Then it is immediate that
fl@y) =z —gly —x) =y —hy —x),
and
f(@y)=fla,b) =x—a+g(b—a)—g(y—z) = y—b+h(b—a)—h(y—x).

It can be seen immediately that h is increasing and ¢ is decreasing on
(0, +00). This implies by the above identity, that for 0 < a < b and
0 <z <y we have

min{z —a,y — b} < f(z,y) — f(a,b) <max{r —a,y —b}. (3)

Now, it is easy to see that

flz,y) =FE—1, (4)

where E is the complementary mean to E (see [3]), i.e.

E(z,y) = 2A(z,y) — E(z,y), where A(z,y) = x—;—y
Since min{u, v} — (u+v) = — max{u, v}, from (3) and (4), we can deduce

(2), i.e. the Theorem is proved.
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3.7 Some new inequalities for means and

convex functions

In what follows, for a,b > 0 let us denote

b
A:A(a,b):a;, G = Gla,b) = Vab,
a’® + b 2
W:W(&,b): a—f—b’ H:H(a,b):i
a b

If f:]a,b] — R is increasing (decreasing) function, then the following
property is immediate:

Proposition 1.

af(b) +bf(a) _ fla) + f(b) _ af(a) +bf(b)
a+b - 2 - a+b

(1)

All inequalities in (1) are reversed, when f is decreasing.
Proof. After simple computations, each parts of (1) become equiva-

lent to
(f(b) = fla))(b—a) =0 (or (f(b)— f(a))(b—a)<0).
For f(x) = x, relations (1) imply the classical inequality
H<A<SW.
A more interesting example arises, when f(z) = Inx. Then we get
(@%b @) < G < (q)V/ @), 2)

For the involved means in the extremal sides of (2), see e.g. [1]-[3].

If f is convex, the following can be proved:
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Proposition 2. Let f be convex on |a,b]. Then

af(a) + f(b)
a+b

_ af(b) +bf(a)
a+b

fW) <

a® + b a b
— — : b

Jv) f<a+b) f(a a—irbjL a+b)
a N b By — af(a)+0f(b)
a+b

by the convexity of f (i.e. f(aX + bu) < Af(a) + pf(b) for A\,u > 0,
A+ p = 1). This proved (3).

Now,

f(H):f<a2—T—bb) :f<aj-b.b+a—?-b‘a)

a b _af(b)+bf(a)
A R A AC) e

Y

Y

yielding (4).
Relation (5) follows by (3), since

af(b) +bf(a)  af(a)+b/(b)
a+b a+0b

= fa) + f(b).

By taking into account Propositions 1 and 2, one can ask the question

of validity of relations of type

af(b) +bf(a)
a+b

af(a) +0bf(b)
< f(W) < Y

Y
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. af(b) + bf(a)
<=

We will prove the following results:
Theorem 1. ([4]) Let f : [a,b] — R be a differentiable, convex and

increasing function. Suppose that the function

< f(A), etc.

g(x) = f’;x)’ x € |a, b
15 decreasing. Then one has
af(b) +0f(a)
sy < LD < pa, (6)

Proof. The left side of (6) is exactly relation (4). Let us write the
right-hand side of (6) in the form

alf(b) = f(A)] < b[f(A) = f(a)]. (%)

By
b—A:b_a

=A—a,
and by the Lagrange mean value theorem one has

b b

) = J(4) = 5= (&), F(A) = fla) = = f(&).
where & € (a,A), & € (A,b). Thus a < & < & < b. By f'(z) > 0 and

f' being increasing we get by the monotonicity of g:

F®) _ 1
b — a

af'(&2) < af'(b) <bf'(a) < bf'(&1).

This implies relation (%), i.e. the proof of Theorem 1 is completed.

The following theorem has a similar proof.
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Theorem 2. Let f : [a,b] — R be a differentiable, conver and in-

creasing function. Suppose that the function

S

is decreasing on [a,b]. Then

f(b) +bf(a)

f(H) < SRS < (@), (7)

For f(x) =z, (7) gives the classical inequality H < G.
Theorem 3. Let f : [a,b] — R be a differentiable, conver and in-

creasing function. Suppose that the function

o -1
is decreasing on [a,b]. Then
F(4) < fwy < LT, ()

Proof. The left side of (8) is trivial by A < W and the monotonicity
of f. The proof of right side is very similar to the proof of right side of
(6). Indeed,

W—a:b(b_a), b_W:a(b—a)‘
a+b a+b
By Lagrange’s mean value theorem one has
b(b — b—
f09) = rta) = "D i), g - powy = 0

where 1y € (a, W), o € (W, b). Now, we can write that
af'(m) < af'(b) <bf'(a) <bf'(n),
so f(W) — f(a) < f(b) — f(W), and (8) follows.
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Finally, we shall prove an integral inequality, which improves on cer-
tain known results.

Theorem 4. ([4)) If f : [a,b] = R is convex and differentiable, then

b_a/ oy < L [HOLHO gy] SO0

Proof. Since f is convex and differentiable, we can write that

fl@) = f(y) < (z —y)f'(z) for all z,y € [a,b].
Apply now (*x) for y = W and integrate the relation on x € [a, b]:

/f Vdz < (b—a)f(W) + /b(:v—W)f’(x)dx.

()

/ (2 — W) f()de = / o f (2)dx — WIF(b) — f(a)

— bf(b) — af(a /f dz — W(F(b) — f(a)].

by partial integration. Thus

/f i < ( ){f(;izf( >}+<b—a>f(W>,

and the left side of (9) follows. The right hand side inequality of (9) is a
consequence of relation (5)

Remarks. 1) Relation (9) improves the Hadamard inequality

/f o < L0410

) If the conditions of Theorem 1 are Satlsﬁed, the following chain of
inequalities holds true:

f(H)SW< )< /f )da
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3) The methods of this paper show that the more general means

ak + bF

Wy, = ab—1 4 ph-1

may be introduced.
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3.8 Inequalities for general integral means

1. Introduction

A mean (of two positive real numbers on the interval J) is defined as
a function M : J? — J, which has the property

min(a,b) < M(a,b) < max(a,b), ¥V a,b € J.
Of course, each mean M is reflexive, i.e.
M(a,a) =a, YaeJ

which will be used also as the definition of M (a,a) if it is necessary.

The mean is said to be symmetric if
M(a,b) = M(b,a), ¥V a,b e J.
Given two means M and N, we write M < N (on J) if
M(a,b) < N(a,b), Y a,be J, a#b.

Among the most known examples of means are the arithmetic mean A,
the geometric mean GG, the harmonic mean H, and the logarithmic mean
L, defined respectively by
a+b
A(a,b) = 5 G(a,b) =Va-b,

2ab b—a
<a7 ) a—{—b’ (a’ ) lnb-lna,’

and satisfying the relation H < G < L < A.
We deal with the following weighted integral mean. Let f : J — R

be a strictly monotone function and p : J — R, be a positive function.

Then M(f,p) defined by

a,b >0,

[ @)y

/ab p(z)dx
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gives a mean on J. This mean was considered in [3] for arbitrary weight
function p and f = e, where e, is defined by

(@) " if n#0
en(x) =
Inz, if n=0.

More means of type M (f, p) are given in [2], but only for special cases
of functions f.
A general example of mean which can be defined in this way is the

extended mean considered in [4]:

r b°—a’

B = (-

s br—ar

_1
) , s#0, r#s.

We have E, ; = M(es_r, e,-1).

The following is proved in [6].

Lemma 1.1. If the function f : R, — Ry s strictly monotone, the
function g : Ry — R s strictly increasing, and the composed function

go f~1 is convex, then the inequality

M(f,p) < M(g,p)

holds for every positive function p.

The means A, G and L can be obtained as means M(e,, 1) for n = 1,
n = —2 and n = —1 respectively. So the relations between them follow
from the above result. However, H = M(ey,e_3), thus the inequality
H < G cannot be proved on this way.

A special case of integral mean was defined in [5]. Let p be a strictly
increasing real function having an increasing derivative p’ on J. Then M)
given by

bxp/(x)da

Mé(a,b):/a o) — pla)’ a,beJ

defines a mean. In fact we have M, = M(eq,p’).
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In this paper we use the result of the above lemma to modify the
definition of the mean M (f,p). Moreover, we find that an analogous
property also holds for the weight function. We apply these properties

for proving relations between some means.

2. The new integral mean

We define another integral mean using two functions as above, but
only one integral. Let f and p be two strictly monotone functions on J.
Then N(f,p) defined by

1
V) =7 ([ ol )+ -0 o)
0
is a symmetric mean on J. Making the change of the variable

[p(b) — s
[p(b) — p(a)]

we obtain the simpler representation

P®) (£ o 1V(s)ds
N(f,p)(a,b) = f (/ M)

t =

(a) p(b) — p(a)
Denoting f o p~! = g, the mean N(f,p) becomes
p(b)
9 g(x)dx
Nigp)ah) =plog | [ A,
p(a) p(b) - p(CL)
Using it we can obtain again the extended mean E, ; as N'(es/r—1,€;).

Also, if the function p has an increasing derivative, by the change of
the variable
s = p(x)
the mean N(f,p) reduces at M(f,p’). For such a function p we have
N(e1,p) = M. Thus M, p can also be generalized for non differentiable

functions p at
1
Mya,t) = [ p7ep@) + (1= 1) pO)d Y abe
0
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or

P(0)  =1(g)d
Mp(a,b):/ s e
p(a) p(b) _p(a’>

which is simpler for computations.

Example 2.1. For n # —1,0, we get

n bn+1 _ an+1

M., (a,b) = , for a,b >0,

n+1l br—an
which is a special case of the extended mean. We obtain the arithmetic
mean A for n = 1, the logarithmic mean L for n = 0, the geometric mean
G for n = —1/2, the inverse of the logarithmic mean G*/L for n = —1,
and the harmonic mean H for n = —2.

Example 2.2. Analogously we have

b-el —aq- e

Mexp(a,b) = —1=FE(a,b), a,b>0

€b — el
which is an exponential mean introduced by the authors in [7]. We can
also give a new exponential mean

a-e’—b-el

My exp(a,b) = +1= (24— E)(a,b), a,b> 0.

eb_ea

Example 2.3. Some trigonometric means such as

b-sinb—a - si b
Man(a,b) = Z50 Z O 0 820 b e [0,7/2)
sinb — sina
10— V1—a?
Marcsin(ayb) = \/ \/ ¢ a,bG [0,1],

arcsina — arcsinb ’

b-tanb — a - tana + In(cos b/ cos a)

Mtan(aa b) = , a, be [O, 7T/2>

tanb — tana

Inv14+02—-1In+v1+4+a?
Marc an\{, b) = , U, b > 07
tan (0, B) arctan b — arctan a “

and

can be also obtained.
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3. Main results

In [5] it was shown that the inequality M > A holds for each function
p (assumed to be strictly increasing and with strictly increasing deriva-
tive). We can prove more general properties. First of all, the result from
Lemma 1.1 holds also in this case with the same proof.

Theorem 3.1. If the function f : R, — Ry is strictly monotone, the
function g : R, — R is strictly increasing, and the composed function

go f~1 is convex, then the inequality

N(f,p) < N(g,p)

holds for every monotone function p.
Proof. Using a simplified variant of Jensen’s integral inequality for

the convex function g o f~! (see [1]), we have

o 1 ([ (ror e pla) + -0 -0t

< / (g0 /™o (fop )t pla)+ (1—1)- p(b)dt.

L we get the desired inequality. [

Applying the increasing function g~
We can now also prove a similar result with respect to the function p.
Theorem 3.2. If p is a strictly monotone real function on J and g

is a strictly increasing real function on J, such that q o p~! is strictly

convez, then
N(f,p) <N(f,q) on J,

for each strictly monotone function f.
Proof. Let a,b € J and denote p(a) = ¢, p(b) = d. As gop™ ! is

strictly convex, we have

(qop lte+ (L —t)d] <t(gop ")(c)+ (1 —t)(qgop ')(d), Vte (0,1).

As ¢ is strictly increasing, this implies
ptpla) + (1 =1) - p(b)] < ¢ [t qla) + (1 —t) - q(b)], V€ (0,1).
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If the function f is increasing, the inequality is preserved by the com-
position with it. Integrating on [0, 1] and then composing with f~! we
obtain the desired result. If the function f is decreasing, so also is f~!
and the result is the same. U
Corollary 3.3. If the function q is strictly convex and strictly in-
creasing then
M, > A.

Proof. We apply the second theorem for p = f = ey, taking into
account that M., = A. O

Remark 3.4. If we replace the convexity by the concavity and/or
the increase by the decrease, we get in the above theorems the same/the
opposite inequalities.

Example 3.1. Taking log, sin respectively arctan as function ¢, we
get the inequalities

L, Msin, Marctan < A.

Example 3.2. However, if we take exp, arcsin respectively tan as
function ¢, we have
E7 Marcsim Mtan > A.

Example 3.3. Taking p = e,, ¢ = ¢, and f = ey, from Theorem 3.2

we deduce that for m - n > 0 we have
M., < M., , ifn<m.
As special cases we have
M, > A, forn>1,

L<M, <A, forO<n<1,
G< M, <L, for —1/2<n<0,
H< M, <G, for —2<n<—1/2,
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and
M., < H, for n < —2.

Applying the above theorems we can also study the monotonicity of the

extended means.
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3.9 On upper Hermite-Hadamard
inequalities for geometric-convex

and log-convex functions

1. Introduction

Let I C R be a nonvoid interval. A function f : I — (0,400) is
called log-convex (or logarithmically convex), if the function g : I — R,

defined by g(z) = In f(x), x € I is convex; i.e. satisfies

gz + (1= Ny) < Ag(z) + (1 — N)g(y) (1.1)

for all z,y € I, A € [0,1].
Inequality (1.1) may be rewritten for the function f, as

FOz+ (1 =Ny) < (Fl@)Mfy)' (1.2)

for x,y € I, A € [0,1].
If one replaces the weighted arithmetic mean Az + (1 —\)y of z and y
with the weighted geometric mean, i.e. 2*y'~*, then we get the concept

of geometric-convex function f: I C (0,400) — (0, +00)

Faty'=) < (f@) (), (1.3)

for x,y € I, A € [0,1].

These definitions are well-known in the literature, we quote e.g. [7]
for an older and [4] for a recent monograph on this subject.

Also, the well-known Hermite-Hadamard inequalities state that for a

convex function g of (1.1) one has

o (U5 < 5 oo < 8O I0

for any a,b € 1.
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We will call the right side of (1.4) as the upper Hermite-Hadamard
inequality.

By applying the weighted geometric mean-arithmetic mean inequality
b < Xa+ (1= N\, (1.5)

the following properties easily follow:

Lemma 1. (i) If f : I — (0,00) is log-convez, then it is conve;

(i) If f 1 C (0,00) — (0,00) is increasing and log-convezx, then it
18 geometric convez.

Proof. We offer for sake of completeness, the simple proof of this

lemma.

(i) One has by (1.2) and (1.5):

FOe+ 1= Ny) < (F@) (@)™ < Af(@) + 1 =N f(y)

for all x,y € I, A € [0,1].
(ii) f(z*y'™) < f(Az + (1 — N)y) by (1.5) and the monotonicity of
f. Now, by (1.2) we get (1.3).
Let L(a,b) denote the logarithmic mean of two positive real numbers
and b, i.e.
b—a

L(a,b) = b —Ina for a # b; L(a,a) = a. (1.6)

In 1997, Gill, Pearce and Pecari¢ [1] have proved the following upper
Hermite-Hadamard type inequality:
Theorem 1.1. If f : [a,b] — (0,400) is log-convex, then

b
b i p / f(x)dz < L(f(a), f(b)), (1.7)

where L is defined by (1.6).
Recently, Xi and Qi [6] proved the following result:
Theorem 1.2. Let a,b > 0 and f : [a,b] — (0,400) be increasing

and log-convex. Then

1
Inb—1na

/ f(x)dz < L(af(a).bf (). (18)
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Prior to [6], Iscan [2] published the following result:
Theorem 1.3. Let a,b > 0 and f : [a,b] — (0,00) be integrable and

geometric-convex function. Then

Inb i Ina /a f(;) dx < L(f(a), f(b)). (1.9)

In case of f increasing and log-convex, (1.9) is stated in [6], too.
However, by Lemma 1(ii), clearly Theorem 1.3 is a stronger version.
In what follows, we shall offer refinements of (1.8) and (1.9). In fact,

in almost all cases, inequality (1.7) is the strongest from the above.

2. Main results

First we prove that the result of Theorem 1.2 holds true in fact for
geometric-convex functions:

Theorem 2.1. Relation (1.8) holds true when f is integrable geomet-
ric convex function.

Proof. First remark that when f is geometric-convex, the same is

true for the function g(z) = zf(x), « € I. Indeed, one has

g(zty' ™) = My A f @My ) <@y )NF(y)
= (2 f (@) wf(y)' ™ = (9(x) g(y) ™,
for all z,y € I, A € [0, 1]. Therefore, by (1.3), g is geometric convex.
Apply now inequality (1.9) for xf(z) in place of f(z). Relation (1.8)
follows.

In what follows, we shall need the following auxiliary result:

Lemma 2.1. Suppose that b > a >0 and ¢ > p > 0. Then one has

L(pa, qb) = L(p, q)L(a,b), (2.1)
where L denotes the logarithmic mean, defined by (1.6).
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Proof. Two proofs of this result may be found in [5]. Relation (2.1)
holds true in a general setting of the Stolarksy means, see [3] (Theorem
3.8).

We offer here a proof of (2.1) for the sake of completeness. As

1
L(a,b) :/ bia'"du, (2.2)
0

applying the Chebysheff integral inequality

yia:/:f(t)dt. yix/xyg(t)dt< yix/xyg(t)f(t)dt, (2.3)

where x < y and f, g : [x,y] — R are strictly monotonic functions of the

same type; to the particular case

[,y = [0,1); f(t)=bla' =0 (é)t

a

and

g(t) =q¢'p' " =p (%)t

for b > a and ¢ > p; by (2.2), relation (2.1) follows. For p = ¢ one has
equality in (2.1).

One of the main results of this paper is stated as follows:

Theorem 2.2. Let b > a > 0 and suppose that [ : [a,b] — R is
log-convex. Suppose that f(b) > f(a). Then one has

= | f@de < L@, 10) < T Llaf (@010, ()

Proof. The first inequality of (2.4) holds true by Theorem 1.1.
Applying now Lemma 2.1, by ¢ = f(b) > f(a) = p and b > a, one has

L(f(a), f(0))L(a,b) < L(af(a),bf (b)).

As this is exactly the second inequality of (2.4), the proof of Theorem
2.2 is finished.
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Remark 2.1. The weaker inequality of (2.4) is the result of Theorem
1.2, in an improved form (in place of increasing f, it is supposed only
£0) > f(a).

When f(b) > f(a), there is strict inequality in the right side of (2.4).

Theorem 2.3. Let b > a >0 and f : [a,b] — R log-convez function.

) _ f@
D>

Suppose that . Then one has

a
L [" f(2) fla) f(®)\ _Inb—1Ina
< < ) (9.
b—al : WS\ T T ) ST M@ ) 25)
Proof. First remark that f(@) is log-convex function, too, being the
x

1

product of the log-convex functions — and f(x). Thus, applying Theorem
x

1.1 for /()

The second inequality of (2.5) may be rewritten as

. (fgw L0 ) L{a,b) < L(f(a), £ (b)),

in place of f(x), we get the first inequality of (2.5).

fl@) B

and this is a consequence of Lemma 2.1 applied to p = ,q =

a
Remark 2.2. Inequality (2.5) offers a refinement of (1.9) whenever

When here is strict inequality, the last inequality of (2.5) will be strict,
too.

Lemma 2.2. Suppose that b > a > 0 and [ : [a,b] — R is a real

f(z)

function such that g(x) = is increasing in [a,b]. Then

([Q?Mgilv@m, (2.6)
n

where A = A(a,b) = ¢ 5 b

denotes the arithmetic mean of a and b.
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Proof. Using Chebysheft’s inequality (2.3) on [z,y| = [a, b],

which have the same type of monotonicity. Since

1 b a+b
tdt = =A
b—a/a 2 ’

relation (2.6) follows.
The following theorem gives another refinement of (1.9):
Theorem 2.4. Let b > a > 0 and f : [a,b] — R log-convez, such that
f(z)

the function x — “———= is increasing on |a,b|. Then

b xr
i | < @) < Lo, s, @)

where L = L(a,b) denotes the logarithmic mean of a and b.

bia/abf(:c)d:c).
b—a

1 b
T gjalf@MISLUWLﬂ@%

by (1.7), the first inequality of (2.7) follows. The last inequality of (2.7)

follows by the classical relation (see e.g. [3])

Proof. By (2.6) we can write

b J—
1 / f(x)(mS b—a R
Inb—1Ina J, = Inb—Ina/ A

As

L <A (2.8)

Remark 2.2. As inequality (1.7) holds true with reversed sign of
inequality, whenever f is log-concave (see [1]), (2.8) may be proved by
an application for the log-concave function f(z) = x.

A counterpart to Lemma 2.1 is provided by:
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S

Lemma 2.3. Ifg > — > 1, then
P a

L(pa, qb) < L(p, q)A(a, b). (2.9)

b
u, — = v, inequality (2.9) may be rewritten as
a

Proof. By letting ki
p

uw—1 _u+1 v-—1
In(uwv) = 2 Inv ’

u>ov> 1. (2.10)

If v =1, then (2.9) is trivially satisfied, so suppose v > 1.

Consider the application
kE(u) = (v—1)(u+1)In(uv) = 2(uv — 1) Inv, u > v.
One has

k(v)=0 and k'(u)=(v—1) (lnu—i- 1+%) —(v+1)Inw.

1
Here h(u) = Inu + 1+ — has a derivative
u

h’(u):u_l

2 > 0,

so h is strictly increasing, implying h(u) > h(v), One gets

v? — 1 —In(v?)

1
k'(u)Z(v—l)(lnv—i—l—i——)—(U—l—l)lnvz > 0,
v v
on base of the classical inequality
Int <t—-1, (2.11)

where equality occurs only when ¢ = 1.

The function k being strictly increasing, we get k(u) > k(v) = 0, so
inequality (2.9) follows.

Now, we will obtain a refinement of (1.9) for geometric convex func-

tions:
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Theorem 2.5. Let f : [a,b] C (0,00) — (0,00) be a geometric convex
f(x)

function such that the application x 15 increasing. Then one has
x

the inequalities

| e < S Laf@,b0) < L@, 50)

(2.12)
Proof. By Lemma 2.2 and Theorem 2.1, we can write
1 b f(x) 1 1 b
dr < d
lnb—lna/a = A(a,b) <lnb—lna/a /() x)
L

A(a,b)
Now, applying Lemma 2.3 for ¢ = f(b), p = f(a), by (2.9) we get
L(af(a),bf (b)) < L(f(a), f(b))A(a,D), (2.14)

so the second inequality of (2.12) follows by the second inequality of
(2.13).
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3.10 On certain identities for means, III

1. Introduction

Let a,b > 0 be positive real numbers. The power mean of order
k€ R\ {0} of a and b is defined by

CLk—f-bk 1/k

Denote b
A=aab) =7,

G = G(a,b) = Ao(a,) = lim Ay(a,b) = Vab

the arithmetic, resp. geometric means of a and b.

The identric, resp. logarithmic means of a and b are defined by

1 —a
I:I(a,b):—(bb/a“)l/(b )fora%b; I(a,a) = q;
e
and
L—L(ab)—b_—a for a #b; L(a,a) =a
Y7 logh —loga ’ T

Consider also the weighted geometric mean S of a and b, the weights
being a/(a + b) and b/(a + b) :

S = S(a,b) _ aa/(a+b) . bb/(a—&-b)‘ (1)

We note that some authors use the notation Z in place of S, (see [20],
[5]) studied for the first time in 1990 by the first author 7], and then in
1993 [9], 1997 [10], and most recently in [4]. As one has the identity

S(a,b) =

discovered by the first author in [9], the mean S is connected to the

identric mean 1.
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Though here we are concerned with means of two arguments, we note
that, the extension of S to n arguments is introduced in the first author’s
paper [14], where it is proved also the double-inequality from Theorem 3
of paper [5].

Other means of a,b > 0 which occur in this paper are

H = H(a,b)=A_1(a,b) = S

Q= Q(CL, b) - AQ(a7 b) =

as well as ”Seiffert’s mean” (see [16], [13])

(a—1)
P = P(a,b) = p— fora #b, P(a,a)=aq;
2 arcsin
(a+b)

or an ”exponential mean” (see [19], [8], [15])

E = E(a,b) = (ac® —be") / (e* —€’) —1for a # b; E(a,a)=a.
As one has the identity (see [8])
E(a,b) = log I(e®, e, (2)

the mean FE is also strongly related to the identric mean I.

This paper is a continuation of the former works [9], [12] where the
importance of certain identities has been emphasized. For example, the
identity

A—L

I
log a1 (3)

due to H.-J. Seiffert (see [17], [9]), where I = I(a,b) for a # b, etc. In
view of (2), relation (3) gives the identity (see [9])
B Ae?, e)

E-A4 L(e®, eb)

~1 (4)
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As A(z,y) > L(x,y) for any x # y; a corollary of (4) is Toader’s inequal-

ity (see [10])
E>A

()

For this method, and many related inequalities, see the papers [8], [15].

Another method for the comparison of means is based on certain

series representations. For example, one has (see [9])

k=1

I(a,b)_i 1 (b—a\™

G(a,b)  “=2k+1\b+a/) ’

or (see [10]) N

S(a,b) ~—~ 1 b—a

OgG(a,b)_;Qk—l(bjLa) ’

S(a,b) 1 b—a\*
log ta.0) _;%(k— 1) (b+a> '

The representation

\/m_i1< 1 1><b—a

V3 _kzlﬁ 3k b+a

1 _
o8 2%k +1 3

with A = A(a,b) etc., appears in [11], while

L(a,b) 1 loga — logb\>*
G(a,b) Z (2k + 1)! < 2 )

k=0

is proved in paper [2].
In [16] it is proved that

Sy (DG

0
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(6)

(12)



ren - mwme(x) (650 0w

k
where I denotes a binomial coeflicient.

In what follows, we shall deduce common proofs of these and similar
identities. Some corollaries related to certain inequalities will be pointed

out, too.

2. Series representations of integral means

The first main result is the following

Theorem A. Let us suppose that, f is a continuous function on

[a,b] and assume that all derivatives f (a ;— b) (1 =1,2,3,...) exist
at = il b. Then
1 b a+b = 1 b—a\* a+b
- (k) (21~
b—a/af(t)dt f( )+;2k+ (2) I (2)
(14)
and
e k
Z —a 2 f(Qk) a+ b
— Qk‘ +1)! 2 2
(15)

One has also

f(a);f(b) _ (a—gb) +§@ (b;a)% F20) (GTM) (16)

Proof. Writing Taylor’s expansion for the function f about the point

t = m, we get
[e.e]

m) + 3 I 0 (1)
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if one assumes that f®(m) exist for any I = 1,2, ... By integrating (17)
ont € [a,b] we get

" (m 1 r+1
b—a/f (m) + bia a (fr—l—(l))' [(b—m)” —(a=m) }
(18)

b
¢ 0 50 (18). Since

Let now m =

em - mrt = (5

2k
which is clearly zero for odd r; while for even r = 2k it is (b ; a) , we

get identity (14).

b
ot in (4) and t = a,t = b, respectively, we

-1 (43 £ (5 b ()

f(b)—f<a;b>+i(b;a>f%.f(r) (a—;b),

r=1

Now, letting again m =

have

so after addition of these two equalities we get relation (16), by remarking

that, as above 1+ (—1)" = 0 for r =odd; and = 2 for r = 2k = even.
Identity (15) is a consequence of relations (14) and (16), by eliminat-
a+b 2

2
Remark 1. Identity (14) appears also in [2], where it is applied for

ing f

the proof of relation (11). Here we will deduce this relation by another
method.

Theorem B. If f is continuous on [a,b], and all derivatives U (a)
and fO(b) exist (l =1,2, ) then

100
b—CL/f t)dt = +§Z

k=1

(a) + (=1)"f©(a)]
(19)
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Proof. Applying relation (18) to m = a and m = b, after addition
we easily get relation (19). We omit the details.

U
3. Applications
Theorem 1. Relations (6) and (7) are true, and one has also
o ?ézlf)) - g 2k(211 ) <Z . Z)Qk; (20)
Hen = (ivs) 2

Proof. Let f(z) = logx in relation (16). It is immediate that
fP (@) = (=) (k = 1)l/a",
so applying (16) to this function we get relation (6). Since

1 b
b—al log zdx = log I(a,b),

the application of (15) gives identity (7). By a simple substraction, from
(6) and (7) we get (20) by remarking that

1 I

2k 2k+1  2k(2k+ 1)

Relation (21) is a consequence of (14), for the function

Indeed, as f*)(z) = (—1)*k!/2*, and remarking that

1 /b1d_ 1
b—a aacx_L(a,b)’

1 1 1 1 b—a\*
Z__+Z;2k+1(b+a) ’
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with L = L(a,b) etc. d
Remark 2. By (21) and (7) follows at once identity (3).
Theorem 2. One has

Ala,b) = [b—a\*
- 22
H(a,b) ;(b—i-a) ’ (22)
11 < 2% (b—a\*
A(E_E>:;2k+1(b+a) (23)
Al 1 _53k+1 b—a\* (24)
2\H L) “2+1\b+a

o (22) follows. Relation (23) follows from (15) for the same function
1

f(z) = —. We note that, (23) follows also from (22) and (21) by sub-
T

straction and remarking that

N B
2k+1  2k+1
Identity (24) follows by addition of (22) and (21). O

1
Corollary 1. Leta' =1 —a,b/ =1 —b, where 0 < a,b < 3@ #+b.
Put A" = A'(a,b) = A(d',V); G' = G'(a,b) = G(d', V'), etc. Then one has
the following Ky Fan type inequalities:

A(%f-%), (25)

11 11
A(E+E><A(E+f) (26)



a—2b a -

Proof. Put u = , U= . Then the given conditions imply
a+b a + U

|v| < |ul, so inequalities (25) and (26) are consequences of the represen-

tations (23), resp. (24). O

Remark 3. Inequality (25) appears also in [3]. Since A’ > A, as
A=1—Aand A< 3 (25) is not a consequence of the known inequality

1 1.1
H L H L
Theorem 3. One has
Qlab) = 1 [b—a\"?
1 = 2
6 Gla,b) 2 71 \r7a ’ 27)

k=1

and relations (8) and (9) are also true.

Proof. Applying (16) for f(x) = xlogz, after some computations we
get identity (9). Now, by taking into account (6), from (9) we can deduce
relation (8).

However, we shall use here method of proof for (8) and (9), which
incorporates also the proof of (27).

Applying the identity (21) for a =1 —2z,b =1+ z, where |z| < 1, we

2
get, as A(l—z,1+2) =Tand L(1 —2,1+2) = log(1+z)—zlog(1—2) :

2z 1-— — 2k +1
1. 14+2 «— 1
1 — 2k—1, 28
2 12 ;%—12 (28)
2 2., .2
— 1
Putting z = — , and remarking that te_T Y , we get
T+y 1—2z 2xy
identity (27) for Q(z,y) in place of Q(a,b) etc.
Applying (28) for z = u, we get
Tty
1 x = 1 x—y 2kl
—log — = . 29
2 %y sz—1(x+y) (29)

k=1
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We note that (29) follows also from identity (21) by writing

oo 1 y—x 2k 0 1 y—x 2k—2
1 = .
+;2k‘+1<y+x) ZQk—l(y—l—x)

k=1

As

Y

G(x,y) 't/ 2yl/? ’

S(z,y) (xxyy)l/(w-i-y) _ (JJ) (x—y)/2(z+y)

by multiplication of (29) with x—j, we get identity (8). Subtracting
rTy
identities (6) and (8), we get (9). O

Corollary 2. As
b g\ %2 ) b\ 2
b+a “\b+a) ’

with equality only for k =1, we get from (27) and (8) that

Q<SS (30)

This is better then the left side of Theorem 2 of [5]. In a recent paper
[4] it is shown also that
S < sqrt(2)Q (31)
where the constants 1 and sqrt(2) in (28) and (29) are best possible. For
another method of proof of (30), see [10]

Remark 4. In paper [7] the first author proved identity (1) and the
following identity:

I’(Va,va) _ G-L
1 ’ = 2
8 (a.b) T (32)
where G = G(a,b), etc. Letting a — a* b — b* in (32) and remarking
that

L(a%,1?) = L(a,b) - A(a, ),
we obtain the identity

S G? H
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Theorem 4. One has

Ala,b) = 1 [loga—logh\**
Gla.b) :Z(Qk)!( 2 ) (34

k=0

and identity (11) holds also true.
Proof. Apply (16) to f(z) = e”. One gets the identity

e + b <1 [(b—a\”
ela+b)/z ) (2k)! (T) : (35)
k=0
As here a, b are arbitrary real numbers (not necessarily positive), we
may let a = logx,b = logy; with z,y > 0. We get from (35) identity (34)
for A(z,y) in place of A(a,b), etc.
Applying (14) for the same function e”, we get

b (o.9)

e’ — e 1 b—a\*
(b—a)eA:Z(Zk—i—l)!( 2 > ’ (36)

k=0

where a # b are real numbers. Selecting a = log x,b = log y, identity (11)
follows. O
Corollary 3. One has

3L—-(2G+A) = 1 1 1 loga — log b\ ¥
3G B ;(%)! (3 2k:+1>< 2 - (37)

1

Proof. This follows at once from the representations (11) and (34),

by remarking that the left side of (37) may be written as

Z_ 2.2z . O

1 1
Remark 5. As - —
emar 37 ok+1

famous inequality of Pélya-Szegé ([18]) and Carlson ([1]):

> 0 for k > 1, relation (37) implies the

2G+ A
3
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In fact, identity (37) shows the true meaning of inequality (38).
Corollary 4. If ¢ > d and ad — bc > 0, then

L(a,b)  G(a,b)

. 39
L(c,d) = G(c,d) (39)
Proof. First remark that for ¢ = d, inequality (39) becomes
L(a,b) > G(a,b),
which is well-known. Assume now that ¢ > d and ad > bc. Then, as
a c
loga — logb = log 7 log c — logd = log 7
and
log & > log ¢
b d
by % > 5 > 1, by the identity (11) follows inequality (39). O

Remark 6. Inequality (39) is proved in [6] under the assumption
a>b>c>d>0 and ad—bc>0 (%)

Clearly, if a = b > 0, then d > ¢, contradicting ¢ > d. Thus in (x) one
must have a > b. If ¢ = d, then L(c,d) = G(c,d) so (39) becomes trivially
L(a,b) > G(a,b). Also, inequality b > ¢ is not necessary. For example,
a ¢ . :

—>—-—>1holdswithb<cin - > - > 1.

b~ d 21
Theorem 5. One has

VAT G2 & 1\ [b—a\*
g V2GS s~ L L ) (40)
GV3 — 2k 3 b+a
and identity (10) also holds true.
—_a\? 2
Proof. Putting (b—I——Z) = u in relation (6), by 1 —u = 1z e get
log(1 — u) i ut (41)
— k’
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where 0 < u < 1. This is in fact known series expansion of log(1 — u). In
order to prove (40), remark that

lo 2 é 2+1 =lo 2 ! +1
sl13\a) "3 S\3'1-27"3)
b—
Wherez:b+z.
Now,
2 1 1 2
1Og(§.1_ 2+§) log(3 — z7) — log(1 — 2%) — log 3
=lo (1— i))—lo (1—27)
g \/§ g
k=1 k k:lk V3
o0 ZQk 1
pr— —_— ]___
> (-5)
k=1

where we have applied two times relation (41). This proves identity
(40). O
Relation (10) follows as a combination of (40) and (7).
Corollary 5.

\/2A2+G2> 1 (b—a 4>0
V3 45 \b+a '

Remark 7. The weaker inequality of (42) implies a result of [11],

log (42)

namely:
317 < 2A% + G2 (43)

Theorem 6. Relations (12) and (13) hold true.

Proof. Let f(t) = ( !

1 /2
- After certain elementar
t(a —i— b—1 ) n (14). Y

integration we get that

/f t)dt = P(a,b) for a # b.
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270 = 10 (57— - 7).

a+b . .
where A = — by induction it can be proved that

2
(B |
2% _
f( )<A) - Ak A2k
Thus from identity (14) we can deduce relation (13). Relation (12)
follows by (16) applied for the same function f(¢). O
Corollary 6.
1 1 2
4= 44
P3¢ 34 (44)

as for k > 1 one has 2k +1 > 3 and for k = 0 the respective terms of the
sums are 1. Thus (44) follows. O
Remark 8. By using other methods, many similar inequalities are
proved in [13].
Theorem 7. One has

2A+G 2 1 2
log = ( ) , (45)
G kZ:O%Jrl 14+ /1= 22
L 2ATG f’: 2 [1-yT—22\"" 6)
®T30  &wmri\itaio2)
L 20+ A i 2 (1-vI—2\"" )
®T3¢ T &k ri\145vi-2)

— % and A= A(a,b), etc.
+a

where z =
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AV (a+b? 1 A__ 1
Proof. Since (5) = " 1db Zl_ZQ,Wegeta =
Thus,

)

G G V=22 V1—2?

Now,

log (2A; G) = log <2 + m> — log (M) .

Applying identity (21), i.e

a+b logb—loga 2k
2 b—a 2_: (b+a) ()

tob=2++V1—22 a=+1-— 22, we get:
1++v1—22
% [log(Z—i—Vl —22) —log V1 —22}

o] 1 1 2k
=1+ ,
> sert (=)

SO

1+VI—22. 244G 1 1 2k
log :1—|—Z ,
2 G — 2k + 1 \1++/1— 22

which implies relation (45).

Similarly, one has

24+ G gé+1_2+\/1—z2
3G 3 G 3  3J1-—22"

so applying (x) for b = 2 + /1 — 22, a = 3v/1 — 22, we get, after some
simple computations, relation (46).
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Applying (%) to b =2v/1 — 22+ 1, a = 3/1 — 22, and remarking that

2G+A 2T 241
3G 3vV1—22

we can deduce relation (47). d

Remark 9. A similar relation is the following:

. 2A+G—i 2 [(1-yT—2\"" 48)
5734 =2k +1\5+1-22 '
o _ (a—0)? -
Remark 10. Applying identity (28) for z = 502 + 2ab 1 352 since
1+2 @
1—z A%
we get the identity
0 ~ b—a k-2
log = = — . 4
%84 ;Qk—l V/3a% + 2ab + 302 (49)
Corollary 7.
Q o0 1 b—a 4k—2
log — < Z T .
AT e (2k—1)2 b+a
Proof. Apply (49) and the inequality
V3a2 + 2ab + 362 > V/2(a + b). O
Theorem 8. One has
I 1K b—a)k [(=1) 1
log — — = _ =
e 2;k(k+1) [ ak o] (50)
I 1 1&b—a)k (=D 1
I T 22 Fil {ak+1+bk+1 ’ (51)
k=1



_ Z loga logb [b—i—(—l)ka}. (52)

k

Proof. Let f(z) =logz, f(z) =
Theorem B. For example, for f(z) =

1
—, f(x) = e” respectively in (19) of
x

e’, we get

el —et e tet 1 n(b—a) v b
- - 1)ket] .
b—a 2 +2;(k+1)l[e+( )*e’]

Then replace a — loga, b — logb in order to deduce identity (52). O
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3.11 On some exponential means, II

1. Introduction

All the means that appear in this paper are functions M : R7 — R,
with the property that

min(a, b) < M(a,b) < max(a,b), V a,b > 0.

Of course M(a,a) = a,Va > 0. As usual A, G, L, I, A, denote the arith-
metic, geometric, logarithmic, identric, respectively power means of two

positive numbers, defined by

b
A= Aab) = “; . G =Gla,b) = Vab,
b—a 1 /b 1/(b—a)
L=17L(a,b) = ————,1=1I(ab)=-|—
e (CURE o) R
aP + bP Lp
A, =A,(a,b) = ( 5 ) , p# 0.
In [16], the first part of this paper, we have studied the exponential
mean ot
e’ — ae®
E=F(ab=———-1
(a0) = "5

introduced in [23]. Another exponential mean was defined in [19] by

I — ae® — be®
E:E(a,b):w—{—l

It is the complementary of E, according to a definition from [4], i.e.
E=2A-FE. (1)
A basic inequality proved in [23] is
E> A, (2)
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which gives the new inequality

E < A

More general means have been studied in [14], [17] and [19]. For ex-
ample, letting f(z) = €* in formula (5) from [14], we recapture (2). We
note that by selecting f(x) = logz in the formula (8) from [14], and then
f(z) = 1/x, we get the standard inequalities

G<L<I<A (3)

(for history see for example [7]).
In what follows, for any mean M we will denote by M the new mean
given by
M(z,y) =log M(e®,€’), x,y > 0.

As we put a = e*,b = eV and then take logarithms, we call this procedure
the exp-log method. The method will be applied also to some inequalities

for deriving new inequalities. For example, in [16] we proved that
E=1,
and so (3) becomes
A<L<E<A (4)

In [16] was also shown that
A+ A-L<E<2L-A,

and

(see also [6] and [22]). In [9], the first author improved the inequality (2)

by
A+2A

3
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This is based on the following identity proved there

A(e®, eb)

(B — A)(a,b) = T(en, ey

-~ (5)

We get the same result using the known result

2A+G
3

I> > (426)"°

and the exp-log method.
The aim of this paper is to obtain other inequalities related to the

above means.

2. Main results

1. After some computations, the inequality (2) becomes

el — e e + e?

b—a 2

This follows at once from the Hadamard inequality

)+f()

applied to the strictly convex function f(t) = e'. We note that by the

second Hadamard inequality, namely

b—a/f (a+b>7

for the same function, one obtains

el — eo atb

b—a ’

which has been proposed as a problem in [3].
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The relation (4) improves the inequality (6), which means A > L,
and (7), which means £ > A. In fact, by the above remarks one can say
that

E>A << A>_L. (8)

2. In [23] was proven that E is not comparable with Ay for A > 5/3.

Then in [17] we have shown, among others, that
A(a,b) < E(a,b) < A(a,b) - el=9/2,

Now, if |b — a| becomes small, clearly €/*=?/2 approaches to 1, i.e. the
conjecture E' > A, of [23] cannot be true for any 1 < A <5/3.
We get another double inequality from (1) and (2)

A< E <2A.
These inequalities cannot be improved. Indeed, for 1 < A < 2, we have

lim [E(1,2) — AA(1, z)] = oo,

T—00

but
E(1,1) = MA(1,1) =1 -\ <0,

thus F is not comparable with AA.
On the other hand,

— ela+1)—er(b+1)

Bl — 1) = f(a)

€b—€a

— (a+1)(b+1)-

eb_ea 9

where f(x) = e”/(z + 1). By Cauchy’s mean value theorem,
) - fl@) 1)

p— " ,c € (a,b).
Since )
flo_ e _1
ec (c+1)2 ~ 4



we get

0<o4_p<@FDO+D
f— 4 *

3. By using the series representation

I - 1 b—a\*
log — =
RNE ZZk—i—l(b—i—a) ’

(see [9] and [21]), we can deduce the following series representation

0 b a2
<E_A)(a’b)zz2k1+1(eb+e“) ' (9)

k=1

et —e| |b—ad

eb + e 2

-t <t (50

The series is convergent at least for |b — a| < 2. Writing

By (6), , thus we get the estimate

Ae*, e’ _ A@b)—L(ah)
L(e, eb) ’

the identity (5) implies the relation
E—A=et*—1. (10)

This gives again the equivalence (8). But one can obtain also a stronger
relation by writing e” > 1+ z + 22/2, for z > 0. Thus (10) gives

1
E—A>A—£+§(.f4—£)2.
4. Consider the inequality proved in [10]
2
—A<I <A
e

283



By the exp-log method, we deduce
log2 -1+ A< E<A (11)

From the inequality

\/6+\/5>2
— |

2 4
I<—(A+G):—<
e e

given in [5], we have, by the same method,

E(r,y) < 2log2 — 1+ 24 (g%) (12)

Relation (12) may be compared with the left side of (11). Take now the

relation

A—
L <L(AG) = f
log &
from [5]. Since
1 2
A-G=g(Va-vh),
one obtains .
z/2 2\2
A—A<ﬁ(€/—€y/)
The relation )
L3> (A —g G) G,

from [13], gives similarly

3L(z.y) > Alw,y) +44(5.5)

while the inequality

I G
log — >1— —

from [7], offers the relation
E—L>1-¢""
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5. The exp-log method applied to the inequality
L>vVvGlI,

given in [2] and [11], implies

A+E 2A+ A

L > >
2 3

On the other side, the inequality
I>vVAL

proven in [11], gives on the same way the inequality

E>AJ2F£.

After all we have the double inequality

¥<E<2L‘—A.

6. Consider now the inequality
317 < 2A% + G2,
from [20]. It gives
log3 + 2F < log (€2A + 2€2A) .
Similarly

2A+ G

I >
3 )

given in [8], implies
log3 + £ > log (QeA + eA) .

In fact, the relation
I~ A+ L
2 )
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from [7] gives
log2 + E > log (e* + ¢), (15)

but this is weaker than (14), as follows from [8]. The inequalities (13)

and (15) can be combined as

L A
E>log(€ —|2-€ >>£—|—A

2 J
where the second inequality is a consequence of the concavity of the

logarithmic function. We notice also that, by
L+1<A+G,
given in [1], one can write
ef +ef < et + et

7. In [9] was proved the inequality

T (a®1?) <
By the exp-log method, we get

It is interesting to note that by the equality

P (Vavh) g

1 = —1
" I(a,b) L(a,b)
given in [7], we have the identity
28 (g %) — B(z,y) = ACOLEY) _ (17)

Putting © — g, y — g in (16), and taking into account (17), we can
write

2E(z,y) + A@Y—LEY) _ 1 < 4A (g, %) )
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This may be compared to (12).

8. We consider now applications of the special Gini mean
S = S(a,b) = (a“bb) H/lato)

(see [15]). Its attached mean (by the exp-log method)

_xet +ye¥ -
S(z,y) = ez—Jrey = log S(e”, e¥),
is a special case of
zf(z) +yf(y)
Mi(z,y) =
1) = " ¥ )

which was defined in [18]. Using the inequality
g\ 2 7\?
(5) < (@)

28 —2A < 3E — 3A.

from [15], we get

The inequalities
A? At A2
T ECG

given in [15] imply
2A-E<S<4A-3FE <24 - A

These offer connections between the exponential means £ and S.

Let now the mean
1
U=U(ab) = §¢(2a +b) (a + 20).

In [12] it is proved that

2
G<V4U3G<I<U7<U<A.

By the exp-log method, we get

1
A<Z(3M+A)<E<2L{—A<L{<A.

These relations offer a connection between the means E and U.
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3.12 On global bounds for generalized

Jensen’s inequality

1. Introduction

Let f : [a,b] — R be _a convex function, and z; € [a,b] for i =
1,2,...,n. Let p = {p;}, sz 1, p; > 0 (i = 1,n) be a sequence of

positive weights. Put z = {xl} Then the Jensen functional J¢(p,z) is
defined by

= szf(l"z) - f <ZP:IBZ> .

In a recent paper [7] the following global bounds have been proved:
Theorem 1. Let f,p,x be defined as above, and let p,q > 0, p+q = 1.
Then

0 < Jy(p,z) < maxpf(a) +qf(b) — f(pa+ gb)] (1)

The left side of (1) is the classical Jensen inequality. Both bounds of
Jy(p,z) in (1) are global, as they depend only on f and the interval [a, b].

As it is shown in [7], the upper bound in relation (1) refines many ear-
lier results, and in fact it is the best possible bound. In what follows, we
will show that, this result has been discovered essentially by the present
author in 1991 [4], and in fact this is true in a general framework for pos-
itive linear functionals defined on the space of all continuous functions
defined on [a, b].

In paper [4], as a particular case of a more general result, the following
is proved:

Theorem 2. Let f,p,x as above. Then one has the double inequality:

/ (ZZ%%) < szf(l‘z)
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< (S [f0t)] et

The right side of (2) follows from the fact that the graph of f is below
the graph of line passing through the points (a, f(a)), (b, f(b)):

f@) < - a2 4 - )/

b—a b—a’
By letting x = x;, and multiplying both sides with p;, after summation
we get the right side of (2) (the left side is Jensen’s inequality).
Now, remark that the right side of (2) can be written also as

b— ipixi ipiwi —a
i=1 i=1

fla) | —=—| +f(0)

b—a

Therefore, by denoting

b— ipixi ipixi —a
i=1

— =l —p and L — =
b—a b b—a e

we get p>0,p+qg=1and Zpixi = pa + gb. Thus, from (2) we get
i=1

0< Jy(p.z) <pfla)+qf () — f(pa+ gb) (3)

and this immediately gives Theorem 1.

2. An extension

Let C[a,b] denote the space of all continuous functions defined on
la,b], and let L : C[a,b] — R be a linear and positive functional defined
on Cla, b] i.e. satisfying

L(fi+ f2) = L(f) + L(f2),  L(Af) = AL(f) (A €R)
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and L(f) >0 for f > 0.

Define e (z) = z* for z € [a,b] and k =0,1,2,.. ..

The following result has been discovered independently by A. Lupas
2] and J. Sandor [4]:

Theorem 3. Let f be conver and L, ex as above and suppose that

L(eg) = 1. Then we have the double inequality
ﬂ@—f®q+ﬁﬂ@—aﬂ®‘

F(L(er) < L(F) < Lier) [ ()

b—a b—a

We note that the proof of (4) is based on basic properties of convex
functions (e.g. f € C|a, b]). Particularly, the right side follows on similar
lines as shown for the right side of (2).

Define now the generalized Jensen functional as follows:

Jy(L) = L(f) = f(L(e1)).

Then the following extension of Theorem 1 holds true:
Theorem 4. Let f, L, p, q be as above. Then

0 < J;(L) < max|pf(a) +qf(b) — f(pa+ qb)] = Ty(a;b).  (5)

Proof. This is similar to the method shown in the case of Theorem
2. Remark that the right side of (4) can be rewritten as

fla)p+ f(b)g,
where
po b lle) g = Me)ze
b—a b—a

As ei(z) = x and a < x < b, we get a < L(e;) < b, the functional
L being a positive one. Thus p > 0, ¢ > 0 and p + ¢ = 1. Moreover,
L(e1) = pa + gb; so relation (5) is an immediate consequence of (4).

By letting

L(f) = Zl%f(xl)?
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which is a linear and positive functional, we get J;(L) = Js(p,z), so
Theorem 1 is reobtained.

Let now k : [a,b] — R be a strictly positive, integrable function, and
g : [a,b] = [a,b] such that f[g(x)] is integrable on [a, b]. Define

It is immediate that L, is a positive linear functional, with L,(eg) = 1.

Since

by denoting

b b
/ k(o) fly(@))de / k(2)g(x)de

/ab k(x)dx /ab k(x)dx

we can deduce from Theorem 4 a corollary. Moreover, as in the discrete

Jf(ka g) =

—f

case, the obtained bound is best possible:

Theorem 5. Let f,k, g as above, and let p,q >0, p+q=1. Then
0 < Jy(k,g) < Ty(a,b). (6)

The upper bound in (6) is best possible.

Proof. Relation (6) is a particular case of (5) applied to L, and
J¢(k, g) above.

In order to prove that the upper bound in (6) is best possible, let
po € [0,1] be the point at which the maximum 7T7(a,b) is attained (see
[7]). Let ¢ € [a,b] be defined as follows:

/a k(@)dz = po / b k(z)dz. (7)
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If po = 0 then put ¢ = a; while for pg = 1, put ¢ = b. When py € (0, 1)

remark that the application

ht) = / "k()dz — po / ’ h(a)d

has the property h(a) < 0 and h(b) > 0; so there exist ¢ty = ¢ € (a,b)
such that h(c) =0, i.e. (7) is proved.
Now, select g(x) as follows:

a, if a<zx<c

g(z) =
b, if ¢c<xz<h.

Then

/ab k(z)g(z)dz/ /abk(x)dx = a/ack(:c)d:c/ /ab k(z)dx

b b
—|—b/ k(x)dx// k(x)dz = apy + bqo,

where go = 1 — po.
On the other hand,

/ab k(z) flg(x)]dz/ /ab k(z)dx = f(a) /aC k(x)dz/ /ab k(z)da

O [ Mo/ [ ka)dz = (@) +a0f0)
This means that
Ji(k,g) = pof(a) + qf(b) — flapo + bgo) = Ty(a,b).

Therefore, the equality is attained at the right side of (6), which means
that this bound is best possible.
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3. Applications

a) The left side of (6) is the generalized form of the famous Jensen

integral inequality

Afmmguym [fuwfw@mm

f 5 < ; , (8)
/ k(z)dz / k(z)dz
with many application in various fields of Mathematics.
For f(x) = —Inx, this has a more familiar form.
Now, the right side of (4) applied to L = L, gives the inequality
/b
k() flg(x)ldx
b—u u—a
a < b
b < T p@) + 2 f0) )
/ k(x)dx
where ,
/ k(x)g(x)dx

Inequalities (8) and (9) offer an extension of the famous Hadamard in-

equalities (or Jensen-Hadamard, or Hermite-Hadamard inequalities) (see
e.g. (1, [3], [4])

f<a2 )_b_a/f (@) * f(b). (10)

Applying (8) and (9) for g(x) = z, we get from (8) and (9):

(b—v)fla) + (v =) f(0)
/ k(x)dx b-a
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where

When k(x) = 1, inequality (11) reduces to (10).
b) Let a,b > 0 and

G = G(a,b) = Vab;
b—a
L=Lab)= 17—~ (@#b), Laa=q

<EJMMZEWMWMM (0 #£b), I(a,a)=a

be the well-known geometric, logarithmic and identric means.
In our paper [5] the following generalized means have been introduced
(assume a # b):

b b
lnlk(a,b):/ k(x)Inzdz/ | k(z)dr,

a

b b
Ak(a,b):/ zk(x)dx/ | k(z)dz,

[%(a,b)::u/jkix)dx/ k(z) /zdz,

a
b

Gﬁ(a,b)-—u/mkix)dx/ k(z)/2%da.

Clearly, L =1, A1 = A, L1 =L, G =G.
Applying inequality (6) for f(x) = —Inz, and using the fact that in

this case T¢(a,b) =1n

(see [7]), we get the inequalities

a2
[ k@g@in [ romg@is

0<In| =% ERE— <In a2 (12)
/k(:r;)dx /k@)dx
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For g(z) = x, with the above notations, we get

1< % < LG'QI. (13)
Applying the right side of inequality (11) for the same function
f(z)=—Inzx
we get
%Sl—l—ln (]GQI’“> (14)

where we have used the remark that

Inb—al
ln(e-_f):—b nl; 9 and InG*—In(e- 1) =
—a

blna —alnb
b—a

Note that the more complicated inequality (14) is a slightly stronger
than the right side of (13), as by the classical inequality Inz < x — 1
(x > 0) one has

SO

G?
These inequalities seem to be new even in the case k(z) = 1. For

k(x) = e® one obtains the exponential mean A.. = E, where

be — ae® — 1

E(a,b) = P

The mean .. has been called as the "identric exponential mean” in
[6], where other inequalities for these means have been obtained.

¢) Applying inequality (6) for g(z) = Inz, f(z) = €”, we get

b

e’ — el el — eo be® — ae® el — e
0< A, -1 < | — 15
e n(b—a)+ b—a b—a’ (15)
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where the right hand side is Tt (a, b) for f(z) = e®. This may be rewritten

also as

0 < Ag(a,b) — Ix(a,b) < 2[A(x,y) — L(z,y)] — L(z,y) In !

=
=
s

where e® = z, ¢® = y.

I
As in [5] it is proved that In 17 >

, the right side of (15’) implies

d) Finally, applying (11) for f(z) = zlnz and k(z) replaced with

k(x)/x, we can deduce

2

InlL,<InlL,<1+Inl— —
niyp <Inify <1+In I Ly

(16)

where the identity
blnb—alna

b—a
has been used. We note that for k(z) = 1, inequality (16) offers a new

=Inl+1

proof of the classical relations

GL<L<LZI
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Chapter 4

Means and their Ky Fan type

inequalities

“In some sense all insights come suddenly, usually

in some impure form which is clarified later.”
(G. Faltings)

“The elegance of a mathematical theorem is directly
proportional to the number of independent ideas one can
see in the theorem and inversely proportional to the effort

it takes to see them.”
(G. Pdlya)

4.1 On an inequality of Ky Fan

In the famous book [3] one can find the following "unpublished result

due to Ky Fan”:
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1
If z; € <O, 5], (1=1,2,...,n), then
n 1/n n
I >
e )
| J IO > (-
i=1 i=1
with equality only if x1 =29 = ... =z,

This inequality can be established by forward and backward induction
([5], [3]) a method used by Cauchy to prove the inequality between the
arithmetic and geometric means. In [7] N. Levinson has published the

following beautiful generalization of (1):

1
Let z; € (O, 5] , (i=1,2,...,n) and suppose that the function f has

1
a nonnegative third derivative on (O, 5) Then

3 Flw) = F(A) £ 30 (1) — (4 (2)

where the notations are introduced below.

For further extensions of Levinson’s result, see T. Popoviciu [11] and
P.S. Bullen [4]. Recently, H. Alzer [1], by answering a question asked by
C.-L. Wang: ” Are there more proofs of inequality (1) in addition to the
one by Levinson and the original, unpublished one?”, has obtained two
new proof of Ky Fan’s inequality. Our aim is to add one more proof of (1)
to be the above list, by showing that (1) is equivalent with an inequality

of P. Henrici [6], and to obtain some connected results.

2
Let z; € (0,1), (i =1,2,...,n). We denote by
Ap(x) = A, Gp(xr)=G, and H,(x)=H,
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(resp. Al,, G and H)) the arithmetic, geometric and harmonic means of

X1y, Ty (vesp. 1 —axy,..., 1 —x,), e

In 1956 P. Henrici [6] proved the following result:
Let a; > 1, (i =1,2,...,n) and denote

- 1 n
Pn: ) n = .
;1+ak @n(a) 1+ ay...a,

Then
P.(a) > Q,(a), with equality only if a1 = ... = a,. (4)

For0<a; <1, (i=1,2,...,n), we have
Po(a) < Qnla). ()
Now we prove the surprising result that (4) and (1) are equivalent. Indeed,

1
suppose first that z; € (0, 5} and select

in (4). Clearly a; > 1, so we get:

Gy
Ay > ——n
=G+ G

Since A, + A/, =1 (see (3)) this means that

A, G,
ns Zn
A, G

or A,G, >Gn(1-A,).
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1
that is, inequality (1). Conversely, suppose (1) is true with z; € (0, 5]

and put
1

- 1+ai’

(i=1,2,...,n)

T

in (1). Then a; > 1 and after some elementary transformations we get
(4).

Remark 2.1. An interesting simple proof for (4) (and (5)) can be
obtained by the well-known Sturm method ([13], [5]): supposing that not
all the a’s are equal, e.g. a; < G,(a), as > G,(a), replace a; by G, (a) and
as by ajas/Gy(a). Then @, (a) remains unchanged while P, (a) decreases,
etc. On the base of the above simple equivalence, perhaps would be more

convenient to call (1) as the ”Henrici-Fan” inequality.

3
Applying (4) for a; = (1 — z;)*/aF, k > 1, we get:
A _ GE
where

R — ok 4+ (1 — )k

and A], , is obtained from A,, , by replacing x; with 1—x;. This generalizes
inequality (6).

For another generalization we consider an extension of (4), namely:

Ifo;>1,a;,>0((=1,2,...,n) and Zaizl,then
i=1

n

a; 1
E >
— 1+b; — . L (®)
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To prove this relation, we apply Jensen’s inequality

f (Z CLJ@) < Z aif(t:)

for the function f : [0,00) — R, defined by f(¢) = (1 + €')~! which is
convex, since
el(e! — 1)

fr(t) = 4y >

From the inequality

i=1 1+eti B 1+€Zaiti7

by replacing e' = b; > 1, we get the proposed inequality (8).
Let now b; = 1/x; — 1 in (8). Since 0 < x; < 1/2, clearly b; > 1.

Because
1— Zaixi = Zaz(l — ZEi),
i=1 i=1
a simple computation gives:
1
‘ < i=1
H(1 — Q}i)ai Z az(l — .I'Z)
i=1

i=1

where, as we have supposed,

zn: a; = 1.
i=1

For a; =1/n (i =1,...,n), we can reobtain (6).
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An inequality of W. Sierpinski [12], [9] says that
(Ho(a))" " An(a) < (Gu(a))" < (An(a))"" Ha(a). (10)
Set a; = (1 —x;)/z; for 6 <z; <1 (i=1,2,...,n). One obtains:

1-H\"" H, G \" H, \"' 1-H,
: > =) = —— (11)
H 1-H, ~\G&, 1—H, H

where we have used the following relations:

n

x; n(l— H)) " 1-z; n(l-H,)
;E; 1'—'$i }{é ’ ;E; xX; }1n ( )

It would be interesting to compare this double inequality with the fol-

lowing ones:

n—1 n—1
=) =" (9)

n n

1
obtained recently by H. Alzer [2]. (Here z; € <O, 5 ).
A related result can be obtained with the use of the function

g:(0,1) 5 R, g(z) = —

)

1l—=x

which is convex:
A, 1—-H)
<

A= H]
This is complementary to (6). We note that in [14] is proved that

, ;€ (0,1) (14)

G, _ H, 1
G_}L > H_;L for z; € <O, 5] (15)

From (14) and (15) it follows also H,, + H], < 1 which can be proved by
other ways, too (e.g. by H, + H, < G, + G, < 1).
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Let us introduce now the notations
1> 1/3 Lo 1/3
— 3 I 3
M, = <ﬁ ;1 %) and M, = <ﬁ ;1 (1—ux;) )

and assume that f : [a,b] = R, a < b, has a continuous third derivative

on [a, b]. Denote
ms(f) = min{f®(z) : 2 € [a,0]}, Ms(f) =max{f®(z): = € [a,b]}

and introduce the functions fi, fo by

O = 10— S malf), Bl =< M) - F(0), 1€ fal],

Then, obviously, f1, fa € C®[a, b] with
FE@) = fO @) —ms(f) >0, f2(@) = Ms(f) — FO () > 0.

1
Supposing that [a,b] C (0, 5], we can apply relation (2) for these two

functions, thus giving the following improvement:
1 & ms(f 1 &
=~ flw) = f(An) + %Dn <= f—w) = f(A))
i=1 i=1

<13 e~ fan + ) p, (16

where

Dy = (M} = A7) = (M = A7) 2 0
which is a consequence of (2) applied with f(z) = x3. Since D,, > 0, (16)

is indeed an improvement of (2).

1
Selecting f(t) = Int, 0 < a < b, ; € [a,b] C (0, 5], i1=1,2,...,n,

we can derive the following refinement of Fan’s inequality:
< <

G—;’LGXP%_A—;’L_G—{RGX @ (17)
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Letting f(t) = 1/t in (16), we get an additive analogue of the Ky Fan

inequality:

1 1 1 1 1 1 1 1

—— — =D, < - ——<———-=D, 18

H, A, o "~ H A —H, A, b (18)
6

Choose n =m+ 1,21 = ... = 2, = x and x4 = y in (5). This
gives us
m+1

mx +vy ™y 1

- 7 > e (0,=]. 19

{m—(mwry)} Sy Y ( 2] (19)

Set x = (1 + ...+ Tm)/m, y = Typyp in (19). After simple calculations

A1 G\ (ARG
ImAlTm+l > G >1 (20)
Al Gy Al G,
providing a ”Popoviciu-type” inequality (see [5], [8]).
D.S. Mitrinovi¢ and P.M. Vasi¢ [10] have obtained the following result

connected with Henrici’s inequality:
Ifay...am>1and amyy > (ar...a,)" Y™ (m > 1), then

we get

Pri1(a) = Qmii(a) = Prn(a) — Qmla), (21)

with P,,(a) and @Q,,(a) defined asin 2. If ; > 1 (i =1,...,m+ 1), then
clearly the conditions are satisfied, so by setting a; = (1 — z;)/x;, we

obtain:
(m + 1)(Gm + G;n)(Am-i-lG/m-i-l - A;n—i-le-i-l)

> m(Gm—H + G:n—i-l)(AmG;n - Alme) (22)

giving a "Rado-type” inequality ([5], [8]). This contains also a refinement
of (6). This note is a version of our paper [15], published in 1990.
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4.2 A refinement of the Ky Fan inequality

1

Let 1, ..., x, be a sequence of positive real numbers lying in the open
interval |0, 1], and let A,,, G,, and H,, denote their arithmetic, geometric

and harmonic mean, respectively, i.e.

n n 1/n
An:lzxi, Gn:<Hxi> B S
n i=1 i=1 Z 1

=1

Further, let A/, G!, and H/ denote the arithmetic, geometric and har-

monic mean, respectively, of 1 —xq,...,1 —x,, i.e.

n n

1/n
P S —w), Ga.= <H(1 - m) . Hy=—
n =1 i=1 Z 1
1— ZT;

=1

The arithmetic-geometric mean inequality G,, < A,, (and its weighted
variant) played an important role in the development of the theory of
inequalities. Because of its importance, many proofs and refinements have
been published. In 1961, a remarkable new counterpart of the AM-GM
inequality was published in the famous book [7]:
Theorem 1. If z; €]0,1/2] for alli € {1,...,n}, then

g— < j— (1)
with equality holding if and only if xt1 = ... = x,.

Inequality (1), which is due to Ky Fan, has evoked the interest of
several mathematicians, and different proofs as well as many extensions,
sharpenings, and variants have been published. For proofs of (1) the
reader is referred to [3], [6], [16], [17]. Refinements of (1) are proved in
[1], [5], [6], [18], while generalizations can be found in [9], [11], [19], [21].
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For converses and related results see [2], [4], [14]. See also the survey
paper [6].
In 1984, Wang and Wang [20] established the following counterpart
of (1):
H, G,
o <o (2)
For extension to weighted means and other proofs of (2) see, for instance,
[6] and [18].
In 1990, J. Sédndor [15, relation (33)] proved the following refinement
of (1) in the case of two arguments (i.e. n = 2):
G I A
o < 7 < T (3)
where G = Gy, G’ = G, etc. and I denotes the so-called identric mean

of two numbers:

Z2

1 /2 1/(z2—1) _
I(xy,29) = - <%1) , if xy #£ 1o

Here I'(xq,x2) = I(1 — 21,1 — x9) and z1, 22 €]0,1/2].
In what follows, inequality (3) will be extended to the case of n ar-

guments, thus giving a new refinement of Ky Fan inequality (1).

2
Let n > 2 be a given integer, and let
An71:{<)\17---7>\n71> ’)\120, izl,...,n—l, )\1+---+>\n71 S 1}

be the Euclidean simplex. Given X = (xy,...,x,) (z; > 0 for all i €
{1,...,n}), and a probability measure p on A,,_1, for a continuous strictly
monotone function f :]0,00[— R, the following functional mean of n

arguments can be introduced:
M) = £ (06 ). (@)
n—1
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where
i=1

denotes the scalar product,
)\:<)\17---;)\n71>6An71 and A, =1—XA —...— \_1.

For = (n — 1)l and f(¢) = 1/t, the unweighted logarithmic mean

Lizy, . 2m) = ((n— 1)1[4n_1 %d)\l ...d)\n_l)_l (5)

is obtained. For properties and an explicit form of this mean, the reader
is referred to [13].
For f(t) = logt we obtain a mean, which can be considered as a

generalization of the identric mean

I(X; 1) = exp ( / gl A)du(A)) - (6)

Indeed, it is immediately seen that for the classical identric mean of two

arguments one has

I(21,22) = exp ( /O og(tzy + (1 — t):cg)dt> |

For 4 = (n — 1)! we obtain the unweighted (and symmetric) identric

mean of n variables
I(x1,...,2,) = exp <(n - 1)!/ log(X - A)dA; .. .d/\n_1> , (7
An—l

in analogy with (5). It should be noted that (7) is a special case of (4),
which has been considered in [13]. The mean (4) even is a special case
of the B.C. Carlson’s function M (see [8, p. 33]). For an explicit form of
I(zy,...,2,) see [12].
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Let n > 2, let u be a probability measure of A, 1, and let ¢ €
{1,...,n}. The ith weight w; associated to p is defined by

w; = / Aidp(N), if 1 <i<n-—1, (8)
Anfl

Anfl

where A = (Ay,..., A1) € A,_1. Obviously, w; > 0 foralli € {1,...,n}
and wy + ...+ w, = 1. Moreover, if y = (n — 1)!, then w; = 1/n for all
ie{l,...,n}.

We are now in a position to state the main result of the paper, a
weighted improvement of the Ky Fan inequality.

Theorem 2. Let n > 2, let pu be a probability measure on A, _1 whose
weights wy, ..., w, are given by (8), and let x; €]0,1/2] (i = 1,...,n).
Then

n
i=1

i=1 < ](xlaaxnmu)

n “I(l—x,..., 1= pn) — & '
i=1

(9)
[ — )
i=1

Proof. First remark that the function ¢ :]0,1/2] — R defined by

o(t) =logt —log(1 —t)

is concave. Consequently

3wl < /A (X - N)dp(\) < & (Z wx) T

This inequality has been established in [10]. From (10), after a simple
computation we deduce (9). O
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Remark. For y = (n — 1)!, inequality (9) reduces to the following

unweighted improvement of the Ky Fan inequality, which generalizes (3):

Here I,, = I(z1,...,x,), while I}, = I(1 —xy,...,1 — x,).
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4.3 A converse of Ky Fan’s inequality

Let z; € (0,1], ¢ = 1,n, and let A,,G,, H, denote the arithmetic,
geometric, resp. harmonic means of these numbers. Put A/, G, H, for
the corresponding means of the numbers 1 — x;. The famous inequality
of Ky Fan (see [1]) states that

I

n

n (1)

/
n

Q|Q

3 <

<

P

Suppose that m > 0 and x; € [m, %} Then the following converse of (1)
is true:
Theorem 1.
1
— < — A, —G)———| . 2
o |(An = Gt 2)
Proof. We shall obtain a slightly stronger relation. Let us define

f(x)zlfxexp{@—%)%}, where = € [m,%}

f(x) 1 1

= — <0 f >
f@) zl-=z) ml—_m)— ="
since the function g(z) = z(1 — z) is strictly increasing on [0, 3]. Thus
i k
o<z, < 3" Then, since m < G,, < A,, we have f(A,) < f(G,) so
that

Then

]. Suppose that m <z < x5 <

the function f is non-increasing on [m

An < G exp [ (A, — Gp) L

AT 1-G,
Theorem 2. (G, +G)" < (G, + G, )" 1 <1 foralln > 2.
Proof. Let us consider the application f : (0,1) — R, defined by

f@) = (1. tpr)" + [(1—21) ... (1 — 2y (1 — 2)]V

We have

f(z) = %(xl e Tpy)FEn T — %[(1 —2y) . (= ap)]w (1 —2)e Y

(3)

m(1 —m)
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anl
Gn_]_ + G;’L—l

so fllx)=0iff z =29 = . Since

n\n

Pla) = 1 (1 _ 1) (21 2y )r 22

41 (1 - 1) (1= 1) e (L= 2 )5 (L= 2)5 2 < 0

n\n

we observe that f is a concave function. It is well known (see e.g. [1])
that then xy must be a maximum point on (0, 1), implying f(x,) < f(zo).
After some simple calculations this gives

1

Gn + G:Z S (Gn—l + an—l)%a

i.e. the first relation of Theorem.
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4.4 On certain new Ky Fan type

inequalities for means

1
Let xp, >0, k=1,2,...,n and put
A= ) =13
n=Au(z)=— Tk,
n k
k=1
G, =Gy(z) =
for the arithmetic, respective geometric means of z = (xy, za, ..., z,). If

l—x=(1—-x1,1 —x9,...,1 —x,)
we denote, as usual,
A, =AL(r) = Au(1 —2), G, =G(r) =Gu(l—2)

for 0 < zp < 1, k = 1,2,...,n. The famous Ky Fan inequality states

1
1
that for all z;, € (0, 5], k=1,2,...,n one has:
A, _ G,

In 1990 [4] we have proved the surprising fact that inequality (1) is equiv-
alent to an inequality of Henrici [3] from 1956:

S iaz T ®




1 1
fora, > 1, k=1,2,...,n. Indeed, if x;, € (O,ﬂ,select a,=—-—1>1
Tk
in (2). We get from (2) that

G

A > —"
TG+ G

or A,G >G,(1-A,)=G,A..

1
Thus, relation (1) follows. Conversely, if (1) is true with xj € (0, 5] , then

1
by letting z;, = oo where a, > 1, from (2) after some transformations
ag
we get inequality (2).
For weighted variants of (1), as well as some Radé or Popoviciu type

Ky Fan inequalities, see [4], [5]. See also [6].

Let o, >0, k=1,2,...,n and a € (0,1]. We introduce the following

notations

l—ar=(1—-ar,l—axy,...,1—az,)
and
Ar=A%x) =A,(1 —azx), G, =G (z)=G,(1—ax)
1
forO<x,<—,k=1,2,...,n.
a
The function f(x) = is convex, because
o+ et
" 6x(ez — a)
=— >0
f'(z) (o +e?)3

and from Jensen’s inequality, we get:

n

1 n
> ) 4
Za—l—elnak - ( )

k=1




If Ina, =x,, k=1,2,...,n, we obtain the inequality:

1 1
If z, € (0, yk=1,2,... n,select xp, = — —a, k=1,2,...,nin
1+« Ty
(3). We get from (3), that
G,
Ay > ————
~aG, +Go
on the surprising inequality
A, _ AY
ns n 5
&z (5)

which is a generalization of Ky Fan inequality (for o = 1, we get relation

(1))

If xp,pr >0, k=1,2,...,n and

Zpkfk . 1
An(p,z) = 55—, Gulp,z) = (H w£k>
Zpk: k=1
k=1
then we introduce the following notation
Ar(p,z) = An(p;1 —az) and Gy (p,x) = Gu(p; 1 — ax),

1
where « € (0,1], z), € (0,—), k=1,2,...,n.
a
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Using the weighted version of Jensen’s inequality in (4) we get

n Z Pk
k=1

Pk
- 1
(0% T [
k=1 Tk n P > Pk
Oé—i_ | |xkk k=1
k=1

1 1
Indeed, if x;, € (0,—}, k=1,2,...,n select v, = — —a, k =
a+1
1,2,...,nin (5). We get from (5) that

Gh(p,x)
aGy(p, ) + GS(p, v)

\Y%
—
(@)
~

or the inequality
An(p,z) _ AZ(p, )
> 6
Gulp.a) ~ Galp.r) )

which is a new generalization of Ky Fan inequality (for « =1, p =1 we

get relation (1)).

4

In 1970 Klamkin and Newman [2], by extending certain Weierstrass
type inequalities, have shown that (their notation):

n

n 11— — n
[Ta-40> | —2 | [[4F (7)
k=1 51 k=1
n
where 0 < Ay, < —_— Sl ZAk

To simplify thls 1nequahty, put Ap =z, k=1,2,...,n and use the

notations of section 1. After some simplifications, we get the inequality

A G
n > n
AT G (8)
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a

for 0 <z < 1,k:1,2,...,n.
a
This is an extension of the Ky Fan inequality, as for a = 1 we get

exactly relation (1).

In 1990 H. Alzer [1] proved some other Weierstrass type inequalities.

One of his results states that

- Tk k=1
< 9
[~ <—— (9)

1
for ), € (0, 5}, k =1,2,...,n. By the notation of section 1, this may

be rewritten also as

(Gn>" < 14 2nA,

1
a _mf0r0<xk§§7k:1727"'an‘ (10)

We note here that in fact one has

ﬁ n< 1+ 2nA,
Al ) T 14 2nAlL

Since this may be written also as

AT 4+ 2 AT (ALY < (AL)™ + 2n(AL)" - AT

n

1
and this is true by A, < A/ =1—-A, or A4, < 5 Indeed A} < (A7)" and
AR (AL < 2n(AL)"A,, since this last inequality is AZ! < (AL)"!

and for n > 1 this is true again. In view of (1), we can write

Go\" AN\" 1+ 2nA4,
Tn) o< () < 2T
<G;1) - (A’n) — 14 2nAl, (12)

323



1
Another inequality from [1] states that for xy € (0, 5] L k=1,2,...

1+Z$k 1+H£Uk
k=1 k=1

< =

1+i(1—xk) 1+ﬁ(1—xk)

We can write (13) as

1+nA, < 1+ Gy
1+nd, = 14 (G)”

Now, remark that
1+ 2nA, < 1+nA,

1+2nA, = 1+nA,

(13)

(14)

by Al > A, so by (12) and (14) the following chain of inequalities holds

true

G \" A" 1+42n4,  1+nA, 14+ G»
) <[ Z2) < < < .
G ) —\A4A ) —1+20A ~ 1+nA ~ 14+ (G)"

By the well-known inequality

[T +1) <2 (Hakﬂ), ar 21, k=12....n

k=1 k=1

1 1
with the notations ay = — — 1, where z;, € (O, —], k=1,2,...

Tk
can deduce the inequality

Grt(C) > o
We note that, as G,, < = < G/, this is not trivial. As

1+Gn 142G,
L+ (G — 1+Grn+ (G
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1 1+2
—i—x< + xformgy,hereJE:Gz,y:(G%)n%by

(more generally

1+y = 1+2y
(17) we get
1+ G} < 14 2G7 1 (18)
L+ (G~ L=
+2n71

completing the chain from (15).

6

The reverse of Henrici’s inequality (see [3]) states that for 0 < by < 1,

k=1,2,...,n, one has

(19)
1
Put b, = 2z, where x;, € (0, 5], k=1,2,...,n. Then we get:
142G, (z) < H,(2x 4+ 1) (20)
where 2z + 1= (221 +1,...,2%, + 1) = (a1, as,...,a,) and
H(ay,as,...,a,) = nn
>
=1 Ok
denotes the harmonic mean of a5, >0, k=1,2,...,n.
Now, by the Chrystal inequality (see [7]), one can write
J [+ 1) > o [] 2z +1
k=1 k=1
or
G.(2x +1) > 2G, () + 1 (21)
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so as H,(2z + 1) < G,(2z + 1), relation (20) is a refinement of (21):
142G, (z) < H,(2x 4+ 1) < G,(2z + 1). (22)

However, we note that (21) holds true for all x; > 0 while the stronger

1
inequality (20) only for 0 < x; < o1 k=1,2,...,n.
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4.5 An extension of Ky Fan’s inequalities

Let x; (k = 1,n) be positive real numbers. The arithmetic respec-
tively geometric means of x; are
x4+ ... +x
A= Alxy,. .. ¢,) = ——"

n
G=G(x1,...,2,) = J/T1...Tp.
Let f : I — R (I interval) and suppose that z; € (a,b). Define the

functional arithmetic, respectively geometric means, by

flz)+ ...+ fx,)

n

Af = Af(fbl,...,l‘n) =

and

Gr=Gp(xy,...,z,) = V(e ... flzn).
Clearly, Ay and G are means in the usual sense, if
min{zy,...,z,} < Ay <max{zy,...,z,}
and
min{zy,...,2z,} < Gy <max{zy,...,z,}.
For example, when I = (0,400) and f(z) = z; Ay = A, Gy = G; when
I'=(0,1)and f(z)=1—2, Ay = A", Gy = G, are indeed means in the

above sense.

The following famous relations are well-known:

G<A, forxy>0(k=1,n) (1)
G A 1

= <z Z

o ST for z), > (O, 2} (2)

The first is the arithmetic-geometric inequality, while the second is the
Ky-Fan inequality (see e.g. [2], [3], [4]). Now, even if Ay and G are not
means in the usual sense, the following extension of (2) may be true:

G A

= <= (3)

Gy~ Ay
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This inequality (with other notations) is stated in OQ. 633, in [1].
We now prove (3) for certain particular f.
Theorem. Let id : R — R, id(x) = x and suppose that f : I — R

satisfies the following conditions: [ and ln% are concave functions.
Then inequality (3) holds true.

i
Proof. By concavity of In — one can write:

1+ ...+,
1
In n >{In a +...+1n n -,
f 1 P S /P W f(z1) flxn) ] n
n
ie. A
In >In—
f(A) = Gy
Therefore o A
= < 4
Gy = f(A) @
Now, since f is concave, one has
1)+ ...+ flx, 1+ ...+,
Af:f( 1) - f( )Sf(lf>:f(/4)7

and by (4) this gives (3).
1
Remark 1. Let [ = (O, 5] and f(z) =1 —x, then g(z) = In

T

l1—2z
has a derivative

—_

SO

1 1 2?2 — (1 —x)? 2r —1
/" = —— g — < O
g'(@) x? * (1 —x)? x2(1 — x)? x2(1—x)2 —

Therefore f and In S are concave functions, and (4) gives Ky Fan’s

1
inequality (2). One has equality for z;, = 5 (k=1,n).
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Remark 2. There are many functions f : I — R such that f and

i
In — are simultaneously concave. Put e.g. f(z) = Inx. Then

g(x) :lnﬁzlnx—lnlnx.

One has )
—In"z+nx+1

" 1) = <0

g'(z) 22In%z -
if V5

1 5
Inx > +2 , le. x> el+2¢g = x9

(Take I = [xg, +00)).
Remark 3. Without concavity of f, holds true (4).
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4.6 Notes on certain inequalities by
Holder, Lewent and Ky Fan

1. Historical notes

In 1888 Rogers (see [10]) proved that for z; > 0, a; > 0 (i = 1,n)

n

n Zai

=1
n E Qi Ly

[[a < | = (1)

F. Sibirani [15] reported in 1907 that the proof of (1) was already
known. Namely, it was published by D. Besso [3] in 1879. We note that,
Besso’s original article was reprinted in 1907, but never included with a
review in JEM (”Jahrbuch der Fortschritte der Mathematik”); see [16].

It is known that, Holder concludes inequality (1) as a special case of

Z QT Z Oéi90($z‘)
i=1

<= (2)

n
> >
i=1

=1

¥

where ¢ has an increasing derivative; see [7], [6], [11]. The real impor-
tance of this inequality, for continuous, mid-convex (”Jensen-convex”)
functions ¢ was discovered, however by Jensen [8].

It is little (or only fragmentarily) known today that, Holder’s result
in the case of equal weights (e.g., a; = l, ¢" > 0) was proved much
earlier by Grolous [5]. He applied the so-called "method of centers” (see
e.g. [11]) in his proof.

Finally, we wish to mention here the names of the reviewers con-

tributing to JEM, related to the above mentioned articles. These were
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M. Hamburger, E. Lampe, J. Glaisher, P. Stiackel, R. Hoppe, H. Valen-
tiner, F. Miiller, and F. Lewent. It seems that, they did not publish in

the area of mathematical inequalities, the only exception being [9].

2. Lewent’s and Ky Fan’s inequalities

By using the power-series method, in 1908 Lewent [9] proved the

1+Zale P
1—204352 11( > ?

relation

where

€0,1), i=12...,n;and Y ;=1 (4)
=1

We note that, this follows also by inequality (2) applied to the function

The famous Ky Fan inequality (see e.g. [1], [2], [12], [13], [14]) states
that if a; € (O, %} (1=1,2,...,n) and A,(a) = A,, G,(a) = G,, denote
the arithmetic, resp. geometric means of a = (aq,...,a,); by putting
A =A,(1—a), G, =Gl —a), where ] —a = (1—ay,...,1 —ay,);
then one has o A

Gk >

We want to point out now that, by a method of Sandor ([13], I) (who

applied an inequality of Henrici to deduce (5)), Lewent’s inequality im-

1
plies Ky Fan’s inequality (5). Indeed, let o; = —, and put z; = 1 — 2q;
n

— 1
(i=1,n)in (3). Asa; € (0, 5}, clearly x; € [0,1). A simple transforma-

tion yields relation (5), and we are done.
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(1+a,...,1+a,). By letting oy; =

written equivalently also as

Remark. Let AT = A,(1 +a), GI = G,(1+ a), where 1 + a =
1
—, x; = a;, inequality (3) may be
n

G, _ A,
G'_j{ < A_,f (6)
where 0 <a; < 1,i=1,2,...,n; and G, = G/,(a) etc. For such inequal-

ities, see also [4] and [12] (II).
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4.7 On certain new means and their

Ky Fan type inequalities

1. Introduction

Let * = (x1,...,%,) be an n-tuple of positive numbers. The un-
weighted arithmetic, geometric and harmonic means of z, denoted by
A=A, G=G,, H= H,, respectively, are defined as follows

n n 1/n n
A:l xi, Gz( xz> , Hzn( i)

Assume 0 < z; < 1,1 < i <nanddefinez’ :=1—x = (1—xq,...,1—x,).
Throughout the sequel the symbols A’ = A, G’ = G, and H' = H), will
stand for the unweighted arithmetic, geometric and harmonic means of
x'.

The arithmetic-geometric mean inequality G,, < A, (and its weighted
variant) played an important role in the development of the theory of
inequalities. Because of its importance, many proofs and refinements have

been published. The following remarkable inequality is due to Ky Fan:
1
If z;, € <O, 51 (1 <i<mn), then
G A
<7 (1)
with equality only if ; = --- = x,. The paper by H. Alzer [1] (who
obtained many results related to (1)) contains a very good account up

to 1995 of the Ky Fan type results (1). For example, in 1984 Wang and

Wang [11] established the following counterpart of (1):
H G
TN @

1
Let I = I(2y,15) = —(232 /27 @272 (3 = 25), I(x, 2) = = denote
e
the so-called identric mean of x1,zo > 0. In 1990 J. Séndor [8] proved
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the following refinement of (1) in the case of two arguments (i.e. n = 2):

G 1 A
< <
G — I — A’ (3)

where I' = I'(x1,29) = I(1 — 21,1 — z3).
We note that, inequality (14) in Rooin’s paper [6] is exactly (3).
In 1999 Sandor and Trif [10] have introduced an extension of the

identric mean to n arguments, as follows. For n > 2, let
Epa={( A, ;A1) M 20,1<i<n—1, i+ + A1 <1}

be the Euclidean simplex. Given any probability measure p on E,_4, for
a continuous strictly monotone function f : (0,00) — R, the following

functional means of n arguments can be introduced:

My (i) = f° ( f<xA>du<A>) , (1)

En—l

where .
i=1
denotes the scalar product,
/\:()\1,...,>\n_1)€En_1 and >\n:1_/\1_"'_/\n—1-

For p = (n — 1)! and f(t) = 1/t, one obtains the unweighted loga-
rithmic mean, studied by A. P. Pittenger [5]. For f(¢) = Int, however we

obtain a mean
[ =I(z) = exp ( /E ln(x)\)du()\)) (5)

which may be considered as a generalization of the identric mean. Indeed,

it is immediately seen that

I(21, 22) = exp ( /O (i 4 (1— t)xg)dt) |
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in concordance with (5), which for p = (n — 1)! gives the unweighted

(and symmetric) identric mean of n arguments:

[ =@y = L(z1, ... ) = exp <(n - 1)![E (e d)\n_l) (6)

Let I' =1, = I,,(1 —z) in (5) for 4 = (n — 1)!. Then Sandor and Trif

1
[10] proved that relation (3) holds true for any n > 2 (xz € (0, 5])

The weighted versions hold also true.

In 1990 J. Sandor [7] discovered the following additive analogue of
1
the Ky Fan inequality (1): If z; € (0, 5} (1 <i<mn), then

1 1 1 1

N G

H H A A (7)
In 2002, E. Neuman and J. Sdndor [2] proved the following refinement

of (7):
1 1 1 1 1 1
<

< = R (8)
H H~-L L~ A A
where L is the (unweighted) logarithmic mean, obtained from (4) for

f(t) =1/t ie.

T

1 —1
L=1L,=Ly(x,...,2,) = ((n—l)!/ —d)\l...d)\n1> , (9)
En_1 )\

and L' = L(1 — z).

For n = 2 this gives the logarithmic mean of two arguments,

To — X
L(l‘th) = m (171 7é 1’2), L((L’,I) =1

We note that for n = 2, relation (8) is exactly inequality (27) in
Rooin’s paper [6].

Alzer ([1]) proved another refinement of Sdndor inequality, as follows:

1 1<1 1<1 1 (10)
H H~-G G~ A A
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In [2] we have introduced a new mean J = J, and deduced a new
refinement of the Wang-Wang inequality:
H J G
TE<T<a (11)
We note that in a recent paper, Neuman and Séndor [4] have proved
the following strong improvements of Alzer’s inequality (10):
1 1 1 1 1 1 1 1 1 1
< < <
H H~-J J-G G-I 1~ A A
(where J' = J(1 — x) etc.).

2. New means and Ky Fan type inequalities

2.1

The results obtained by J. Rooin [6] are based essentially on the
following

Lemma 1. Let f be a convex function defined on a convex set C', and
let z; € C, 1 <i<n. Define F:[0,1] - R by

F(t)= 3 A0~ et tzaa ], £ € 0,1

Then
F <x1+-7~l-+xn) < F(t) < flz)+ -+ f(zn)

n

Y

1
and the similar double inequality holds for/ F(t)dt.
0

Proof. By the definition of convexity, one has

I =)z + trp-i] < (1 =) f(@) + tf (@Tng1-4),

and after summation, remarking that

n

D (@) = fla)] =0,

=1
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we get the right-side inequality. On the other hand, by Jensen’s discrete

inequality for convex functions,
1 « 1+ + T,

F(t) > — 1 -tz +tr, - | = |
(Lf(n;[( Yo 1) po)
giving the left-side inequality. By integrating on [0, 1], clearly the same

result holds true.

2.2

Now define the following mean of n arguments:

n 1/n
K=K,=Ky(t1,...,2,) = (H I(x,-,mnﬂi)) (13)
i=1
Letting f(z) = —Inz for x € (0, +00), and remarking that

/1 In[(1 —t)a + tb]dt = In1(a,b),

Lemma 1 gives the following new refinement of the arithmetic-geometric
inequality:

G<K<A, (14)
which holds true for any z; > 0 (i = 1,n).

1-— 1
Selecting f(x) = In L for € = <0, 5}, and remarking that
T

1
/ In{1 — [(1 = t)a + tb]}dt = InI(2}, 25) = InI'(x1, 22),
0

we get the following Ky Fan-type inequality:
G K A
o < 7 < o (15)
This is essentially inequality (13) in [6] (discovered independently by
the author).
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2.3

1
Let now f(x) = — for z € (0,00). Since f is convex, and
x

1 1 1
—  dt=——,
A(L4m+w L(a,b)

Lemma 1 gives

H<R<A, (16)

where

" 1
R=R,=R,(x1,...,2,) =n R 17
( ' ) /;L($i>$n+1—i) ( )

This is a refinement - involving the new mean R - of the harmonic-

arithmetic inequality.
1

1 1
Letting f(z) = — — | for x € (O, 51 , the above arguments imply
x -

the relations
1 1 1 1 1 1

B i Qi
A A~ R R - H H

(18)

1
where x; € (0, 5] ,and R =Rl = R,(1 —z1,...,1 —x,). Relation (18)
coincides essentially with (26) of Rooin’s paper [6].

24

Let
S = Sn(l'l, R ,l‘n) = (mfl . x’rxln)l/(li-‘ru.-i-l‘n) (19)

For n = 2, this mean has been extensively studied e.g. in [8], [9],
[3]. Applying the Jensen inequality for the convex function f(z) = zlnx
(x > 0), we get A < S. On the other hand, remarking that S is a weighted

geometric mean of zq, ..., x, with weights

ar =2 /(01 FT), 0 =T (T Ty),
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by applying the weighted geometric-arithmetic inequality
it oxer < agry o+ apy,

we can deduce S < (), where

Q:Qn(xla--‘7$n> =

2 2
]+ -+,

Tyt
Therefore, we have proved that
A<S<Q (20)
In [8] it is shown that
b b2 o CL2
/ rlnzdr = 1 In I(a?,b%) (21)

Denote J(a,b) = (I(a? b?))'/? and put J'(a,b) = J(1 —a,1 —b). By
applying Lemma 1, we get
ALT LS, (22)
where the mean T is defined by

" 1/A
A@jren41-4)
T =Ty(x1,...,2,) = l[I(J(xigrn+1_J)vﬁ] (23)

=1

Letting now

flz)=xzlnz—(1—2)In(l —z), x¢€ (0,%} ,
b 1-2
f”(I):mZO

we can state that f is convex, so by Lemma 1 and by (21) we can write,

for z; € (O L,
rx; Sk
A AN <A T < 5AS (24)
where the mean T is defined by (23), while 7" = T'(1—x). Since for n = 2,

T = J, for means of two arguments (24) gives a Ky Fan-type inequality

involving A, I, S.
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2.5

Relation (23) shows that 7' is a generalization of the mean J to n
arguments. In what follows we shall introduce another generalization,

provided by the formula

U= Un(~r17---7xn>

_ {exp ((n 1)1 /E @GN .d)\nl) }UA (25)

Here the notations are as in the Introduction. Since, by (21),

/01[(1 — t)a+ ] In[(1 — t)a + tds = - ! - /aba:lna:dx

A
= Elnl(a2,b2) =InJ*,

for n = 2, we have U = J, thus U is indeed another generalization of the
mean J.
Now, the following result is due to E. Neuman (see e.g. [2]).
Lemma 2. Let K be an interval containing x1, ..., x,, and suppose
that f : K — R is convex. Then

f (u> <(n-— 1)!/ FOD)dA ... dAy
En—1

n

flxy) +--- 4 flan)

< .
n

1
Letting K = (0, 5], and f(z) =zlnz — (1 —2)In(l — z) in Lemma 2,

1
we can deduce for z; € (0, 5]

A A <ot ot < sh s (26)
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Remark that for n = 2, inequalities (24) and (26) reduce to the same
inequality, as in that case one has 7' = J = U. The mean U separates

also A and S, since applying Lemma 2 for f(z) = xInz (z > 0), we have
A<U<S. (27)

There remains an Open Problem, namely the comparability of the
above defined means 7" and U for n > 2. Also, the connections of these

means to K and R, introduced in the preceding sections.
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4.8 On common generalizations of some
inequalities

In what follows we shall prove a double inequality, which offers a
common proof of many famous inequalities. For example, the arithmetic
mean — geometric mean — harmonic mean inequality, the Ky Fan or the

Wang-Wang inequalities will be consequences (see e.g. [4]).
Theorem. Let I C R be an interval and I its interior. Suppose that
f I — R is continuous and differentiable on I, and that the derivative

[e]
f" is monotone increasing. Then for any positive integer n and x; € I

(i =1,n) one has

> e

where on the right side of (1) one assumes that Z f'(z;) #0.

Proof. The left side of (1) is nothing else than the classical Jensen
inequality. For its proof, for any x,y € I apply the Lagrange mean-value

theorem on the interval [z, y]:

fy) = flz) = (y —2)f'(§),

where ¢ lies between x and y. If y > =z, then © < £ < y and by mono-
tonicity of f: f'(§) < f'(y), giving

fly) < fl@)+ (y—2)f(y). (2)
But inequality (2) holds true for y < x, too. Indeed, then we have

(y—2)f'(€) < (y—2)f'(v),
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since y —x < 0 and f'(§) > f'(y). Thus inequality (2) holds true for any
rel, yel. Let

T =y, y:EZxZ (i=1,n, z; €1).

Then, by (2) one has

fly) < flx) + (y— i) f'(vi), i = T,n. (3)
After summation, from (3) we get the left side of (1), as

n

S y—z)f'(y) = fy) (ny — Zx) =0.

i=1
The right side of (1) can be proved in a similar way, by first remarking
that

f) = f@)+(y—2)f'(z), (yel, z€l). (4)

This can be proved in a similar manner to (3). Let now

Z ﬂfz‘f/(l’i)
Z f'(:)

T =T Y=

in (4). Since

>l #) () =0,
i=1
after summation we get the right side of (1).

Remarks. 1) If one assumes f to be convex function (in place of
monotonicity of f’), in relation (2) in place of f'(y) we will take f’ (y)
(i.e. the left side derivative) and f (z) in place of f'(x) in (4). Then in
(1) the left side remains the same, while the right side appears f’, (x;) in
place of f'(z;).

2) From the proof we get also that if f’ is strictly increasing (strictly
convex), then equalities (in the left side of (1), or the right side) can

occur only if 1 = a9 = ... = z,,.
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Applications

1) Let I = (0,00), f(z) = —Inx. Since

fla)=—2 ey =+ >0

T i

f’ will be strictly increasing. By computations we get from (1):

H, <G, <A, (5)
where
n
An = H, = n

>,

— T

=1
are the arithmetic, geometric, resp. harmonic means of x; (i = 1,n).

1
2) Let (0, 5} C I, and put f(z) =1In(l —z) — Inz. Since

1-2
f”(i):xz(l—_i)QZO,

we get that f’ is strictly increasing. Let us introduce the notations

n
n

— 7. R
]:11:(1 xl)? Hn n 1 )

where z; € (0,1). By simple computations, we get from (1) the double

inequality
H, < % < é’ (6)
H, = G, — A,

1
where A, = A, (z;), A, = Al (z;), etc., and x; € <O, 51

The right side inequality of (6) is known as the famous Ky Fan in-
equality [1], while the left side is the Wang-Wang inequality [4].
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Remark. It is not difficult that the weighted version of (1) holds true,
too, so the above inequalities (5) and (6) are valid also in the weighted
case. Other proofs and refinements of these inequalities may be found in
papers [2] and [3].

This paper is an English version of [5].
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Chapter 5

Stolarsky and (Gini means

“The ideas chosen by my unconscious are those which
reach my consciousness, and I see that they are those

which agree with my aesthetic sense.”
(J. Hadamard)

“In both theorems... there is a very high degree of

unexpectedness, combined with inevitability and

economy.”

(G.H. Hardy)

5.1 On reverse Stolarsky type inequalities

for means

1. Introduction

Let a,b > 0 be positive real numbers. The logarithmic, resp. identric

means of a and b are defined by

b—a
L=L(ab)=—— 1 b: L = 1
(@b = oy fora 2t Lad=a ()
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and

[=1I(a,b) = <" /a0 for a £ b I(a,a) = a @)
e
Let 1k
k bkz
Ak:aAﬁaJﬂ::(a ;’ ) (3)

denote the power mean of order k, where k # 0 is a real number. Denote

a+b

A= Ai(a,b) = and G = G(a,b) = llgin%Ak(a, b) =Vab (4)

the arithmetic, resp. geometric means of a and b.

The means (1)-(4) have been extensively investigated. In particular,
many remarkable inequalities or identities for these means have been
proved. For a survey of results, see e.g. [1-3], [5], [7], [12], [13-15]. Consider
also the weighted geometric mean S of a and b, the weights being a/(a+b)
and b/(a + b):

S = S(a, b) _ aa/(a-i—b)bb/(a—i-b) (5)

As we have the identity (see [9])

S(a,b) =

I(a,b) "’ (6)

the mean S is strongly related to the identric mean. For properties of
this mean, see e.g. [7], [8], [12].
Finally, the Heronian mean will be denoted by He (see [3]), where

a+vVab+b 2A+G
3 -3

He = He(a,b) = (7)

Now, we quote some inequalities of interest in what follows.
In 1980 K.B. Stolarsky [16] proved that for all a # b one has

Agyz < 1, (8)

and that 2/3 is optimal; i.e. the constant 2/3 cannot be replaced by a
greater constant ¢ > 2/3 such that A, < I for all a # b.
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In 1991 J. Sandor [8] proved that for a # b
He <1, (9)
while in [12] it is shown that
Ay < S (10)

both being sharp in certain sense.
Clearly one has
L<I<A (11)

and, as a counterpart of the right side of (11), in [10] it is shown that
2
-A<I, (12)
e
while in [6] that
2
I <-(A+G) (13)
e
The aim of this paper is to deduce certain reverses of type (12) for
the inequalities (8)-(10). One of these relations will provide an improve-

ment of inequality (13) and in fact the method will offer a new proof for
inequalities (8)-(10).

2. Main results

The first theorem is well-known, but here we will give a new proof,
which shows that the involved constants are optimal:
Theorem 1. For all a # b one has

[<A< gl, (14)

where the constants 1 and ¢ are best possible.
Proof. Put x = b/a > 1, and consider the function

Az, 1)

filw) = I(x,1)
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An easy computation implies that the logarithmic derivative of fi(x)

fi(x) 2logx (x+1 x—1>

18

fil) (=12 +1)\ 2  logz
As +1 1
X xXr —
— =A 1) - L 1
5 log 7 (z,1) = L(x,1) > 0

by the weaker form of (11), we get f{(x) > 0 for = > 1. This shows that

fi(z) is strictly increasing for x > 1, implying

file) > lim fu(e) =1 and fil) < T fila) = 2.

This proves inequality (14), by the homogeneity of A and I. Since the
function fi(x) is continuous for x > 1, it is immediate that the constants
1 and 2/e cannot be improved.

Theorem 2. For all a # b one has

2v/2
A2/3 <I< TAg/g, (15)
2 .
where the constants 1 and —— are best possible.

e
Proof. Put 23 = b/a > 1, and consider the application

. A2/3($3a 1)
PO Ty
We have 1) 22
ha) ~ @ o)
where

(x+1)(z® - 1)
z(x? +1)
Letting ¢t = 23 in the following inequality (see [4], p. 272):

k(x) = 3logx —

logt _ 14+¢1/3
=1t
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we obtain k(x) < 0 for z > 1. Thus the application f; is strictly decreas-
ing. As
liy ) =1, Jim o) = 22
the result follows. The function fo(x) being continuous and strictly de-
creasing, we easily get the optimality of the constants 1 and 2v/2 /e.
Theorem 3. For all a # b one has

3
He < Ay3 < —=He, 16
2/3 2\/5 (16)

where the constants are best possible.
Proof. As above, let 2 = b/a > 1, and let

_ He(a?,1)
f3(l’) - A2/3($3,1)

Logarithmic differentiation gives

filw) 3 2Pz D@2 -1)

fa(x) 2 2(a®+ 232 + 1) (22 4+ 1)

< 0,

so fs3(x) is strictly decreasing for > 1. The result follows.
Corollary. For all a # b one has

3
He <1 < —He, (17)
e

where the constants 1 and § are best possible.

Proof. Inequality (17) follows by a combination of relations (15) and
(16). As He/I = (He/Ays3)(As3/1), and the product of two positive
strictly decreasing functions is also strictly decreasing, the sharpness of
(17) follows.

Remark 1. It is not difficult to see that
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which shows that the left side of (15) offers an improvement of inequality
(13).
Theorem 4. For all a # b one has

Ay < S < sqrt(2)As, (19)

where the constants 1 and sqrt(2) are best possible.
Proof. Put x =b/a > 1, and let

fie) = A2@ D _ 2+1\ 1
4\T) = S(.Z',l) - ) rx/(z+1)

Hence

Since

x—1 r+1 2241
=L(z,1) < A(z,1) = < ,
(:U7) <x7) 2 x+1

we get h(x) < 0 for z > 1, yielding that f,(z) is a strictly decreasing

1
rt(2)’

log x

relation

function for z > 1. As lirri fa(x) =1 and lim f4(z) =
r—r T—00

(18) follows.
Remark 2. There are known also improvements of other types to the

Stolarsky inequality (8). For example, in [5] it is shown that for a # b

Agss < \/Iss6 - Irse < 1,
where I; = I;(a,b) = (I(a*,b"))Yt (t #£ 0).
For strong inequalities connecting the mean I to other means (e.g. the
arithmetic-geometric mean of Gauss), see [11]. For connections between

L, I and a Seiffert mean, see [14].
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5.2 Inequalities for certain means

in two arguments

The means in two arguments are special [3] and have been intensively
investigated. We mention here the geometric, logarithmic, identric and

exponential, arithmetic, etc. means of two numbers. For b > a > 0 let

G = G(a,b) = Vab,
b—a
L=Llab)= —m—
(a,0) Inb—1na’

1
I=1(a,b)=—(0"/a")"/C",
€

A:A@m:“;@
The following relations are known:

G<L<I<A (1)
A+ L <2l ([6]) (2)
L+I<A+G ([2]) (3)
2A+G < 3I ([7) (4)
GI < L* ([1]) (5)
2A < el ([8]) (6)
L(a*b*) = A(a,b) - L(a,b) (7)
o= 5 (1oe) () ©

o0 g\ 2
whSr () @ o



s - =21 (1)) (10)

G L
Consider also the weighted geometric mean S of a and b, the weights
being
@ and 2. - S(a,b) = a®/(@+t) . pp/(a+)
a+b a-+b ’

Some properties of S have been discussed in [6], [9] and [4]. Other rela-
tions connecting G, L, I, A, S will be presented in this paper.

By comparing S with the corresponding weighted harmonic and arith-

metic means we obtain

2 bQ
A(a,b)S(a,b) < “aib . (11)
Concerning the first inequality, the following relations are also true:
A*(a,b) < I(a®,0%) < $%(a,b) ([6], [9]) (12)
S - 1 b—a\*
log — = 4]). 1
%8 ;%(k—l) (b+a> (14 (13)

From (8) and (13) we deduce the following relation similar to (8) and

(9):

S > 1 b—a\*
log = = ) 14
NNE Z2k—1(b+a) (14)

k=1
From (8) and (13) we deduce the following relation similar to (8) and
(9):
log—=1—— 4 1
o2 =1- 9 () (15)

1(a2, %) = S(a,b) - I(a,b) ([9)]). (16)



From (12) and (16) we deduce A? < ST. From (8) and (13) it follows

SG < A?. Thus we have obtained:

AT<S<AE ([4]).

The following theorem contains certain refinements.

Theorem 1. The following inequalities are valid:

A? 447 - G? At

<S<—=<—=

TAEY; 3

AL+ ST < 24% < §% + G?
4A? — 2G2 A?[2

< ST <

e G?

(17)

(18)
(19)

(20)

Proof. Apply (4) with a2, b? instead of a,b. Then use (16), it follows

that A
SI > T_ > A2
On the other hand,
2 12 A
I(a’vb)<ﬁ ([9])7

this means that

4 2

A
From (4) we deduce I* > A*G, hence — < —- and this proves (18).
The left side of (19) follows from (7) and (16) with the application

of a® and b? in place of a and b, respectively. In order to prove the right

b
hand side of (19) divide each term by a® < b* and denote t := — > 1.

The inequality to be proved becomes

2D > 42 L1 (> 1)

Let

2t
ft) =2+ it In(t* +1).

+1
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Simple calculations give

() =2(t+1)? [lnt _E- 1} >0

2 +1
since by
t?+1
L(t,1) < A(t,1) <
(1) < At1) <
it results
lt>t2_1
n )
t2+1

Thus, via f(1) = 0, we can deduce that f(¢) > 0 for ¢ > 1, yielding (21).
Finally, by using (5) and (6) with a? b? instead of a, b, it is easy to

prove (20). O
Remark 1. By remarking that

2A% — G? = A(d®,b%),
the right hand side of (19) can also be written as
A(a?,b%) < S*(a,b) (22)

improving, in view of (1), inequality (12).

4
Let M be one of the means L, I, A or S. Denote
M(t) = (M (a*,b"))""

if t # 0; M(0) = G(a,b). By examining each case, it is not difficult to
verify that
M(—t)M(t) = M?*(0), t € R. (23)

Theorem 2. (i) The function M(t) is increasing and continuous
on R.

360



(i) For t > 0 we have
S(2t) > S(t) > A(2t) > I(2t) > A(t) > I(t) > L(2t) > L(t). (24)

Ift <0, the inequalities in (24) are reversed.

Proof. It is well known that (i) holds for M = A. It is a matter of
calculus to prove (i) for M = I and M = S, as well as the continuity of
L(t). It was proved in [10] that L(¢) > L(1) for ¢t > 1. By using this fact
and (23), it can be proved that L(t) is an increasing function.

Let now ¢ > 0. By (22) one has S(1) > A(2) which implies S(t) <
A(2t). From (16) and ST > A? (see (17)) we can obtain I(2) > A(1),
giving I(2t) > A(t). From (2) it follows I? > AL, which implies that
I(1) > L(2), and this in turn implies I(t) > L(2t). By (1) we have
A(t) > I(t). Since S(t) and I(t) are increasing, (24) is proved. Due to
(23), all the inequalities of (24) are reversed for ¢ < 0.

Now we deal with series representations like (8), (9), (13), (14), de-

riving inequalities from them.

(3) < (@) &

AQ_G2<1 §<A2—G2
A2 EEA T

Proof. From (9) and (13) and the elementary inequality

Theorem 3. One has

(26)

1
2k(2k — 1)

3
< 2.
-2 2k+1

with equality only for k = 1, we get relation (25).
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For (26) remark first that

LS _(b-a(nb—Ina) (b0
G 2(b+a) 2(a + b)Vab
AP -G
= ——g  since L > G (see (1))

On the other hand, relation (14) gives us

Inequality (4) can be written also as

I -G
> 2.

A—-1

A similar result holds for the mean S. More precisely, the following result
is true:

Theorem 4. s o
>V 27
S V2 (27)

Before proving this theorem, we need an auxiliary result, interesting
in itself:
Lemma. For the logarithmic, harmonic, and geometric means the

positive numbers 0 < a < b holds the inequality

L+ H>V2G (28)
2 b
Proof. We have H = R Denoting = := % > 1, after certain
elementary transformations (28) becomes equivalent with
4
-1
Inz < ° o> 1. (29)

22z (xQ — 2z + 1)
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Consider the function
2
L_( 4 _ 1)

_ 4
9le) = x (SB2 — V2 + 1) —Inz

A simple (but tedious) computation shows that

2v/22” <x2 —V2r + 1)2 (¢'(x))

= 2% — 4v22° + 112" — 8v22% + 1127 — 4v/22 + 1.
The right side of this expression, divided by % and with the notation

z+1
=1
z

Y

becomes
2
(23 +1/2%) — 4V2(2? + 1/2?) + 11(z + 1/z) — 8V2 = ¢ <t - 2\/5) .
In conclusion, ¢g(1) = 0, ¢'(z) > 0 for > 0, thus g(x) > 0 for x > 1,
proving (29), thus (28). O
Remark 2. Another inequality connecting the means L, H and G,

namely

3<1+2
L G H

has been proved in [6] (relation (37)).

Proof of Theorem 4. Denote — = z°. Then (27) becomes equivalent

(after certain simple computations, which we omit) to

22
h(x) ::1n(x2—\/§a:+1)—1+x 2lnx—ln<2—\/§> > 0 for all x > 1.
T

By (28) (ie. (29)), this implies A'(z) > 0 for > 1, and since h(1) = 0,

we conclude that h(z) > 0 for z > 1, and this proves (27). O
Corollary.
242 _ (% < §% < (6 + 4\@) A% (5 + 4\/5) G2 (30)
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Proof. The left side inequality is exactly the second part of (19). For
the right side remark that (27) written in the form

AV2 -G
<—

S
V2 -1

implies
2 < (2/ (3-2v2)) 42— ((2v2-1)/ (3-2v2)) 2
by A > G. Now, observe that

2/ (3-2v2) =6+4v2, (2v2-1)/(3-2v2) =5+4v2 O
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5.3 A note on certain inequalities for

bivariate means

1. Introduction

Let a, b be two distinct positive numbers. The power mean of order &

of a and b is defined by

ko pk\ V/F
Ak:Ak<aab):<a ;b) ’ k%o

and

Ay = lim Ay = Vab = G(a,b).
k—0
Let A; = A denote also the classical arithmetic mean of a and b, and

2A+G  a+b+Vab
3 3

He = He(a,b) =

the so-called Heronian mean.

In the recent paper [1] the following results have been proved:

Ap(a,b) > a' " FI(a* F) for 0 < k<1, b>a (1.1)
1
Ar(a,b) < I(a,b) for 0 <k < o (1.2)
k 1k k 1k 3 k 1k 2
He(a,b)<A5(a,b)<mﬂe(a,b)f0rk>0,625 (1.3)
and
Ay < S <2V% A for1 <k <2 (1.4)

In the proofs of (1.1)-(1.4) the differential calculus has been used. Our
aim will be to show that, relations (1.1)-(1.4) are easy consequences of

some known results.
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2. Main results

a4+ b\ E
Lemma 2.1. The function fi(k) = ( 5 ) = A(a,b) is a

strictly increasing function of k; while fo(k) = (a® + b¥)V* is a strictly

decreasing function of k. Here k runs through the set of real numbers.
Proof. Through these results are essentially known in the mathemat-
ical folklore, we shall give here a proof.

Simple computations yield:

o fi(k) _zlhz+ylny T4y

and

2 f3(k)  wlnz+ylny
k O P — In(z + y), (2.2)

where z = a* > 0, y = b* > 0. Since the function f(z) = zInz is strictly

1
convex (indeed: f"(x) = ~ > 0) by

() < s

2 2 ’

relation (2.1) implies f](k) > 0. Since the function ¢ — Int is strictly
increasing, one has Inz < In(z +y) and Iny < In(x + y); so

zlnz+ylny < (z+y) In(x + y),

so relation (2.2) implies that fi(¢) < 0. These prove the stated mono-
tonicity properties.
Proof of (1.1). By the known inequality I < A we have
a® 4 b

I(a®,b*) < A(d®, %) = 5

Now

1/k
a + b < g1 a® + bk
2 = 2
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is equivalent with (for 1 — k& > 0)

k bk 1/k
(a—2|— > > q or a® + b* > 24",

which is true for b > a. For k = 1 the inequality becomes I < A.

Proof of (1.2). Since Ay is strictly increasing, one has

<1,

\/E+\/I3>Z_A+G
2 2

Ay < Ayjp = <

by a known result (see [3]) of the author:

2A+G _ A+G
> .

I 2.3
5~ 3 (2.3)

Proof of (1.3). By the inequality He < Ay/3 (see [2]) one has
He(ak, b*) < Agj3(a¥,b%) < Ag(a”,b¥),

by the first part of Lemma 2.1.
Now, 218 Ag(a®, bF) < 23/2(a*, b*) by the second part of Lemma 2.1,
3
and Ay 5(a¥, b¥) < ——=He(a", b*), by (see [2
aldh 1) < S He(d ), by oo [2)

3
Asy < ——=He. 2.4
2/3 2\/5 € (2.4)

Since 2%/2 = 24/2, inequality (1.3) follows.
Proof of (1.4). In [2] it was proved that

Ay < S < V2A,. (2.5)

Now, by Lemma 2.1 one has, as k£ < 2 that A, < Ay < S and
V2A, < 2YF A, Thus, by (2.5), relation (1.4) follows. We note that
condition 1 < k is not necessary.

368



Bibliography

1. H. Du, Some inequalities for bivariate means, Commun. Korean
Math. Soc., 24(2009), no. 4, 553-559.

2. E. Neuman and J. Sandor, Companion inequalities for certain bi-
variate means, Appl. Anal. Discrete Math., 3(2009), no. 1, 46-51.

3. J. Sandor, A note on some inequalities for means, Arch. Math.
(Basel), 56(1991), 471-473.

369



5.4 A note on logarithmically completely
monotonic ratios of certain mean

values

1. Introduction

A function f : (0,00) — R is said to be completely monotonic (c.m.

for short), if f has derivatives of all orders and satisfies
(=) f™(z) >0 forall z >0and n=0,1,2,... (1)

J. Dubourdieu [3] pointed out that, if a non-constant function f is
c.m., then strict inequality holds in (1). It is known (and called as Bern-

stein theorem) that f is c.m. iff f can be represented as

fa) = / e dult), 2)

where p is a nonnegative measure on [0, 00) such that the integral con-
verges for all z > 0 (see [11]).

Completely monotonic functions appear naturally in many fields, like,
for example, probability theory and potential theory. The main properties
of these functions are given in [11]. We also refer to [4], [1], [2], where
detailed lists of references can be found.

Let a,b > 0 be two positive real numbers. The power mean of order
k € R\ {0} of a and b is defined by

ak+bk>1/k

M:@@@:( .

Denote

a+b
A=A(a,0) = —— G=G(a.b) = Aa,b) = lim Ay(a,b) = Vab

the arithmetic, resp. geometric means of a and b.
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The identric, resp. logarithmic means of a and b are defined by

1/(b—a

1
I =1I(a,b) == (b"/a®) ) fora #b; I(a,a)=aq;
e

and .
—a
L=1L(a,b) = ——— fi b; L =a.
(a7 ) ].Ogb_].oga Ora# Y (a7a> a
Consider also the weighted geometric mean S of a and b, the weights

being a/(a + b) and b/(a +b) :
S = S(a,b) _ aa/(aer) . bb/(a+b).

As one has the identity (see [6])

I(a?,b%)

Sla,b) = 1(a,b)

the mean S is connected with the identric mean 1.
Other means which occur in this paper are

2ab a? + b2

H:H(a,b):A,l(a,b):a+b, Q = Q(a,b) = Ay(a,b) = 5

as well as Seiffert’s mean (see [10], [9])

a—>

(a ; b)
2 arcsin
a+b

In the paper [2] C.-P. Chen and F. Qi have considered the ratios

P = P(a,b) = fora #b, Pl(a,a)=a.

a) —](l‘,l’—f— )7 l)) —(l’,l‘—f- ), C) —(l’,{L‘—F ),
) G(:E,x+ ), e) —=(x,z+1), ) =(z,z+ 1),
g) L(IE,[E )7

371



where
A A(x,x +1)

= )= 7 7
T+ = T

etc., and proved that the logarithms of the ratios a) — f) are c.m., while
the ratio from g) is c.m.

In [2] the authors call a function f as logarithmically completely
monotonic (l.c.m. for short) if the function g = log f is c.m. They notice
that they proved earlier (in 2004) that if f is l.c.m., then it is also c.m.
We note that this result has been proved already in paper [4]:

Lemma 1. If f is l.c.m, then it is also c.m.

The following basic property is well-known (see e.g. [4]):

Lemma 2. Ifa > 0 and f is c.m., then a - f is c.m., too. The sum
and the product of two c.m. functions is c.m., too.

Corollary 1. If k is a positive integer and f is c.m., then the function
f* is c.m., too.

Indeed, it follows by induction from Lemma 2 that, the product of a
finite number of c.m. functions is c¢.m., too.

Particularly, when there are k equal functions, Corollary 1 follows.

The aim of this note is to offer new proofs for more general results

than in [2], and involving also the means S, P, Q.

2. Main results

First we note that, as one has the identity

GQ
H =
A?
we get immediately
A_A2 G’_A
H G H G
so that as
| A 21 A d 1 G 1 A
Ogﬁ— Oga an Ogﬁ_ Oga,
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by Lemma 2 the ratios ¢) and f) may be reduced to the ratio a).
Similarly, as

I A I
G @
the study of ratio e) follows (based again on Lemma 2) from the ratios
b) and d).
As one has
A AT
el

it will be sufficient to consider the ratio

0

a) and d).
A
Therefore, in Theorem 1 of [2] we should prove only that T(m, r+1)
and é(x,x +1) are l.cm., and —(z,z + 1) is c.m.

A more general result is contained in the following:
Theorem 1. For any a > 0 (fized), the ratios

A I
7(30, xr+a) and E(:L‘,Q? +a)
are l.c.m., and the ratio
é(95 r+a)
L Y

s c.m. function.

Proof. The following series representations are well-known (see e.g.

5, 9 ) )
ox gl =S5 (157) )
1 > 1 —z\*
log5<x’y):;2k+1’<z+x> ' 4)

By substraction, from (3) and (4) we get

(e 9]

A 1 y— 2
log 7 () = 2 2k(2k +1) <y+x) ! (5)

k=1
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here Alwy)
where 5(:17,y) = Gy etc.

By letting y = = + a in (4), we get that

I o 2k 1 2k
]. - = . . 6
ogG(x,m+a) ;2k+1 (Qx—l—a) (6)
1 2k
As Sy is c.m., by Corollary 1, g(x) = <2x i a) will be c.m.,

too. This means that
(=1)"¢g™(z) > 0 for any z > 0, n. > 0,
so by n times differentiation of the series from (6), we get that

I

log 5(95, T+ a)

I
is c.m., thus —(z,z + a) is L.c.m.

G

The similar proof for T(x, x+a) follows from the series representation

(5).
Finally, by the known identity (see e.g. [6], [9])
I A
log = =2 1
085 =7 (7)
we get the last part of Theorem 1. U
A A
Remark 1. It follows from the above that a(x, T +a), ﬁ(x, x+a),

I

ﬁ(x, T+ a), ﬁ(x, x + a) are all l.c.m. functions.

Theorem 2. For any a > 0, the ratios

—‘W( )—VQAQJFGZ( +a) dg( +a)
3 T, T+ a), NG r,r+a) an Gx,x a
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are l.c.m. functions.

Proof. In paper [8] it is proved that

V2AZ1 G2 1 1 1 y—az\ >
g VLG N1 _1y o
V3 2ok \2k+1 3 Ytz
while in [9] that
/2 A2 2 & _ 2k
10gﬂ22i. 1_l (=) (9)
GV3 2k 38) \y+u

Letting y = x + a, by the method of proof of Theorem 1, the first
part of Theorem 2 follows. Finally, the identity

0@ oy L (i) (10
gG_k:12k3—1 y+x

appears in [9]. This leads also to the proof of l.c.m. monotonicity of the

ratio g(x, r+a). O
Theorem 3. For any a > 0, the ratios
L H A
a(x, r+a), —f(x, zr+a) and ﬁ(x, r+a)

are c.m. functions.

Proof. In [5] (see also [9] for a new proof) it is shown that

£(:c )_i 1 log x — logy 2k (1)
¢ YT k) 2 '

Letting y =  + a and remarking that the function
f(z) =log(x + a) —logz

is c.m., by Corollary 1, and by differentiation of the series from (11), we

L
get that E(ZB,$ +a) is c.m.
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The identity

S H
log2 =1— = 12
0g 7 7 (12)
appears in [9]. Since we have the series representations (see [7], [9])
g oo 1 y—x 2k
log — = : 1
0g = (z.y) ];1 5E 1 (y—i—x) (13)
and o
S - 1 y—x
log = = E . 14
08 71 (#:9) 2 2k (2k — 1) (y+x> ’ (14)
b i lati 4 1 5 1 ! 1 o
y using relation (4), we get 0g =~ log = = log 7, s0
S 00 9 y—1x 2k
log = = E . 15

S H
thus Y(x,x + a) is Le.m., which by (12) implies that the ratio -7 is

l.c.m. function.
Finally, Seiffert’s identity (see [10], [9])

A - 1 2k y—x 2k
log — = _ . : 16
o8 (@ y) ;4k(2k+1) (k:) (y+x> ’ (16)
implies the last part of the theorem. U

S
Remark 2. By (13), (14) and (15) we get also that a(x,x + a),

S

—(z,x 4+ a) and T(x, x + a) are l.c.m. functions.

A
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5.5 On means generated by two positive

functions

Let f,g : (0,4+00) — (0,400) be two positive functions of positive

arguments. We shall consider the following means generated by these

functions:
af(a)+bg(b)
M, =M, (a,b) = ————"= (a,b>0 1
fig f7g( ) f(a)+g(b) ( ) ( )
and
Nf,g — Nf,g<a; b) — (af(a) . bg(b))l/(f(a)-f—g(b)) (CL, b> O) (2)

First remark that M and N are indeed means, since
M, =Ny, = (a,a) =a and a < My4(a,b) <b

& a<banda < Nyg(a,b) <bsa<bd

for any f,g. Some particular cases of these general means are worthy to

note:
1) Let f(x) = g(x) = 2% (k € R). Then one obtains the means

Y

Mk = Mk(a, b) = CLk T bk

known also as the Lehmer means. For k£ = 0 one gets

b
My = My(a,b) = atb_ A(a,b), the arithmetic mean,
for k = —1 one has
2 .
M_ 1 =M 4(a,b) = 1= H(a,b), the harmonic mean,
PR
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for k =1 one gets
a® +b*

Mlel(aab): a—i—b )

for k = —1/2 one has
M_y 5 = Vab = G(a,b), the geometric mean.

Similarly, for the means N one obtains:

1/(ak+b")
Nk = Nk(a,b) = (aakbbk)

Here
Ny = Vab = G(a,b), the geometric mean;
Ny = (@)@ = S(a,b),
a mean studied e.g. in [1], [4], [5].

For k = —1 one can deduce the following similar mean:
N_| = (al/abl/b)ab/(a+b) _ (abba>1/(a+b) — S*(a,b)

(which we denote here as the conjugate of the mean ).

2
But certainly, by selecting f # g, one can write certain unsymmetric
means, as for f(x) =z, g(x) = /z:

24 bJ/b 1/(a+vb
My, = Mi Npg = (aab\/l;> (ev8).
a+\/5

3
For f(z) = g(x) = €”, one has

a/ea + beb
My, =L T2
59 ™ Tea b

(studied also in [5]), while

“ 1/(e“+eb)
Nig = (a(e )b(eb)) .

379



T

Finally, when f(z) =¢

ae” + be™" o) (o)) (e He™")
Mpg == Npg= <a< )a ))

, g(x) = e~ " one gets

but we stop with the examples.

Lemma 1. Let a; > 0, A; > 0 (i =T,n), > \; = 1. Then
=1

ai\l...a;\l” < \ajy+ ...+ Ma, (3)

with equality only for ay = ... =a, = 1.
Proof. (With an idea by F. Riesz [6]). Apply the logarithmic inequal-
ity
Inzx <z-1 (x>0, with equality for z = 1) (4)
to x = %, where A = \ja; + ...+ M\a, (i = 1,n) and multiply (4) by
Ai. One gets

a; _ A\a;
)\i In ZZ S i )\Z
By summing on ¢ = 1, n, one can deduce
A1 A n A1 A
ait.ooapr A ai'...ayn
In AMttrn = A Z)‘i’ ie. In A =0,

giving (3). One has equality only for x = 1, i.e. g 1, implying

A
ap=ay=...=a, = A.
Theorem 1. For all f,g one has
Nf,g < Mf,g (5)

with equality only for a =b.
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Proof. Remark that N;, can be written as a*'b*2, where

fe) )
fa)+ @) |

Then A, Ay > 0, Ay + Ap = 1, and by Lemma 1 (n = 2) we get

af(a) + bg(b)
fla)+ f(b)

One has equality for a = b, one base of Lemma 1. This proves Theorem 1.

)\1:

aM b < Aja+ Aob = = M;,(a,b).

Remark. Since for a < b one has My (a,b) < b, (5) gives an
improvement of relation a < Nyg(a,b) < b (right side), and also of
a < Mgy(a) < b (left side). For particular f,g, relation (5) contains

many inequalities.

The definition of Ny, remembers the identric mean I defined by
1
I:=1I(a,b) = =(a®/")V“ (a #b);  I(a,a) = a. (6)
e

Therefore it is natural that following the above ideas to look for a gen-

eralization like
a 1/(f(a)—g(b))
Ity :=1I14(a,b) = c (/¥ /19" (7)

where ¢ is a positive constant. For f = ¢ the following result can be
proved:

Theorem 2. Let us suppose that f is differentiable. Then (7) defines
a mean if and only if f(x) = kx* and ¢ = e~/* where X # 0 is a real
number, k > 0 constant.

Proof. Let 0 < a <b. Then I; is a mean if

a<c (af(a)/bf(b))l/(f(a)—f(b)) -
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or written equivalently

1 a 7{;@@ a 7{;‘(:1) 1
Z < (_) Fla)—f(®) and (_) Tla)—f(0) <=
c b b c

Now, remark that

f(b)(a=b)
(a>f(b)/(f(a)—f(b)) (a) —-7 alF (@) =7 )
b [\ ’

It is immediate that

a

lim ()" = e,

so by the above identity, on letting b — a we get

L f@lar@  anq  f@/af@) <

c

: (8)

1
¢
le.
@ 1y o
C

This well-known differential equation, by integrating gives

fla) = ka*, X #0.

Conversely, if f is given by this formula, then I given by (7) defines a
mean for ¢ = e/}, Indeed, as above one can write

)
% < (a) A —p\
e - .

—\b

Denoting % =1z € (0,1) and logarithming this becomes

1
e Rt

which is obviously true. Analogously, the second inequality becomes

J;)\

2 —1

1 < -
X
g — )\
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We now consider certain particular means of the general means intro-

duced above. In Example 1), we have denoted
S(a,b) = (a®*)Y @) 5% (a,b) = (abb?)V/(@+),
The example from 3), was defined in [5] by F:

ae® + be®
F(CL, b) = ea——f—@b'

Now the following identities were remarked (see [3], [5]).

F(a,b) = log S(e” ") (9)
S(a,b) = %, (10)

where [ is the identric mean. Another identity for these means in ([3])

log—=1-—— (11)

where L is the logarithmic mean. See [7] for related identities. By replac-
ing a — 1/a, b — 1/bin (6) one gets the mean

J(a,b) = %
(==
(@)
introduced in [1].
J(a,b) = e(a’/b") /" (12)

Now, remark that
S(a,b) - S*(a,b) = (a®tp*b)V(@+b) — qp,

giving
GQ
* — 1
5 = (13)
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GQ
This is very similar to H = T By replacing a — 1/a, b — 1/b in

definition of S and S*, one gets the surprising fact:
1

1
11 1 1\
5(573) S (avz)

Definition. Two means M, N are T-similar (related to the mean T')

S*(a,b) = and S(a,b) = (14)

if
MN =T? (15)
The mean M* is named as the conjugate mean of M of

1
11\’
M= =
(1)

For example, H and A; as well as S and S* are G-similar (see (13)). We
have:

Theorem 3. If M, N are T-similar, then M* and N* are T*-similar,
and reciprocally.

Proof. In M(a,b)N(a,b) = T*(a,b) apply a — 1/a, b — 1/b and use
the above definition.

M*(a,b) =
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5.6 On certain weighted means

1. Introduction

For a,b > 0 let

b
A= Aab) = ‘1; . G =Gla,b) = Vab,
2 | 12
Q=0Q0.0) =[5 S0 = @t
denote some classical means, and let
L=Lab)= =0 (a#b), Liaa)=
— YT “ne ’ G4 =a

and
I=1(ab) = %(bb/a“)l/(b_“) (a#0b), I(a,a)=a

be the well-known logarithmic and identric means. For these means many

interesting relations, including various identities and inequalities have

been proved. For a survey of results, see e.g. [2], [3], [5], [6], [7]. Particu-

larly, the following chain of inequalities holds true:
G<L<I<A<@<S,

where in all cases a # b.

(1)

Recently, in paper [1] the following weighted means have been intro-

duced o ;
G(a,b;p,q) = C(;z%’qsz)’ where a,b,p,q > 0, etc.
and more generally
M (ap,b
M(a,b;p,q,) = ﬁ,

where M is a given homogeneous mean.

In [1] the authors have essentially proved the following:
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Theorem 1. For all0 < a <b and 0 < p < q one has
G(a,bip,q) < L(a,bip,q) < I(a,b;p,q)

< Ala,bip,q) < Q(a,b;p,q) < S(a,b;p,q). (3)
We note that in the author’s paper [7] (see Corollary 4, p. 117) the
following is proved:
Theorem A. Ifa,b,c,d >0 and ¢ > d, ad — bc > 0 then
L(a,b) - G(a, b)' ()
L(c,d) = G(e,d)
Now put a :==b-q, b :=a-p, c:=q, d :=p. We get from Theorem
A that if ¢ > p > 0 and b > a > 0, then the first inequality of (3) holds

true.

Remark. Therefore, the idea of considering the means G(a,b; p, q)
and L(a, b;p, q) could be reduced to Theorem A.

The other aim of this paper is to offer new proofs for the remaining
inequalities, and even to (4). We point out that the second inequality of

(3) has been proved essentially in our paper [4].

2. Main results

The following auxiliary result will be used:
Lemma A. Let M and N be two homogeneous means and suppose
that the application

is strictly increasing for x > 1.

Then for any b > a >0 and ¢ > p > 0 one has
M(a,b;p,q) > N(a,b;p,q). (5)

Proof. Inequality (5) can be written also as

M(ap,bq) _ M(p,q)
N(ap,bq) = N(p,q)’
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and as M, N are homogeneous (of order one),

2) 08 )

76

Now, if bqg > ap and b > a, then as f is strictly increasing, the result

<
7 N\
=
QIS | >

follows.

Proof of I(a,b;p,q) > L(a,b;p,q). In our paper [4] it is proved that
I(1,2)
L(1,z)
is completed.

is strictly increasing function of x > 1. By the Lemma, the proof

Proof of L(a,b;p,q) > G(a,b;p,q). In our paper [4] it is proved that

r_ 1 ( L
L x—1 x)’

/
where L = L(1,z) and L' = dixL(l,x). Now, as % = %, and as it is
well known that L < quH (particular case of (1): L < aA), we easily
r G L\ LI'G-GL L(l,z) . .
get T > a Since al =@ we get that G, ) is strictly

increasing for x > 1. By the Lemma, the result follows.

I 1 1
Proof of A(a,b;p,q) > I(a,b;p,q). As T 7.1 (1 - f) (see [4]),

/ / !

1
and by % = oIT where I = I(1,z), etc., we get i > 7> as by
L < % this holds true. Now, the Lemma implies the result.
alna+0bInbd

Proof of S(a,b;p,q) > Q(a,b;p,q). As InS(a,b) = P

easy computation gives

Y

!

%: <x+1+m—21) J(z+1)2

/ ! !
T

. r+1 .
Since — = , we can prove that — > — as by L < 5 this

Q x?2+1 S Q
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reduces to (2% +4x — 1)(z? + 1) > z(x + 1), or after some elementary

computations, to (z — 1) > 0. The Lemma applies.

3. Corrected result and new proofs

In [1] Theorem 8 incorrectly states that I(a,b;p,q) < I(a,b) for 0 <
a < band 0 < p < ¢, while Theorem 7 states that L(a,b;p,q) > L(a,b).
In what follows, the following corrected result, with new proofs, will be
offered:

Theorem 2. One has, for anyb>a >0 and g >p >0

I(p,q) - I(a,b) > I(pa, qb) (6)
and
L(p,q) - L(a,b) < L(pa, gb). (7)
Proof. The following integral representations are well-known:
1
InI(a, b) = / In(ua + (1 — w)b)du (8)
0

and .
L(a,b) / ot B, ()

0

By taking into account of (8), it will be sufficient to show that

upa + (1 —u)gb > [up + (1 — u)q][ua + (1 —u)b], u € [0,1].  (10)

After some elementary computations, (10) becomes:
u(l—u)(a=0)(p—q) 20

which is true. Since in (10) there is equality only for u = 0 or u = 1, by
integration we get the strict inequality (6).
Now, by (9) inequality becomes

1 1 1
/ @tbltdt/ plgttdt </ (pa)(bg)'~"dt,
0 0 0
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and this is consequence of the Chebysheff integral inequality

! /yf(t)dt- ! /yg<t>dt< ! /yf<t>g<t>dt, (11)

y—= y—=z y—

where x < y and f, g : [x,y] — R are strictly monotonic functions of the

same type. In our case [z,y] = [0, 1];

=t =0 () oy —sta = (2)

q

which are both strictly decreasing functions for b > a > 0 and ¢ > p > 0.
Remarks. 1) Another proof of (7) can be given by the formula

1 t 1t
In L(a, b) = / Mdt,
0

and by taking into account of the relation (6) (proved before via (8) and
(10)).

2) A generalization of (6) and (7), for the so-called ” Stolarsky means”
has been given by E. Neuman and the author in 2003 (see [2], Theorem

3.8).

4. Refinements

First we will use the method of proof of Theorem A from [7] to deduce
a refinement of I(a,b;p,q) < A(a,b;p,q).
Refinement of I(a,b;p,q) < A(a,b;p,q). Let us introduce the mean

2 2
R_q/#.

The following series representations may be found in [7]:
R 1 1 1
In— = e 12
N ;2k<2k+1 3k>z (12)
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and

R 1 1\ o

k=1
A K1

In— = — . % 14

k=1
where z = lb)__|_—a' By a subtraction, from (13) and (14) we get
a
A & 1 ok

Assume now that a,b,c,d > 0 are given in such a way that b > a,
b—a - d—c

b+a d+c

bc > ad. Then from (12

d > ¢ and

. This latest inequality may be written also as

1

R(a,b)  I(a,b)
Rie,d) ~ I(c,d)

) we get ?(a, b) > E(c, d), or equivalently

By putting here a := pa, b := ¢gb, ¢ := p, d := q the above con-
ditions become b > a and ¢ > p and we have obtained I(a,b;p,q) <
R(a, b;p,q). By using the same method for the representation (15), we
get R(a,b;p,q) < A(a,b;p,q). Thus we have obtained the refinement:

Theorem 3.
I(a,b;p,q) < R(a,b;p,q) < A(a,b;p,q), ifb>a>0, ¢g>p>0. (16)

Refinements of L(a, b;p,q) < I(a,b;p,q). Let us introduce the follow-

ing means:
2G+ A 2A+ G
U=Ulab)= 272 vevy=""52
3 3
a—>b
P = P(a,b) = (a #b), P(a,a) = a.

n(557)
2 arcsin
a+b
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Here the mean P is called also the first Seiffert mean (see [7], [7]).

The following chain of inequalities is known:
L<U<P<V<I (17)

The first inequality of (17) is due to B.C. Carlson ([3]), for the second
and third inequality see [5], while for the last inequality, see [3], [5] and
the references therein (the last inequality has been proved by the author
in 1991).

Now, from Section 2 we know that

1 . 1 L 1 . L
I -1 L)’ L z-1 x)’

where L = L(1,x), etc. and = > 1. One can deduce also the following

formulae
u 2+x v 2z + 1
U Vel +z+1) V  2yz(z+/r+1)
and
P 2P
P r-1 (x+1)y/z|

! /
Now, the inequality T > T becomes, after some elementary trans-

I~ 2yx(r+ 1+ x)
4r+ax+1
Since v/ = G, x + 1 = 2A, this inequality is in fact the following:
Lemma 1. One has

formations:

G(2A+G)

L
TG+ A

(18)

Proof. By the Leach-Sholander inequality ([3]) L > V/G2A, it is suf-
ficient to prove that

VG2A > G(2A+G)/(2G + A).
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By putting A/G =t > 1, and by letting logarithms, this becomes
uw(t) =Int+3In(t +2) —3In(2t+ 1) > 0.
After elementary computations, we can deduce:
tt+2)2t + DU (t) =2(t — 1)* > 0.

Since w(t) is strictly increasing, we can write U(t) > U(1) = 0, so
(18) follows. This proves U'/U < L'/ L.
/ /

Inequality i < B after some elementary transformations becomes:

Lemma 2. (24 + G)A
—_— 1
P<=era (19)
_2A+G 2A+G  (2A+G)A
Proof. By P <V = 3 and 3 < 3G A
2G+ A< 3A, ie. G <A,
which is true. ) .
The inequality - < v becomes:
Lemma 3.
ARG +4) (20)
2A+ G

Proof. In our paper [5] it is proved that

2
P>3A(A+G).

2

Therefore, it is sufficient to prove that

o (A+G\? ARG+ A)
A > 2T T
2 24 4+ G

Put o= t > 1, and by logarithmation, we have to prove

1
v(t) =3In(2t+1)+21In (t%) —2Int —3In(t+2) > 0.
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After elementary computations we get
tt+1)(t+2)(2t+ 1) (t) = (t — 1)(5t +4) > 0.

This implies v(t) > v(1) = 0, so (20) follows.
! !/

Finally, the inequality v < 7 becomes again inequality (18).

By the proved inequalities
v pP VT
TSPV
and by taking into account Lemma A, we get:
Theorem 4. Forb>a >0, ¢ >0 >0 one has

L(a,b;p,q) < Ula,b;p,q) < P(a,b;p,q)

<Vi(a,b;p,q) < I(a,b;p,q).
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5.7 Stolarsky and Gini means

First class of means studied here was introduced by K. Stolarsky [20].
For a,b € R they are denoted by D,;(+,-) and defined as

( a ay71/(a=b)
b(a" — y*)
e a=D 70
1 “lnx —y*1
exp(———l—x nr—y ny)’ a=b+#0
Dap(z,y) = a e =y (1.1)
Ia_ya
S 0, b=0
[a(lnx—lny)}’ a7 0,
\ xy, a:b:()

Stolarsky means are sometimes called the difference means (see, e.g., [10],
8]). Here z,y > 0, x # y.

The identric, logarithmic, and power means of order a (a # 0) will
be denoted by I,, L,, and A,, respectively. They are all contained in the
family of means under discussion. We have I, = D, ,, L, = D,p, and
A, = Dygq. When a = 1 we will write /, L, and A instead of Iy, L, and
A;. There is a simple relationship between means of order a (a # 1) and

those of order one. We have

L(x,y) = [ (a®, y*)]""

with similar formulas for the remaining means mentioned above. Finally,
the geometric mean of x and y is G(x,y) = Doo(z,y).

Second family of bivariate means studied was introduced by C. Gini
[4]. Throughout the sequel they will denoted by S, (-, ) and they are
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defined as follows

b 4 yb

( |:$a+ya:|1/(ab)

Sap(z,y) = exp (x“ Inz+y*Iny
xa _|_ y(l

\ V1Y,

(1.2)

Gini means are also called the sum means. It follows from (1.2) that

So,—1 = H — the harmonic mean, Syo = G, and S; o = A. The following

mean S = S;; will play an important role in the discussion that follows.

Alzer and Ruscheweyh [1] have proven that the joint members in the

families of the Stokarsky and Gini means are exactly the power means.

For the reader’s convenience we give here a list o basic properties of

the Stolarsky and Gini means. They follow directly from the defining
formulas (1.1) and (1.2) and most of them can be found in [5] and [20].
Although they are formulated for the Stolarsky means they remain valid

for the Gini means, too. In what follows we assume that a,b,c € R.

(P1) Dgu(+,-) is symmetric in its parameters, i.e. Dy (-, ) = Dpal-, ).

(P2) D..(z,y) is symmetric in the variables z and y, i.e.,

.y

D. .(x,y)=D..(y,x).

(P3) Dgp(x,y) is homogeneous function of order one in its variables, i.e.,

Da,b(Axv Ay) = )‘Da,b(l‘7y)a A > 0.

(P4> Da,b<xcvyc> = [Dac,bc(x7y>]c'

(P5) Da,b(‘r? y)D—a,—b('rv y) = x2y.

(P6) Dap(z%y) = (xy)Dap(z%y7°).
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(P7) Dap(,y)Sap(®,y) = Dap(2?, y*) = D3, (2, y).
(P8) D, increases with increase in either a or b.

(P9) If a > 0 and b > 0, then D, is log-concave in both a and b.
If a < 0and b <0, then D, is log-convex in both a and b.

Property (P8) for the Stolarsky means in established in [5] and [20].
F. Qi [13] has established (P8) for the Gini means. Logarithmic concavity
(convexity) property for the Stolarsky means is established in [12].

(P10) If a # b, then

1
In Da,b = b

—

b b
1
/ In;dt and InS,;, = 2 / In J.dt.
a —a J,

First formula in (P10) is derived in [20] while the proof of the second
one is an elementary exercise in calculus.

We shall prove now the property (P9) for the Gini means. The fol-
lowing result will be utilized.

Lemma 2.1. [14] Let f : [a,b] — R be a twice differentiable function.

If f is increasing (decreasing) and/or convex (concave), then the function

gla.t) = [ s

is increasing (decreasing) and/or convex (concave) function in both vari-
ables a and b.
Let r = (x/y)" and let p(t) =In S, (¢t € R). It follows from (1.2) that

Inr
tu(t) =tl — .
p(t) =tz ———
Hence
Inr
20/ (1) = 0
4 (1) r(rﬂ)



and

nr \°
ety =r(1— <0
ey =rit =) (5

for all ¢ # 0. Thus the function p(t) is strictly concave for ¢ > 0 and
strictly convex or ¢ < 0. This in conjunction with Lemma 2.1 and the
second formula of (P10) gives the desired result.

We close this section with three comparison theorems for the means

under discussion. The following functions will be used throughout the

sequel. Let
I’ —_—
=Bl L,
k(z,y)=q *7Y
sign(z), ©=y
and let
L(z,y), ©>0,y>0
l(z,y) =
0, rz-y=20
where

r—y
L —_— L =

is the logarithmic mean of z and y. Function I(z,y) is defined for non-
negative values of z and y only.
The comparison theorem for the Stolarsky mean reads as follows.
Theorem A. ([10], [6]) Let a,b,c,d € R. Then the comparison in-
equality
Dap(@,y) < Dea(z,y)

holds true if and only if a +b < c+d and
[(a,b) <l(c,d) if 0 <min(a,b,c,d),
k(a,b) < k(c,d) if min(a,b,c,d) < 0 < max(a,b,c,d),
—l(—a,—b) < =l(—c,—d) if max(a,b,c,d) <0.
A comparison result for the Gini means is contained in the following.
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Theorem B. ([9]) Let a,b,c,d € R. Then the comparison inequality

Sap(@,y) < Sealz,y)
s valid if and only if a+b < c+d and
min(a,b) < min(c,d) if 0 < min(a,b,c,d),
k(a,b) < k(c,d) if min(a,b,c,d) <0 < max(a,b,c,d),
max(a,b) < max(c,d) if max(a,b,c,d) <O0.

A comparison result for the Stolarsky and Gini means is obtained in [8].
Theorem C. Leta,b e R. Ifa+b >0, then

Da,b('r? y) < Sa,b(x7 y)

with the inequality reversed if a+b < 0. Moreover, D, y(x,y) = Sap(,y)
if and only if a + b= 0.
The new proof of Theorem C is included below.

Proof. There is nothing to prove when a + b = 0 because
da,fa = Sa,fa =G.

Define r = (z/y)" and ¢(t) = In I; — In J;. One can verify easily that

B 2rinr _ H(r,1)
B [ VR TS A

where the last inequality follows from the harmonic-logarithmic mean
inequality. Also, ¢p(—t) = —¢(t) for t € R. Hence ¢(t) < 0 if ¢ > 0 and
o(t) > 0 for t < 0. Let a # b. Making use of (P10) we obtain

1 b
R / é(t)dt < 0,

where the last inequality holds true provided a + b > 0. The same argu-
ment can be employed to show that D,j > S, if a+b < 0. Assume now
that @ = b # 0. Sandor and Rasa [17] have proven that D,, < S, for
a > 0 with the inequality reversed if a < 0. This completes the proof. [J
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Proofs of some results in this section utilize a refinement of the clas-
sical inequality which is due to Hermite and Hadamard.

Let f : [a,b] — R be a convex function. Then

a b
H(*57) =52, [ o< gi@s o e

with the inequalities reversed if f is concave on [a, b]. Equalities hold in
(3.1) if and only if f is a polynomial of degree one or less (see, e.g., [11]).
To obtain a refinement of (3.1) we introduce a uniform partition of
[a, b] with the breakpoints oy, i.e., a = ap < oy < ... < o, = b with
ap —ag_1 =h > 0. Also, let 5 < 85 < ... < 3, be the midpoints of the
consecutive subintervals. Thus
(n—Fk)a+ kb

ap=—2" T 0<k<n
n

and
(2n — 2k + 1)a + (2k — 1)b

2n ’

Let n be a positive integer. We define

k':

M= 5 (5)
k=1

and

T,= - {éma) +I0)+ Zﬂak)} -

k=1

Lemma 3.1. Let f be a convex function on [a,b]. Then

1 b
M, < H/ F(t)dt < T, (3.2)

Inequalities (3.2) are reversed if f is concave on |a,b).
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Proof. Applying (3.1) to each of the integrals

AN

— f(t)dt

h ag—1
(h = (b — a)/n) and next summing the resulting expression, for k =
1,2,...,n, we obtain the assertion. U

It is easy to verify that if f is a convex function on [a, b], then

M, > f [%Zﬁk] zf(a;b)
k=1

and

S
—

T < o lf(@) + F0)+ 5 Sl — W) f(a) + KFB)] = 31F(0) + £(0).

1

e
Il

Thus (3.2) gives the refinement of the Hermite-Hadamard inequality
(3.1). Inequality (3.2), when n = 2, appears in [3]. See also [2].
We shall use Lemma 3.1 in the proof of the following.

Theorem 3.2. Let a and b, a # b, be nonnegative numbers. Then

n—1 1/n n 1/n
(s/[alb I 1%> < Dy < (H Jﬁk> : (3.3)
k=1

k=1
n—1
n 1 1 1 1 1
< < —|=4+=+2 —_— 3.4
> I, )
k=1

and

n—1 2/n n 2/n
( V IQaIQab H IQak) < Da,bSa,b < (H IQBk) . (35)
k=1

k=1
Inequalities (3.3) and (3.5) are reversed if a <0 and b <0, a # b.
Proof. Assume that ¢ > 0 and b > 0, a # b. For the proof of (3.3)
we use Lemma 3.1 with f(¢) = In I; and property (P9) to obtain

n—1 b n
1 1 1
— | Inv/1,1 Inl,, | <—— | Inldt<— In g, .
(o ) <52 [ s < S
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Application of (P10) to the middle term gives the assertion. In order to
establish inequality (3.4) we use inequality (3.3) to obtain

n 1/n 1/2n n—1 1/n
I(n) =no=(a) H()
P [ﬁk Da,b IaIb P Iak

Application of the geometric mean-harmonic mean inequality together

with the use of the arithmetic mean-geometric mean inequality completes
the proof of (3.4). Inequality (3.5) follows from (3.3). Replacing a by 2a
and b by 2b and next using the duplication formula Dq S, = D3, 4, (see
(P7)) we obtain the desired result. Case a < 0 and b < 0 is treated in an
analogous manner, hence it is not included here. U

Inequalities (3.3) and (3.4) are valid for the Gini means with the
identric means being replaced by S-means of the appropriate order.

Bounds on the product D, S, are obtained below.

Theorem 3.3. Let a,b € R. Assume that a +b > 0. Then

Da,bSa,b S Ag (36)
. . 2
if and only if ¢ = max(ry,r3), where ri = g(a +b) and

(In4)l(a,b) if a>0 and b>0,
rs =
0 if a<0 and b>0.

If a +b < 0, then the inequality (3.6) is reversed if and only if ¢ =

min(ry, re), where ry is the same as above and

—(In4)l(—a,=b) if a<0 and b<O0,
9 =

0 if a>0 and b>0.

Proof. We shall use again the duplication formula

V Da,bSa, = D2a,2b-
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Assume that a > 0 and b > 0. Using Theorem A we see that Dy, 0, <
Dy, , if and only if 2(a + b) < 3¢ and [(2a,2b) < I(2q, q). Solving these
inequalities for ¢ we obtain ¢ > r and g > r5. Assume now that a > 0,
b <0 with a + b > 0. Invoking Theorem A we obtain

g>r; and k(2a,2b) < k(2q,q).
The last inequality can be written as
(a+0b)/(a—0b) <1.

Clearly it is satisfied for all values of @ and b in the stated domain because
0<a+b<a-—0>b Case when a <0, b >0 with a + b > 0 is treated in
the same way. We omit the proof of theorem when a + n < 0 because it
goes along the lines introduced above. Il
Numerous inequalities for the particular means are contained in those
of Theorems 3.2 and 3.3.
Corollary 3.4. We have

Ag/g < 4/ 15/617/6 < I, (37)
VAL < \/[1/2[3/2 <I, (38)

VAL < Ayys, (3.9)
VIS < Apa. (3.10)

Proof. First inequalities in (3.7)-(3.8) follows from the second in-

equalities in (3.3) and (3.5) by letting n = 2 and putting (a,b) = (%, ;)
and (a,b) = (1,0), respectively while the second inequalities are an ob-
vious consequence of the logarithmic concavity of the identric mean. In-
equalities (3.9)-(3.10) follow from (3.6) by letting (a,b) = (1,0) and
(a,b) = (1,1), respectively. d

Combining (3.7) and (3.9) we obtain VAL < Ag3 < I (see [15]). The

second inequality in the last result is also established in [21].
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The following result
Aia/?: S [aSa § A%lnzl)aa a Z 0 (311)

is also worth mentioning. Inequalities (3.11) are reversed if a < 0. Let
a > 0. Then the second inequality in (3.11) follows immediately from
(3.6). For the proof of the first inequality in (3.11) we use (3.7) and the
duplication formula (P7) to obtain

AL js(,y) = Agyps(a®,y?) < I(2?, %) = I(x,y)S (2, ).

This completes the proof when a = 1. A standard argument is now used
to complete the proof when a > 0. Il
Our next result reads as follows.
Theorem 3.5. Let a <0 and b < 0. Then

D,y < L(1,, I). (3.12)
If a >0 and b > 0, then
IaIb
D,p> ———7—. 1
Y2 T (3.13)

Proof. There is nothing to prove then a = b. Assume that a < 0,
b < 0, a # b. For the proof of (3.12) we use (P10), Jensen’s inequality
for integrals, logarithmic convexity of I; and the formula

1
L(:):,y):/ rhyttdt
0

(see [7]) to obtain

—a

1 1
<In ( / Ita+(1t)bdt) <In ( / I;I,}—tdt)
0 0

=InL(I,, ).

1 b 1
In D,y = / In I,dt = / In Ty (1—pclt
a 0
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Let now a > 0 and b > 0. For the proof of (3.13) we use (P5) and (3.12)
to obtain

LY LY LY
Da LE, — Z =
#(23) D_g (2, y) — LI, 1) (%Y
I, I,
_ 1 _ 1,1, . 0
(L 1Y L)
1, I,
Corollary 3.6. The following inequality
IG
<L 3.14
L(I,Q) (3.14)
15 valid.
Proof. In (3.13) put (a,b) = (1,0). O

Inequalities similar to those in (3.12)-(3.13) hold true for the Gini
means. We have

Sa,b S L(Sa, Sb), a S O, b S 0

and
S S.Sh
= L(S,, S,)

Theorem 3.7. Let a,b,c € R, ¢ # 0. Then

S, a>0,b>0.
[Da,b(‘rc7 yC)]l/c 2 Da,b(x7 ?/) (315)

if and only if (a +b)(c — 1) > 0. A similar result is valid for the Gini
means.
Proof. We shall use (P4) in the form

[Da,b(xca yc>]1/c = Dac,bc(xa y) (316)

It follows from Theorem A that Dy, < Dgcp if and only if a+b < c¢(a+b)
and if one of the remaining three inequalities of the above mentioned

theorem is valid. Assume that ¢ +b > 0 and consider the case when
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¢c>1.1fa>0and b > 0, then min(a,b,ac,bc) > 0 and I(ac,bc) =
cl(a,b) > l(a,b). Making use of (3.16) we obtain the desired inequality
(3.15). Now let @ > 0, b < 0 with a + b > 0. Then min(a, b, ac, bc) <
0 < max(a,b,ac,bc) and k(ac,bc) = k(a,b) which completes the proof
of (3.15) in the case under discussion. Cases 0 < ¢ < 1 and ¢ < 0 are
treated in a similar way, hence they are not discussed here in detail. For
the proof of the counterpart of (3.15) for the Gini means one uses the
comparison inequality of Theorem B. O

We close this section with the result which can be regarded as the
Chebyshev type inequality for the Stolarsky and Gini means.

Theorem 3.8. Let p = (p1,p2) and ¢ = (q1,q2) be positive vectors.
Assume that 0 < p1 < pa and 0 < ¢1 < @qo or that 0 < py < p; and
0<qy<qi. Let s = (s1,82), where s1 = p1q1 and s; = page. If a+b >0,
then

Dy (p)Dap(q) < Dap(s)- (3.17)

If a+b <0, then the inequality (3.17) is reversed. A similar result is
valid for the Gini means.

Proof. The following function

Y(t) =Inl(s) — In[l(p) i (q)], t € R (3.18)

plays an important role in the proof of (3.17). We shall prove that
w(—t) = —1(t) and also that ¢(t) > 0 for t > 0. We have

Y(t)+Y(—t) = InIi(s)+In_4(s) —[In I;(p) +In I _+(p)] —[In I;(q) +1In I_+(q)]
=2[InG(s) —InG(p) — InG(q)] = 0.

Here we have used the identity Inl; +1In/_; = 2In G which is a special
case of (P5) when a = b = t. Nonnegativity of the function ¥ (t) (t > 0)
can be established as follows. Let 0 < u < 1 and let v = (u,1 — u). The
dot product of v and p, denoted by v - p, is defined in the usual way

v-p=up; + (1 —u)ps.
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Using the integral representation for the identric mean of order one

Inl(p) = /0 In(v - p)du
we obtain )
W) 1) = [ wl(w-p)lo- )l

Application of the Chebyshev inequality

(v-p)(v-q)<v-s
gives X
In[I(p)I(q)] < /0 In(v - s)du =InI(s).

This implies the inequality

Li(p)1i(q) < Iy(s), t >0

with the inequality reversed if ¢ < 0. This completes the proof of (3.17)
when a = b = t and shows that ¢(¢) > 0 for ¢ > 0. Assume now that
a #b. Let a+b > 0. Using (P10) together with the two properties of the

function ¢ we obtain

B 1
b—a

1 b
b_a/a In I;(s)dt = In Dy (s).

b
(Do (p) Das(0) t/mM@MMﬁ

<

If a+b < 0, then the last inequality is reversed. Proof of the corresponding
inequality for the Gini means goes the lines introduced above. We omit
further details. O

4

The goal of this section is to obtain the Ky Fan type inequalities for

the means discussed in this paper.
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To this end we will assume that 0 < x, y < % with = # y. We define
¥=1—x 4y =1—y and write G’ for the geometric mean of ' and ¢/,
i.e., G = G(«,y'). The same convention will be used for the remaining
means which appear in this section.

We need the following.

Lemma 4.1. Let a # 0. Then

a __ .0 1— a_ (1— a
sy | | T+ Ty
Proof. For the proof of (4.1) we define a function
t*—1
W) = —— t>0.
Pa(t) tr+1
Clearly ¢, is an odd function in a, i.e., ¢_, = —¢,. In what follows we

will assume that a > 0. Also, ¢,(t) > 0 for t > 1 and ¢,(t) < 0 for
0 < t < 1. Since both sides of the inequality (4.1) are symmetric, we
may assume, without loss a generality, that x >y > 0. Let z = z/y and
w=(1—x)/(1—1y). It is easy to verify that z > 1 > w > 0 and zw > 1.
In order to prove (4.1) it suffices to show that |¢,(2)| > |¢.(w)] for a > 0.

Using the inequalities which connect z and w we obtain
2 —w* >0 and (zw)* > 1.

Hence

24— w4 (zw)* — 1> 2% —w* — (zw)* + 1

or what is the same that

(z* =1 (1 +w) > (2*+ 1)(1 —w?).

This implies that ¢,(z) > —¢,(w) > 0. The proof is complete. O
Proposition 4.2. Let a > 0. Then
G I, A, _J,
G<TST < (4.2)
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Inequalities (4.2) are reversed if a < 0 and they become equalities if and
only if a = 0.

Proof. There is nothing to prove when a = 0. Assume that a # 0.
We need the following series expansions

00 1 T —y 2k
A= Gexp Z—( ) ], (4.3)
pt 2k \z+vy
[e§) 1 T —y 2k
I =Gexp ( ) , 4.4
; 2k+1\z+y ] (4.4)
oo 1 T—y 2k
J = Gexp ( ) 4.5
; 2k—-1\z+vy ] (4.5)
(see [18], [19], [16]). It follows from (4.3)-(4.5) that for any a # 0
I~ 1 (2% —y° 2
A, =Gexp |- — ( ) , 4.6
[a ; 2k \ z¢ + y° (4.6)
-1 > 1 x4 —y® 2]
I,=Gexp |- < - ) : (4.7)
@i 2k+1 \z*+y ]
_1 > 1 x4 —y® 2K
Jo = Gexp az2k—1 <$a+ a) : (4.8)
L™ k=1 y i

Eliminating G between equations (4.6) and (4.7) and next between (4.6)
and (4.8), we obtain

1 — 1 ¢ —y° 2k
I = A S 4.
o anp[ a;%(2k+1) (x“+y“) ] (4.9)
and
1 00 1 ZL‘a—ya 2k
a — Aa - . 4.1
/ P a; 2k(2k — 1) (xa+ya) (4.10)
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Assume that a > 0. For the proof of the first inequality in (4.2) we use
(4.7) to obtain

I, G 1 1
FZaGXp az2k+1(u2k—02k) s (411)

where

a __ a 1 o a _ a
et /AN € k) it €t )
oty (T2 + ()
Making use of Lemma 4.1 we obtain u** —v?* > 0 for k = 1,2, ... This
in conjunction with (4.11) gives the desired result. Second and third
inequalities in (4.2) can be established in an analogous manner using
(4.9) and (4.10), respectively. The case a < 0 is treated in the same
way. U
The main result of this section reads as follows.
Theorem 4.3. Let a,b € R. If a+ b > 0, then

G Dab Sab

— < < =,

G" ™ Dy ™ Sap

(4.12)

Inequalities (4.12) are reversed if a +b < 0 and they become equalities if
and only if a +b = 0.

Proof. There is nothing to prove when a + b = 0. Assume that
a+b > 0. For the proof of the first inequality in (4.12) we use (P5) twice
with a = b =t to obtain

I I, G

lnﬁ—i-lnzzﬂna. (4.13)
Let us define o I
¢

It follows from (4.13) that h(t) = —h(—t). Also h(t) > 0 for t > 0
and h(t) < 0 for ¢ < 0. This is an immediate consequence of the first
inequality in (4.2). Making use of (P10) we obtain

I G Do
> = _ - .
0> b—a/a h(t)dt = In el In o,
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For the proof of the second inequality in (4.12) we define not h(t) as

I; Sy
h(t)=In— —In —.
=g g

It follows that
h(t)=(Inl; —InS;) — (InI; — In S}).

Since both terms on the right side are odd functions in ¢ (see proof of
Theorem C) it follows that function h(t) is also odd as a function of
variable ¢. Using (4.2) we see that h(t) < 0 for ¢t > 0 with the inequality
reversed if ¢ > 0. This in conjunction with (P10) gives

IR D
0>~ /h(t)dtzln ab _ 1y Sab.

This completes the proof in the case when a+b > 0. Case when a+b <0
is treated in an analogous manner. O
Corollary 4.4. The following inequalities are valid
H G L A
Sl G i i
H — G~ L' = A
Proof. To obtain the inequalities in question we use Theorem 4.3
twice letting (a,b) = (—1,0) and (a,b) = (1,0). O
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5.8 A note on the Gini means

In paper [1], the following two means are compared to each others:

Let 0 < a < b. The power mean of two arguments is defined by

aP 4+ bP 1/p
( ) , p#0

Mp = 2 (1)
Vab, p=0,
while the Gini mean is defined as
a1 4 pp-1 1/(p—2)
- 7 y D 27
S, = ( a+b ) 7 (2)

S(aab)v p:27

where S(a,b) = (a’-b°)"/(@*+) The properties of the special mean S have
been extensively studied by us e.g. in [7], [8], [9], [10]. In paper [6] it is

conjectured that
<1, if pe(0,1)
={ =1, if pe{0,1} (3)

>1, if pe€(—o00,0)U(1,00),

Sp
M,

while in [1], (3) is corrected to the following:

<1, if pe(0,1)U(1,2)

Sp

P _ — i 4
>1, if pe(—o00,0)U|2,00)

For the proof of (4), for p & {0, 1,2}, the author denotes t = b/a > 1,

when

M,

p

log 22 — %f(t),
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where

P 14+ ¢t 14¢P
t) = -1 —1 t > 1.
f(t) S g e e
Then
p—2 (1+t)(1+tr-H(1+tr)’
where

gt) =t —(p— Dt +(p— P2 —1, t > 0.

It is immediate that
gdt) = (p—DtP3h(t), where h(t) =2t —pt* +p—2.

Then the author wrongly writes /() = 2p(t?~! — 1). In fact one has
R'(t) = 2pt(tP~2 — 1), and by analyzing the monotonicity properties, it
follows easily that relations (3) are true (and not the corrected version

(4)Y).

However, we want to show, that relations (3) are consequences of
more general results, which are known in the literature.

In fact, Gini [2] introduced the two-parameter family of means

( at + v 1/(u—v)
(a”—l—b”) , u#v
= vl b*log b
Suw(a,b) exp <a oga + b*log )7 w=v 40 (5)
a* + b
L \/@, u=v=>0

for any real numbers u,v € R. Clearly,
So—1 = H (harmonic mean),
Soo =G (geometric mean),
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Sio=A (arithmetic mean),
S11 =25 (denoted also by J in [4], [10]),
Sp—1,1 = Sp,
where S, is introduced by (2). In 1988 Zs. Péles [5] proved the following

result on the comparison of the Gini means (5).
Theorem 2.1. Let u,v,t,w € R. Then the comparison inequality

Su,v(a7 b) S St,w(a7 b) (6)

s valid if and only if u+v <t +w and

i) min{u, v} < min{t,w}, if 0 < min{u,v,t, w},

i) k(u,v) < k(t,w), if min{u,v,t,w} < 0 < max{u,v,t, w},

it1) max{u,v} < max{t,w}, if max{u,v,t,w} <0.

EEIA

Here k(z,y) = r—y

sign(z), = =uy.

The cases of equality are trivial.

Now, remarking that S, = S,_1 1 and M, = S, 0, results (3) will be a
consequence of this Theorem. In our case u=p—1,v=1,t =p, w = 0;
sou+v <t+4+w=p,ie. (6)is satisfied.

Now, it is easy to see that denoting

min{p —1,0,1,p} = ap, max{p—1,0,1,p} = 4,

the following cases are evident:
)p<0=p—-1<p<0<l,soa,=p—1 A,=1,
2)pe(0,1]=p—-1<0<p<l,soa,=p—1,A4,=1;
3)pe (1,2 =0<p—1<1<p,s0a,=0,A4,=p;
Hhp>2=0<l<p—-1<p,soa,=0,A,=np.

In case 2) one has

p—1]-1
p—2

_ bl

if p—1<0<p
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only if
%SL ie. %go,
which is satisfied. The other cases are not possible.
Now, in case p ¢ (0,1) write S,o < Sp_11, and apply the same
procedure.
For another two-parameter family of mean values, i.e. the Stolarsky
means D, ,(a,b), and its comparison theorems, as well as inequalities

involving these means see e.g. [11], [3], [4], [10], and the references.
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5.9 Inequalities for the ratios of certain

bivariate means

1. Introduction

In recent years a problem of comparison of ratios of certain bivariate
homogeneous means has attracted attention of researchers (see, e.g., [17],
6]).

In order to formulate this problem let us introduce a notation which
will be used throughout the sequel. Let a = (ay, az) and b = (by, be) stand
for vectors whose components are positive numbers. To this end we will

always assume that a and b satisfy the monotonicity conditions

@by (1.1)

as ~ by
Further, let ¢ and ¥ be bivariate means. We will always assume that ¢
and 1 are homogeneous of degree 1 (or simply homogeneous) in their
variables. The central problem discussed in this paper is formulated as
follows. Assume that the variables a; and b; (i = 1, 2) satisfy monotonicity

conditions (1.1). For what means ¢ and 1 does the following inequality

P(a) _ Y(a)
o) = ()

hold true? In [6] the authors have proven that the inequality (1.2) is valid

(1.2)

for power means of certain order, logarithmic, identric and the Heronian
mean of order w. For the definition of the latter mean see [7] and formula
(2.6).

In this paper we shall obtain inequalities of the form (1.2) for the Sto-
larsky, Gini, Schwab-Borchardt, and the lemniscatic means. Definitions
and basic properties of these means are presented in Section 2. The main
results are derived in Section 3. We close this paper with a result which
deals with the relationship of the Ky Fan inequality and the inequality
(1.2).
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2. Definitions and basic properties of certain

bivariate means

We begin with the definition of the Stolarsky means which have been
introduced in [18] and studied extensively by numerous researchers (see,
e.g., [4], [8], [10], [11], [15]). For z > 0, y > 0 and p,q € R, they are
denoted by D, ,(z,y), and defined for x # y as

;

1
q:cp_yp E
[p((xq—_yq;] , pa(p—q) # 0
1 2Plnz—yPln
exp(——+ . yp y), p=q#0
Dyq(2,y) = p "y (2.1)
1
zP — yP »
=il P70 a=y
[ VY, p=q=0.

Also, D, (z,z) = .

Stolarsky means are sometimes called the extended means or the dif-
ference means (see [8], [10], [15]).

A second family of bivariate means employed in this paper was in-
troduced by C. Gini [5]. Throughout the sequel they will be denoted by
Sp.q(x,y). Following [5]

Lq n yq} : pPFq
Spq(T,y) = 2Plnz +yPlny (2.2)
) , — 0
exp S P=q#
\ LY, pP=q= 0.

Gini means are also called the sum means (see, e.g., [10]).

For the reader’s convenience we recall basic properties of these two
families of means. Properties (P1)-(P3) follow directly from (2.1) and
(2.3). Properties (P4)-(P6) are established in [8], [18] and [11]. For the
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sake of presentation, let ¢, , stand either for the Stolarsky or Gini mean
of order (p,q). We have

(Pl) ¢p,q('v ) = (bq,p('a )

(P2) ¢..(z,y) = ¢..(y, ).

(P3) ¢p4(x,y) is homogeneous of degree 1 in its variables, i.e.,

Gp.g(AT, AY) = App (T, y), A > 0.
P4) ¢, ,(-,-) increases with increase in either p or q.
( p,q

1 q
—/ 1n[t<x7y)dt> p#q

(P5) In D, y(z,y) =< P~ 4Jp
In I (z,y), p=q,
where
]P(I7 ?J) = Dp,p(l”y) (2-3)

is the identric mean of order p. Similarly

1 q
—/ InJi(z, y)dt, p#q

(P6) In S, 4(z,y) =< 47 PJp
In Sy(z,y), p=q,
where
Sp(w,y) = Spp(z,y). (2.4)

Other means used in this paper include the power mean A, of order
p € R. Recall that

P + yp) 1/p
, PF4q
Ap(xvy) = ( 2

(2.5)
/Y, p=0.
The Heronian mean H,, of order w > 0 is defined as
T+ Y+ w/TY
Hy(z,y) = (2.6)

24w

(see [7]). Also we will deal with the harmonic, geometric, logarithmic,
identric, arithmetic and centroidal means of order one. They will be de-

noted by H, G, L, I, A and C, respectively. They are special cases of the
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Stolarsky mean D, ,. We have

H = D72,717 G = DO,O; L= D0,1, H, = D1/2,3/2 (2 7)
I'=Dy:, A=Dis, C=Dys. '
The Comparison Theorem for the Stolarsky means (see, eg., [15]) implies

the chain of inequalities
H<G<L<H<I<A<C (2.8)

provided x # y.

Another mean used in this paper is commonly referred to as the
Schwab-Borchardt mean. Now let x > 0 and y > 0. The latter mean,
denoted by SB(z,y) = SB, is defined as the common limit of two se-
quences {z,}° and {y,}&°, i.e.,

SB = lim z, = lim y,,
n—oo n—oo

where

Tn + Yn
To=T, Y=Y Tor1="5 5 Ynt1 = VIntiln, (2.9)

n > 0 (see [2]). It is known that the mean under discussion can be

expressed in terms of the elementary transcendental functions

( Ju? — 12
arccos(z/y)
SBaa) =3 VEF
arccosh(z/y)’
\ <, r=1y

(see [1, Theorem 8.4], [2, (2.3]). The Schwab-Borchardt mean has been
studied extensively in recent papers [12] and [14].

The lemniscatic mean of x > 0 and y > 0, denoted by
LM (z,y) = LM,
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is also the iterative mean, i.e.,

LM = lim z, = lim y,,
n—oo

n—oo
where
Tn + Yn
To =T, Y =Y, Tp41 = 2 ) Yn+1 = V Tn+1Zn, n Z 0.

The explicit formula

p

2\ /4
(2% — y?)~*arcsl (1 — %) , y<uzx

LM 12 = i .
(LM (x,y)] (2 — 22)"Varcslh (% - 1) , w<y

\ g2 z=1y

involves two incomplete symmetric integrals of the first kind

1 / <
arcsle = . ol <
0o V1—1t4

and

arcslhz = / At
which are also called the Gauss lemniscate functions, (see [2, (2.5)-(2.6)],
[1, p. 259]). It is known [2, (4.1)] that

arcsle = zRp(1,1 — 2) (2.10)
and
arcslhr = zRp(1,1 + ), (2.11)
where _—
Ra(wy) =5 [ (t+a) ¥+ o) ar (2.12)
0

(see [2, (3.14)]). The lemniscatic mean has been studied extensively in

[9]-
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For later use let us record the fact that both SM and LM are homo-
geneous of degree 1, however, they are not symmetric in their variables.
We shall make use of the inequality which has been established in [9,
Theorem 5.2[:

SB(z,y) < LM(y,z) < A< LM(z,y) < SB(y, z) (2.13)

provided 0 < y < z. Inequalities (2.13) are reversed if y > x > 0.

3. Main results

Before we state and prove one of the main results of this section
(Theorem 3.3) we shall investigate a function w(t) which is defined as

follows

u(t) =u(t;z) = %It(as, 1)

(0 < o < 1), where I; is the identric mean defined in (2.3). It follows
from (2.1) that

221 3L,tt—l —thxt_l lnx’ £ 20
u(t) = ) (2* = 1) (3.1)
— t=0.
2x’
We need the following;:
Lemma 3.1. The function u(t) has the following properties
u(t) >0, t e R, (3.2)
u(—t) + u(t) = 2u(0), (3.2)
u(t) is strictly decreasing for every t # 0, (3.4)

u(t) is strictly convex for t > 0 and strictly concave fort < 0. (3.5)

Proof. In order to establish the inequality (3.2) it suffices to apply
the inequality Inz' < z' — 1 to the right side of (3.1). Formula (3.3)
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follows easily from (3.1). For the proof of monotonicity property (3.4) we
differentiate (3.1) to obtain
(xt B 1)3 /

wtillnxu(t):ylny+lny—2y+2, (3.6)

where y = z'. Letting z = =" we can rewrite the right side of (3.6) as

(xt — 1), (z—1)(z+1) 1 1

eyl U 2 e IES] L

Let t > 0. Then 0 < 2 < 1. This in turn implies that z > 1. Application
of the well-known inequality L(z,1) < A(z,1) shows that the right side
of (3.7) is negative. Hence u/(t) < 0 for ¢ > 0. The same argument can
be used that '(t) < 0 for positive ¢. This completes the proof of (3.4).
For the proof of (3.5) we differentiate (3.6) to obtain

%u"@) =3(y* — 1) — (Iny)(y* + 4y + 1). (3.8)

The right side of (3.8) can also be written as

A(y*, 1) +2G(y* 1)
3

6(lny) |L(y* — 1) — =: R.

Let t > 0. Then y < 1. This in turn implies that R > 0 because
A+2G
3

(see [3], [12]). This in conjunction with (3.8) shows that u”(¢) > 0 for
t > 0. Since the proof of strict concavity of u(¢) when ¢t < 0 goes along

L < (3.9)

the lines introduced above, it is omitted. Il
For later use let us record a generalization of the classical Hermite-
Hadamard inequalities.
Proposition 3.2. ([4]) Let f(t) be a real-valued function which is

concave fort < 0, convex fort > 0, and satisfies the symmetry condition
f(=t) + f(t) = 2£(0).
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Then for any r and s (r # s) in the domain of f(t) the following inequal-

ities

2
hold true provided v+ s > 0. Inequalities (3.10) are reversed if r+s < 0.

We are in a position to prove the following.

r+s 1 s 1
1(50) =5 [roas<glim el 6o

Theorem 3.3. Let the vectors a = (a1, az) and b = (by, by) of positive
numbers be such that the inequalities (1.1) are satisfied. Further, let the
numbers p, q, r and s satisfy the conditions p < q and r < s. Then the

following inequality
D, s(a) < Dyq(a)

Dy(0) = Dy 40
1s satisfied if either
(i) r+s>0andp> res
or
(ii) r+s<0andp>r
or
(i) p+q >0 and s <p
or
(iv) p+q <0 ands < ]%
Proof. The following function
Dypg(,1)
o(x) = Dyl 1) (3.12)

0 < z < 1 plays a crucial role in the proof of the inequality (3.11).
Logarithmic differentiation together with the use of (P5) yields

ﬁ : u(t)dt_s—'r/r uw(t)dt, p#qandr+#s
1 S
¢'(z) _ U(p)—s_r/r u(t)dt, p=qandr#s )
e N v
H pu(t)t_U(’l”), p#qan r—s
ulp) ~ulr), p=gqandr=s,
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where i
t) = —1ILi(x,1).
ult) = -1, 1)
We shall prove that ¢(z) is a decreasing function on its domain. Consider

the case when r +s > 0 and p > (r + s)/2. Taking into account that the
function u(t) is strictly decreasing for ¢t # 0 (see (3.4)) we have

ﬁ pq w(®)dt < u(p). (3.14)

This in conjuction with the first inequality in (3.10) and the first line of

(3.13) gives
) - (242 0

where the last inequality holds true because p > (r + s)/2.
Hence ¢/(z) <0 for 0 < 2 < 1. Assume now that r + s < 0. Making use
of (3.14) and the second inequality in (3.10) applied to the expression on
the right side in the second line of (3.13) we obtain

/

S < ulp) = lulr) + )] = lu(p) = )]+ 5lup) - ()] <.
where the last inequality holds true provided p > r and p > s. Since
r <p, ¢'(x) <0 provided p > r. Assume now that p + ¢ > 0. Utilizing
monotonicity of the function u(t) together with the use of r < s gives

! /S u(t)dt > u(s). (3.15)

S—T

This in conjunction with the third member of (3.13) and the second
inequality in (3.10) gives
! 1 1 1
S < )+ u(a)] ) = 1u(s) — uls)] + 5lula) ()] <0
where the last inequality is valid provided p > s and ¢ > s.
Thus ¢'(z) < 0 if s < p. Finally, let p + ¢ < 0. Then

¢'(z) ptay
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where the last inequality follows from the first inequality in (3.10) and
from (3.15). Since u(t) is strictly decreasing, the right side of (3.16) is
nonpositive if s < (p + ¢)/2. The desired property of the function ¢(x)
now follows. In order to establish the inequality (3.11) we employ the
inequality ¢(z) < ¢(y) with

Making use of (3.12) and properties (P2) and (P3) we obtain the asser-
tion. The proof is complete. U
We shall establish now an inequality between the ratios of the Sto-
larsky and Gini means.
Theorem 3.4. Let the vectors a and b satisfy assumptions of Theorem
3.3. Ifp+q >0, then

Dpyla) _ Spqla)

< P (3.17)
Dy q(b) = Spq(b)
Inequality (3.17) is reversed if p+ q < 0.
Proof. Let now D, (2.1)
x
b(z) = Dl D) (3.13)
Spq(z,1)
where 0 < z < 1. Using (P5) and (P6) we obtain
1 q
—/ InIy(x,1) — In Sy(z, 1)]dt, p+#q
Ing(x)=¢ 9= PJp
InZ,(xz,1) —InS,(x,1), p=q.
Differentiation with respect to x gives
= [,
/ u(t)dt, p#q
@) ) q=pl, (3.19)
¢(x)
u(p), p=4q,
where now p
u(t) InI;(x, 1) — In Sy(x, 1)].

X
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Making use of (2.3), (2.1), (2.4), and (2.2) we obtain

1 2¢tlnzx

Inli(xz,1) — InSi(x, 1) = —3t t#0.

Hence
2 xt—l

(z2 — 1)?
We shall prove that the function u(t) has the following properties

u(t) = [2% =1 — (2% + 1) Ina"]. (3.20)

>0 if t>0,
u(t) (3.21)
<0 if t<0
and
u(—t) = —u(t). (3.22)

For the proof of (3.21) we substitute y = ' into (3.20) to obtain

4a'Inz (-1 P +1
u(t) = (22 —1)2 \ Iny? 2

~ 4a" 'z
- (th _ 1)2
Since0 <z <1,0<y<1lfort>0andy>1fort <0, the inequality

[L(y* —1) — A(y* 1)].

of the logarithmic and arithmetic means implies (3.21). For the proof of
(3.22) we rewrite (3.20) as

2 y

U(t):;'m[

y*—1—(y*+1)Iny],

where y = a!'. Easy computations give the assertion. It follows from
(3.19), (3.21) and (3.22) that ¢'(z) > 0if p+¢q > 0 and ¢'(z) < 0 if
p~+q < 0 with equalities if p+ ¢ = 0. To complete the proof of (3.17) we
let
T = 42 < @ =y<l1
ai b

in ¢(x) < ¢(y) when p+ ¢ > 0. This in conjunction with (3.18) and
properties (P2) and (P3) completes the proof. The case when p+ ¢ <0

can be treated in an analogous manner. This completes the proof. U
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Our next result reads as follows.
Theorem 3.5. Let the vectors a and b satisfy monotonicity conditions
(1.1). Then

(3.23)

Proof. The first inequality in (3.23) follows from (3.11) and (2.7)
with r = =2, s = —1, p = ¢ = 0 while the second one is an immediate
consequence of G(a)/G(b) < A(a)/A(b) which is a part of (3.23). For the
proof of the third inequality in (3.23) we define a function

L3(x,1)
~ G2z, ) A(z, 1)

¢(z) (3.24)

0 < x < 1. We shall prove that ¢(z) is a decreasing function on the

stated domain. Logarithmic differentiation gives

¢'(q,-):3( 1 1 ) 27 + 1

o(x) r—1 zlnz) z(xz+1)

Letting © = 1/t (¢t > 1) we see that the last formula can be written as

dx) 3t [t—1 4+4t+1
o(x) t—Jlnt O3+ 1) }

To complete the proof of monotonicity of ¢(x) we apply Carlson’s in-

(3.25)

equality (3.9) to obtain

t—1 <t2+4t+1
Int = 3(t+1)

This in conjunction with (3.25) gives the desired result. To complete the

proof of the inequality in question we follow the lines introduced at the
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end of the proofs of Theorems 3.3 and 3.4. The fourth, sixth, and eighth
inequalities in (3.23) are established in [6]. (See Theorems 3.2, 3.1, and
3.3, respectively.) The fifth, ninth, and the tenth inequalities in (3.23)

are a consequence of the monotonicity in w of the ratio H,(a)/H,(b).

We have
Hy(a) _ Hy(a)

< (3.26)
Heo(b) — Hg(b)
provided a > 3 > 0 and 0 < z <. For, let
H,(x,1)
S 3.27

Differentiating we obtain

C+Aa-p  1-s
2+a 2V (v + 1+ B/x)”

Thus ¢(x) is increasing for 0 < z < 1. Letting in (3.27)

¢'(x) =

we obtain the inequality (3.26). The seventh inequality in (3.23) is a
consequence of the fact that Ay/s(x,1)/I(z,1) is a decreasing function
for 0 < o < 1 (see [13, p. 104]). The remaining part of the proof of the
inequality in question goes along the lines introduced in the proofs of
Theorems 3.3 and 3.4. The last inequality in (3.23) is a special case of
(3.11) when r =1, s =2, p = 2 and ¢ = 3. The proof is complete. O

We shall now derive inequalities involving ratios of the Schwab-
Borchardt means and the lemniscatic means. The following result, some-
times called the L’Hospital-type rule for monotonicity, will be utilized in
the sequel.

Proposition 3.6. ([21]) Let f and g be continuous functions on [c, d].
Assume that they are differentiable and ¢'(t) # 0 on (c,d). If f'/g" is

strictly increasing (decreasing) on (c,d), then so are

fO-fe o 1) = fd
g(t) —g(c) g(t) —g(d)
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(See also [16].)

We are in a position to prove the following.

Theorem 3.7. Let the vectors satisfy the monotonicity conditions
(1.1). Then the following inequalities

SB((Il,CL2> < LM(CLQ,CLl)
SB(by,bs) = LM(by,b)

LM(CLl, CLQ)
LM (by,bs)

SB(CLQ, CL1>

SB(by, by) (3.28)

<

<

hold true.
Proof. In order to establish the first inequality in (3.28) we introduce

a function

P(z) = = (3.29)
(x > 1). Making use of

t2

Blz,1l) = ———
SB(x,1) arcsinh t2

(see [12, (1.3)]) and p
LML, z) = (arcslh t)?
(see [9, (6.2]) we obtain

(arcslh t)?
arcsinh ¢2’

¢(r) =

where t = v/z2 — 1. To prove that ¢(z) is an increasing function on its

domain we write
f(t)

¢(x) = o)’

where f(t) = (arcslh ¢)? and g(¢t) = arcsinh ¢* (¢ > 0). Differentiation
gives

f'(t) arcslht 4
= = 1,1+¢
g/(t) n RB( L+ )7

where in the last step we have used (2.11). Since Rp is a decreasing func-

tion in each of its variables (see (2.12)) we conclude, using Proposition
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3.6 and the fact that f(0) = g(0) = 0, that ¢(x) has the desired property,
i.e., ¢(x) > ¢(y) whenever x > y. Letting

a b
214

—=y>1
ag_bg y

xr =

and next using (3.29) and the fact that both means SB and LM are ho-
mogeneous we obtain the assertion. For the proof of the second inequality
in (3.28), we define

LM(1,z)
@) = )
(x > 1). Using [9, (6.1)-(6.2)] we obtain
P(x) = [%] : (3.30)
where .
f(t) = arcsl <T—i—t4) =tRp(1+t*1)
and

g(t) =arcslh t = tRp(1,1 +t*) and t= Va2—1.

Taking into account that
F) =@+t and g'(t) = (1+14)~2

we see that

f:(t) (14 4y

gt
is the decreasing function for ¢ > 0. Making use of Proposition 3.6 we
conclude that the function f(t)/g(t) decreases with an increase in ¢. This
together with (3.30) implies that ¢(x) < ¢(y) whenever z > y. We now
follow the lines introduced in the proof of the first inequality in (3.28)
to obtain the desired result. In order to establish the third inequality in
(3.28) we define

¢(1) = (3.31)



(x > 1). In order to prove that ¢(x) is a decreasing function on its domain

it suffices to show that a function

is the increasing function on (0, 1]. Using (3.31) and the fact that LM

and SB are homogeneous functions we obtain

LM(1,x)

Y(#) = S

(0 <z < 1). Making use of [9, (6.1)] and [12, (1.2)] we obtain

_ 1
U(z) = D)’ (3.32)

where f(t) = arcsint?, g(t) = (arcsl t)? and t = /1 — 22. Hence

fl_ _t 1
g(t) arcslt Rp(1,1—t1)’

where the last equality follows from (2.10). We conclude that the ratio
f'(t)/g'(t) is a decreasing function of ¢ because Ry is also decreasing in
each of its variables. This in conjunction with Proposition 3.6 applied
to (3.32) and the fact that ¢ and x satisfy t = /1 — 22 leads to the
conclusion that ¢ (x) is an increasing function on (0,1]. This in turn
implies that ¢(x) defined in (3.31) is decreasing for every z > 1. We
follow the lines introduced earlier in this proof to complete the proof of
the last inequality in (3.28). O

Before we state and prove a corollary of Theorem 3.7, let us introduce
some special means derived from SB and LM. To this end let x > 0,
y >0 and let G, A and

Q=Q(zy) =



stand for the geometric mean, arithmetic mean and the root-mean —
square mean of z and y. Following [12, (2.8)] let
L=SB(A,G), P=SB(G,A),
(3.33)
M =SB(Q,A), T=SB(AQ),
where L stands for the logarithmic mean and P and T are the Seiffert
means (see [19], [20]). Clearly all four means defined above are symmet-
ric and homogeneous of degree 1. The lemniscate counterparts of these
means have been introduced in [9, (6.4)]:
U=LM(G,A), V=LM(AG),
(3.34)
R=LM(AQ), J=LMQ,A).
It is easy to see that these means are symmetric and homogeneous of

degree 1. The following inequalities
LIULKVSPL<A<S<M<LR<LZLJLT (3.35)

have been established in [9, (6.10)].
We are in a position to establish the following.
Corollary 3.8. The means defined in (3.33) and (3.34) satisfy the
following inequalities LU v P
TSEST<7T (3.36)
Proof. Let a1 = A, ay = G, by = Q and by = A. Since A? > GQ,
the numbers a; and b; satisfy the inequalities (1.1). Utilizing (3.28) and
(3.33) and (3.34) one obtains the assertion (3.36). O
Let a and b satisfy (1.1). Then the inequalities (3.35) can be obtained

immediately from

L(a) _Ufa) _ V(a) _ Pla) _ A(a)
I0) S T0) S Vo) = Ph) = Ab)
M(a) _ R(a) _ J(a) _ T(a)
=0 = RO = T0) = TO) (8:37)



by letting b; = by. Since the proof of (3.37) goes along the lines introduced
in [9, Theorem 6.2], it is omitted.
We close this section with a result which shows that the inequality

(1.2) implies the Ky Fan inequality for the means ¢ and :
sa) _ (o)

) 3.38
Sd) = (@) (339
1
where a = (a1, as) with 0 < a;,as < 3 and
d=1-a=(1-ay,l—ay). (3.39)

Proposition 3.9. Let ¢ and ¢y be symmetric homogeneous means of
two positive variables and assume that the inequality (1.2) holds true for
the vectors a and b which satisfy monotonicity conditions (1.1). Then the
means ¢ and 1 also satisfy the Ky Fan inequalities (3.38).

Proof. Without a loss of generality let us assume that a = (ay, ag) is
such that 0 < ay < a; < % and b = (by,b2) = (1 — ag, 1 — aq). It is easy
to verify that a and b satisfy (1.1). Since ¢ and ¢ are symmetric means,
inequality (1.2) holds true with b replaced by a’ (see (3.39)). O

Application of Proposition 3.9 to Theorems 3.1-3.3 in [6] gives imme-
diately Theorems 4.1, 4.2 and 4.4 in [6].
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5.10 Inequalities involving logarithmic

mean of arbitrary order

1. Introduction

The history of mean values is long and laden with detail. Among
means of two variables the logarithmic mean has attracted attention of
several researchers. A two-parameter generalizations of the logarithmic
mean have been introduced by K. B. Stolarsky (see [15]). A particular
case of Stolarsky mean is called the logarithmic mean of arbitrary order
(see 2.1). The goal of this note is to establish new inequalities satisfied by
the latter mean. Some known inequalities involving logarithmic mean of
order one are special cases of the main results established in this paper. In
Section 2 we give definitions of bivariate means used in the sequel. Also,
some known inequalities involving hyperbolic functions are included in

this section. The main results of this note are established in Section 3.

2. Definitions and preliminaries

Throughout the sequel we will assume that x and y are positive and
unequal numbers. We begin this section with definitions of certain bi-
variate means used in the sequel. The logarithmic mean of order t € R
of z and y, denoted by L;(z,y) = Ly, is defined as follows [11]:

L(zt,y)t if t#0,
G(z,y) if t=0,

where

-y

Ly)=L——"Y_
(z,9) Inz —Iny

is the logarithmic mean of order one and

G(z,y) =G = /xy
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is the geometric mean of z and y. Another mean used in this paper is

the power mean A;(x,y) = A; of order t € R:

zlct—iryt>1 .
if t#0,
aie =1 (53 ’ 22)
G(z,y) if t=0.

It is worth mentioning that all means defined above belong to a two-
parameter family of mens introduced by K.B. Stolarsky in [15]. These
means have been studied by several researchers. See, e.g., [10], [6] and
the references therein.

The key inequality used in this paper is the following one

s _ sinh x - 2+ coshx

h
(coshz) . 3

(2.3)

(x # 0). First inequality in (2.3) is due to Lazarevi¢ [2] while the sec-
ond one is commonly referred to as the Cusa-Huygens inequality for
hyperbolic functions. Inequalities (2.3) are special cases of inequalities
established in [9].

For later use let us recall a result which has been established in [5]
(see Theorem 3.2).

Theorem 2.1 Let u, v, v and d be positive numbers which satisfy the
following conditions

(i) min(u,v) < 1 < max(u,v),

(i) 1 < u?,

(111) v+ 6 < 7% + 5%.

Then the following inequality

1\ P 1 dp
2 < (—) - (—) < w4 P (2.4)
u v

holds true provided v > 1, § > 1, and p > 1. Second inequality in (2.4)
1s valid if p > 0.
We will also utilize the following result (see [5], Theorem 3.1).
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Theorem 2.2. Assume that the numbers u, v, v and ¢ satisfy as-
sumptions of Theorem 2.1. Further, let a and [ be positive numbers and
assume that v < 1 < u. Then

a+ [ < auf 4 pu? (2.5)
if either
oo
p>0 and q < p—s, 2.6
B (26)
or if
g<p<-1 and da < vp. (2.7)

Conditions of validity of (2.5) when v < 1 < v are also obtained in
[5]. We omit further details.

3. Main results

In this section we shall establish inequalities involving logarithmic
mean L;. For the later use let us introduce a variable A = (¢/2) In(z/y)
(t € R). One can easily verify, using (2.1)-(2.2), that

A(et e™) =cosh A = (%)t (3.1)

and

A G

tanh \ L\’
(L) 53

Our first result reads as follows.

L(e e = A (ﬁ)t. (3.2)

This implies that

Theorem 3.1. Let x and y be positive and unequal numbers, lett # 0,
and let p > 1. Then

G 2pt At pt Lt 2pt Lt pt
2<(z) +(z) <(6) +(F) oo
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Second inequality in (3.4) holds true for p > 0.
Proof. We shall prove the assertion using Theorem 2.1 with

sinh z tanh 2
’U g
)

,Yy=2,0=1.

u =
z

It is well known that v < 1 < u holds for all z # 0. Moreover, the first

inequality in (2.3) can be written as 1 < u*v while the second one is the

same as 3 < 2— + —. Letting z = A\, where X\ is the same as above, we
u v
obtain

_ A 2pt+ A pt< sinh \ 2pt+ tanh A\ ”
sinh \ tanh \ A A '

Application of (3.2) and (3.3) completes the proof. O

Particular cases of inequality (3.4) have been obtained in [4].

Corollary 3.2. The following inequalities

oL Ay L L+G

L+G - L ~Ghp 20 (3:5)

hold true.
Proof. We utilize the first two members of (3.4) withp =1 and t = %
and next apply Ly/2 = L?/A; 5, to obtain
A A
Multiplying both sides of (3.6) by L/(L+G) we obtain the first inequality
in (3.5). The second inequality in (3.5) is equivalent to A3 ,G' < L? (see
[13] and [7]), while the third one is equivalent to the first inequality in
(3.5). The proof is complete. O
The first inequality in (3.5) has been established in [12].

A generalization of the inequality which connects first and third mem-

2 < . (3.6)

bers of (3.4) reads as follows.
Theorem 3.3. Let x >0,y >0 (x #y), and let t # 0. Further, let
a >0 and > 0.Then

a+6<a<%)p +B(%)q (3.7)
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if either

a
>0 d < p— 3.8
p an S (3.8)
or if
g<p<-1 and a < 205. (3.9)

Proof. We shall prove this result using Theorem 2.2 with

sinh 2 tanh 2
v =
)

,Yy=2,0=1.

u =
z

As pointed out in the proof of Theorem 3.1 that they satisfy conditions
(i) - (iii). Letting z = A, where A is the same as in the proof of Theorem
3.1, we conclude, using inequality (2.5), that

inh \\? tanh A\ ¢
a+ﬁ<a(sm)\ )+5<a1; )

Making use of (3.2) and (3.3) we obtain the desired result. This completes
the proof. O

To this end we will assume that o > 0 and g > 0. Several inequalities
can be derived from (3.7). For the sake of presentation we define the

weights
wy = af(a+ B) and wy = B/(a+ B).

Clearly wy + wy = 1.
We shall now prove the following.
Corollary 3.4. Let t # 0. If a < 23, then

Also, if a > 20, then
L' <w G wa A (3.11)

Proof. In order to establish (3.10) it suffices to use Theorem 3.3 with
p = q = —1. Similarly, (3.11) can be obtained using Theorem 3.3 with
p = q = 1. This completes the proof. 0
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Letting in (3.10) t = 1 and ¢t = 1/2 we obtain, respectively,
L < le + UJQA

and
L < w1 (Al/QG)1/2 + w2A1/2

provided o < 2. The last two inequalities are known in mathematical
literature in the case when o = 2 and § = 1 (see [1], [7], and [14]).
Similarly, letting in (3.11) t = —1 and t = —1/2 we obtain, respectively,

L' <w Gt +w At

and

L_l < ’LU1(A1/2G)_1/2 + ’11)2141_/12

provided o« > 23. For more inequalities involving L~!, the interested
reader is referred to [7].

Inequalities for the extended logarithmic mean E;, where B~ = Lt /L
have been derived in [3]. They can be used to obtain more inequalities

for the mean discussed in this paper.

Bibliography

1. B.C. Carlson, The logarithmic mean, Amer. Math. Monthly, 79
(1972), 615-618.

2. D.S. Mitrinovi¢, Analytic Inequalities, Sprinder-Verlag, Berlin,
1970.

3. E. Neuman, Inequalities involving logarithmic, power and symmet-
ric means, J. Inequal. Pure Appl. Math., 6 (2005), No. 1, Article

15 (electronic).

4. E. Neuman, Inequalities for the Schwab-Borchardt mean and their

applications, J. Math. Inequal., in press.

445



10.

11.

12.

13.

14.

15.

E. Neuman, Inequalities for weighted sums of powers and their ap-

plications, submitted.

E. Neuman, J. Sandor, Inequalities involving Stolarsky and Gini
means, Math. Pannon., 14(2003), no. 1, 29-44.

E. Neuman, J.Sandor, On the Schwab-Borchardt mean, Math. Pan-
non., 14(2003), no. 2, 253-266.

E. Neuman, J. Sandor, On certain means of two arguments and
their extensions, Int. J. Math. Math. Sci., 2003, no. 16, 981-993.

E. Neuman, J. Sandor, On some inequalities involving trigono-
metric and hyperbolic functions with emphasis on Cusa-Huygens
, Wilker and Huygens inequalities, Math. Inequal. Appl., 13(2010),
no. 4, 715-723.

Zs. Paéles, Inequalities for differences of powers, J. Math. Anal.
Appl., 131(1988), 271-281.

J. Pecari¢, F. Proschan, Y.L. Tong, Convexr Functions, Partial Or-

derings and Statistical Applications, Academic Press, Boston, 1992.

J. Sandor, On refinements of certain inequalities for means, Arch.
Math. (Brno), 31(1995), 279-282.

J. Sandor, On certain inequalities for means II, J. Math. Anal.
Appl., 199(1996), 629-635.

J. Sandor, On the arithmetic-geometric mean of Gauss, Octogon
Math. Mag., 7(1999), 108-115.

K.B. Stolarsky, Generalizations of the logarithmic mean, Math.
Mag., 48(1975), no. 2, 87-92.

446



Chapter 6
Sequential means

“The art of doing mathematics consists in finding that

special case which contains all the germs of generality.”
(D. Hilbert)

“There is a great power in truth and sincerity. The mathe-
matics community has tremendous reserves of human
potential energy. If we are lean and hungry, we are likely
to use our energy. If we are honest, it is likely to be

effective...”
(W. Thurston)

6.1 On some inequalities for means

Let > 0 and y > 0. The logarithmic mean L(z,y) is defined by

L(l‘,y) = S

m forx #y; L(z,z) = .

The identric mean of x and y is

1
Io,y) = (@ /y") /e for o £ s I(aa) =,
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while the arithmetic-geometric mean M (x,y) is defined by

Tn + Yn

2 y Yny1 = (xnyn)1/27 n:071727"'7

To=2T, Yo=Y, Tnt1 =
lim z, = lim y, = M(x,y).
n—oo n—oo

For these means many results, especially inequalities, are known. For
historical remarks, applications, and inequalities, see, e.g., [1], [12], [13].
For early results and refinements see also [5], [9], [14], [15], [11], [8], [2],
6], [17]. For an extensive bibliography on the mean M see [3] and [17].
The aim of this note is to obtain new and unitary proofs for certain
known inequalities as well as refinements and some new relations.

First we will obtain a simple proof of the double inequality

g-A<[<A, (1)

e

where A = A(z,y) = (x + y)/2 denotes the arithmetic mean of x and y.

A similar inequality will be
L<M< g L. 2)

We shall deduce a new inequality, namely

Tn\L A M A 5 \L A)
In [17] it is proved (by studying certain integrals) that M < (A + G)/2,

where G = G(z,y) = (zy)"/? denotes the geometric mean of z and .

Here we will prove that
M>VA-G (4)

so that the mean M separates the geometric and arithmetic mean of A

and G. (In all inequalities (1)-(4) we suppose x # y).
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In order to obtain relation (1), apply an inequality of Mitrinovi¢ and
Djokovié¢ (see [10, inequality 3.6.35, p. 280]):

2
S < a7 4 V07 < T forall 0 < a < 1. (5)
e

Put a = x/y in (5), where 0 < x < y. Then

Remarking that
(/) = e I(x,y) and a(y/z)" = I(z,y),

after some simple computations we get

2 T+y

(& €

which yields (1). We note that the right side of (1) is due to Stolarski
[14].

1< 1,

3

Write t = (y—x)/(y+x), so that y/o = (1+¢t)/(1—t) with 0 < ¢ < 1.
Since M and L are homogeneous means (of order 1) it will suffice to show
that (2) holds true in the form

LA+t1—t) < M(1+t,1—t)<—=-L1+t1—1t). (6)

bo |

It is easy to see that

2t

L4610 = oy

12 14 2n -
=1+ + '+ ..+ ) (7)

3 5 2n+1
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On the other hand, Gauss [7] (see also [4]) has shown that for |t| < 1

1 9 -
M(1+t1—-1t)= (1+—t2+—t4+...+A;2t2”+...) , (8)

4 64
where 5. 4 5
A, = 4. (2n) for n > 1.
1-3...2n—1)

The numbers (A,,) satisfy a relation essentially due to Wallis (see, e.g.,
[10, p. 192)):

1
7T-n<(An)2<7r-<n+§) forn > 1. 9)

Now, since - n > 2n + 1, it is immediate that by (7) and (8), relation
(9) implies (6). The left side of (2) has been discovered by Carlson and
Vuorinen [6]. For the right side (with a different proof), see [17, Theorem

1.3(2)).

4

A refinement of the left side of (9) is due to Kazarinoff (see [10, p.
192)):

1 1
W-(n+1)<Ai<7r-<n+§> for n > 1. (10)

We note that the right side of inequality (10) can be improved to 2/7 in
place of 1/2 [16], but this fact has no importance here.
Remark first that, since (2n+1)/(4n+1) < 3/5 for n > 1, from (10)
it results that
12 1 L, 2

. > A > .
5t 2n+1 " T 2n+1

for n > 1. (11)

Now, by using the method used in Section 2, by the homogeneity of M,
L and A, (3) is equivalent to

2. (1 1 <1 1<12 ! 1 (12)
™ \ L M 5 L ’
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where L = L(1 +1t,1 —1), etc.
By (7) and (8), this double inequality follows at once from (11).

Since
M(z,y) = Alz,y) - M(L+t,1—1t), G(z,y) = A(z,y) VI
(4) is equivalent to the inequality
(1 -t~ > 1+%t2+...+A;2t2”+... (13)

By the binomial theorem,

1 1-5

1—¢3)" V=1 #2 4
-2 T e
1-5-9...(4n —3) ,
[
4n . n! +
so if we are able to prove that
A2<1-5-9...(4n —3)/4" - nl, n > 1, (14)

then (13) is valid. From the definition of A, it is obvious that (14) and
(1-2-3...n)-(1-5-9...(4n—3)) > 12-32...(2n—1)}, n>1 (15)

are the same. This inequality is true for n = 2, and accepting it for n, the
induction step follows by (n+1)(4n+1) > (2n+1)?, so via mathematical
induction, (15) follows. This proves (4).
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6.2 On inequalities for means by sequential
method

Let x,y be positive real numbers. The arithmetic-geometric mean of
Gauss is defined as the common limit of the sequences (z,,), (y,) defined

recurrently by

T + Yn

o=, Yo=Y, Tnt1 = 5 Ynt+1 = /TnYn (n > 0). (1)
Let M = M(z,y) := lim z,, = lim y,. The mean M was considered
n—oo n—oo

firstly by Gauss [8] and Lagrange [9], but its real importance and con-
nections with elliptic integrals are due to Gauss. For historical remarks
and an extensive bibliography on M, see [4], [2], [16].

The logarithmic mean and identric mean of x and y are defined by

r—y
L=1L = ——f L = 2

and
I =1(z,y) = é(xx/yy)l/(m_y) forz £y, I(z,z)=rx, (3)
respectively. For a survey of results, refinements, and extensions related
to these means, see [5], [10], [1], [11], [12].
Very recently, by using a variant of [L’Hospital’s rule and representa-
tion theorems with elliptic integrals, Vamanamurthy and Vuorinen [16]

have proved, among other results, the inequalities

M < VAL (4)

L<M<%L (5)

M<I<A (6)
A

M AEC (7)
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A<

2 2 2, 2
Moy <Ay ®)
where A = A(z,y) = (v +y)/2 and G = G(z,y) := /7y denote, as
usual, the arithmetic and geometric mean of x and vy, respectively. Here,
in all cases, x and y are distinct.

The left side of (5) has been discovered by Carslon and Vuorinen [7].
In a recent note [13], by using the homogeneity of the above means and
a series representation of M due to Gauss [8], we have obtained, among

other results, new proofs for (5), (6), and a counterpart of (7),
VAG < M, 9)

which shows that, M lies between the arithmetic and geometric means
of A and G.

The aim of this paper is to deduce new proofs for (4), (6), (7), (8),
and (9) by using only elementary methods for recurrent sequences and,

in fact, to prove much stronger forms of these results.

2

The algorithm (1) giving the mean M is known as Gauss’ algorithm.
Borchardt’s algorithm is defined in a similar manner [3] by

an + by,
2

ap = T, bU:y>b1 =\/TY, Qpi1 = (nZO),

bn—i—l =V CLn—&-lbn (7’L > 1)

It can be shown that for = # y, (a,) (n > 1) is strictly decreasing, while
(bn) (n > 1) is strictly increasing, and
lim a, = lim b, = L. (10)
n—yo0 n—yo0
Here L is exactly the logarithm mean, see [5]. For a new proof of this
fact, see [15]. Carlson has proved the important inequality

2
L<AJ; ¢ (11)
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For a new proof of (11) with improvements, see [14].
We now deduce an important counterpart of (11) due to Leach and
Sholander [10]:
L? > G?A. (12)

This is based on the sequence (b?-a,,) (n > 1), which is strictly increasing.

Indeed, for n > 1 one has
2 2 2
bry1* Gni1 = (Any1bn)ani1 = Upyy1bn > b an

by a2, > apby, i.e.
((an + bn)/2)? > anby,

which is true. Thus
ba, > b2 ja, 1 > ...>byag > bia; = G*A (n > 2). (13)
For n — oo, via (10) and (11) one gets

2
L?> (A;LG) G >G*A (14)

since a; = A, by = G, etc. Inequality (14) refines (12), and, as can be

easily seen by (13), other improvements are also valid.

In what follows, it will be convenient also to introduce the algorithm

Pn + Gn
Po = 1'27 qo = y27 Pn+1 = T) Gn+1 = /' Pnln (n > O) (15)
Clearly,
lim p, = lim g, = M(2?,y?). (16)
n—oo n—oo
3

The idea of proving inequalities such as (14), which is an application
of monotonicity of certain sequences, appears in [14]. The first theorem,
which follows, is well known and can be proved by mathematical induc-

tion.
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Theorem 1. Let n > 1 (and x # y). Then the sequences (x,) and
(an) are strictly decreasing, while the sequences (y,) and (by,) are strictly

increasing. In fact, one has
O<y1 <y <...<Yn<Tp<aTp1<...<z1 (Nn>1) (17)

O<bi<by<..<by<a,<a,1<...<a; (n>1) (18)

Corollary of (17). One can write

A
VAG < M < ;G, (19)

i.e., relations (7) and (9).

Indeed, for n > 2 one has z,, < o = (A+ G)/2 and y,, > yo = VAG.
By letting n — oo, we get (19), whit < in place of <, but note that
actually there are strong inequalities because of M < x3 < x5 and M >

Y3 > yo. We obtain the following sharpening of (19):

VAG < A;G@<M<<\/Z+\/a> <ATG (20)

2 2

Let us now introduce the notation u, = z,/y, and v, = a,/b, (n > 0).
Clearly, u, > 1, v, > 1 and u,41 < Up, Vpy1 < v, for n > 1, by (17) and
(18). On the other hand, a simple computation shows that

1 1
Upy1 = 3 (\/un + ) ,n>0 (21)

Vn
1
V1 = 4/ - 2+ ,n>0. (22)
We now prove that
u, < v, for n > 1, with equality for n = 1 only. (23)

For n =1 there is equality, but uy < vo. We remark that the function
flz)=(1/2) (Vz +1/Vz) (x> 1)
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is strictly increasing, so if we admit that u, < v,, then

f(un) < f(vn) and  u,41 < f(vn) = (Un+1)/2\/v_n = UZ—H/M < Up41

by (22) and v, > 1, which imply v, 41 < \/v,, n > 1. By induction, (23)
is proved for all n > 1.
Theorem 2. Let t, = a,y?/b%. The sequence (t,) (n > 1) is strictly

decreasing. One has
22 <a,-A(n>1). (24)

Proof. t,,1 < t, is equivalent to z,/y, < a,/b, (simple computa-
tion), the inequality proved at (23). Now, by z2 < a?y? /b2, if we can show
that a,y?/b? < A, inequality (24) is proved. By t, < t; = A (n > 1),
this holds true.

Corollary of Theorem 2. We have

A+ G

M? < A< )-L<AL. (25)

Indeed, for n > 4 we have t,, < t4 so for n — oo one has

This yields (25), which in turn sharpens (4). We note here that it is
known [11] that

I> A;L > VAL (26)

so by (26), relation (6) is a consequence of (4).

We now obtain a result concerning the sequences (z,,), (y,) and (p,),
(¢n)-

Theorem 3. Let hy, = ¢ui1/Yn, ™h = Pns1/Tn, and n > 1. Then the
sequences (hy) and (r,) are strictly decreasing and increasing, respec-
tively.

Proof. One has h, 41 = gni2/Yni1 = \/Qn+1pn+1/33nyn < Gny1/yn iff

pn+1/Qn+l < xn/yn (n Z 1)- (27)
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For n = 1 it is true that py/qy = A?/AG < A/G = x1/y1 by A < As.

Now, since

Prt1/ni1 = Snp1 = (1/2) (Vsn +1/4/50) = f(s0)

(see the proof of (21) and (23)), if we assume relation (27), by the mono-
tonicity of f one obtains

JPni1/tns1) < f(@n/yn), 1€ paga/nyz < Tns1/Ynst,

proving (27) and the monotonicity of (hy,).

For (r,) one can write

pn+2/xn+1 = (anrl + QnJrl)/(xn + yn) > pn+1/xn7

which is equivalent to ppi1/¢ni1 < Tn/yn (n > 1) and this is exactly
inequality (27).
Corollary. Since qo/y1 = As and ps/x1 = A, one can deduce that

Pns1Tn > A and  quir/yn < Az (n > 1),
proving with n — oo relation (8). Since
gs/y2 = (AA)'? and  pyfws = (A* + A3G)/(A+ G),

one obtains the refinements

A2+ A,G M (2% y%)

A
< A+G < M(z,vy)

< (AAY)Y? < A, (28)

By computing, e.g. qs/ys and py/x3, a new refinement of (28) can be
deduced.
Certain other properties of the above sequences are collected in
Theorem 4. Let n > 1. Then
(a) pp > a3 and g, > Yy (29)
(b) if up = T /Y and s, = pn/qn, then s, > u?. (30)
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Proof. (a) p1 = (22 +9%)/2 > ((z +y)/2)* = 2%, ¢ = vy = yi.
By assuming (29) for n, one has
Prt1 = (Pn +qn)/2 > (xi + 3/721)/2 > xi-i-l = ((zn + yn)/2)2
and
n+1 = V/Pnln > Tnln = yi-q—l?

i.e., the properties are valid for n + 1 too, so via induction, (a) is proved.
(b) 51 > u? is true since 2(z? +4?) > (z+y)? On the other hand, by

tnir = (1/2) (Vam + 1) and  sppn = (1/2) (v/on + 1//50)

and the induction step,

Suir = S(a) > F(u2) = (1/2) (un + 1/uy)
> 2y = (14) (Vi + 1/ i)

by (i, — 1/\/u_n)2 > 0. This proves (30).
Corollary of (29). One obtains

M(z?,y%) > M?(x,y). (31)

This can be slightly sharpened, since by L(z?,3?) = LA, and relations
(4) and (5) one has

M (z,y) < L(z*,y°) < M(2®, ). (32)

This result follows also from (28) and inequality A > M.
Finally, we prove:
Theorem 5. Let « = 2A/(A+ G) (> 1). Then for alln > 1 one has

Ty < Qapyr and Yy, < ab,. (33)

Proof. Let n = 1. Then 271 = A < aas = a(A + G)/2, which holds,
by assumption. Similarly, y; = G < ab; = aG by a > 1. Assuming now
that (33) is valid, one can write

Tpy1 = (:L‘n + yn>/2 < a(an+1 + bn>/2 < a(an+1 + bn+1)/2 = Qlp42
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(see (18)). Analogously,

Yn+1 = V/TnlYn <« V anJrlbn = bn+1-

This finishes the proof of (33).
Corollary of (33). Letting n — oo,

M <aL for a=2A/(A+G). (34)

We note that this result cannot be compared with (5) since 2A/(A + G)

and 7 /2 are not comparable.
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6.3 On certain inequalities for means, I1I

1. Introduction

Let z,y be positive real numbers. The logarithmic mean and the

identric mean of x and y are defined by

r—Yy
and
1
I=1(wy) =" [y for wfy, I(2) =z, (2)
respectively. Let
r+y

A= Alzr,y) =

denote the arithmetic, resp. geometric mean of x and y.

It is well-known that for = # y one has (see e.g. [5])
G<L<I<A (3)

In 1993 H.-J. Seiffert [10] has introduced the mean

r—Yy

P=P(x,y) =
4arctan( x/y) -

forx £y, P(z,z)==x.

Seiffert [10] proved that for x # y
L<P<I (4)

and later [11], by using certain series representations:

1 1/1 2

p<slata) ®)
GA <GP, (6)
P<A<%P (7)
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In fact, P can be written also in the equivalent form

Pla,y) = ——— forz £y ®)

2 arcsin

r+y
(see [9]). Clearly, we may suppose 0 < z < y, and we note that (8) implies
A arcsinz

F: e :f(’z)a

x —
where z = Ty, 0 < z< 1, and f being a strictly function, clearly
2Ty

. A m
1:hmf(z)<ﬁ<llg%f(z)—§,

z—0

giving (7).
Another remark is that (8) can be written also as

2 2 2
P(z,y) = arccos (x——l—gf/xy> = arccos —2 (9)

r—Yy r—Y Yo

T+ . . .
y‘ Since xg < o, P is the common limit of a

where xo = /2y, Yo =
pair of sequences given by

Tpy1 = %T—i_yn, Ynt1 = /Tnt1Yn, n=0,1,... (10)

(see [1], p. 498). According to B.C. Carlson [1], the algorithm (10) is

due to Pfaff (see also [3]), who determined the common limit (9) of the
sequences (z,,) and (yy,).

By using the sequential method from part II of this series (see [7],

[8]), we will be able in what follows to improve relations (4)-(6), and to

obtain other inequalities related to the mean P.

2. Gauss’, Borchardt’s and Pfaff’s algorithms

Pfaff’s algorithm is given by (10), where

r+y

To = \/TY, Yo = 5
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Let us denote the Borchardt algorithm by

an + by
(nt1 = =5 but1 = Vans1by, (n > 1),
Gy = T, b0:y7 blz\/xy

(11)

and the Gauss algorithm by

fo+ 9n
2

y Int+1 = V gnfn (TL > 0)7 fO =, go =Y. (12)

fn+1 -

It is well known that

lim a, = lim b, = L(x,y) — the logarithmic mean of x and y;
n—oo n—o0
lim f, = lim g, = M(x,y) — the famous arithmetic-geometric
n—oo n—oo

mean of Gauss

(see e.g. [1], [2], [3], [8]). M.K. Vamanamurthy and M. Vuorinen ([14])
have proved that

L<M<%L (13)

M<I<A (14)
A

M<AEC (15)

and the author [8] has obtained refinements, based on the Gauss and
Borchardt algorithm.

The aim of this paper is to offer new proof of (4), (5), (6) and in fact
to obtain strong refinements of these relations.

3. Monotonicity properties and applications
Theorem 1. For all n > 0 we have
Ty < P < yp. (16)
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Particularly,

A+G<P< <A—2+G) n

Proof. Since yy < xg and y, 41 > Ty iff

T + Yn T + Yn
>
2 2

Yn 1.6 Yp > Ty,

by induction it follows that y, > x, for all n. The inequality z,+1 > x,
Tn + Yn

is equivalent to y, > x,, while y,11 < y, to 11 < y, i.e. < Yn,
thus x,, < y,,, which is proved. We have proved that the sequence (x,),>0
is strictly increasing, (yn)n>o0 strictly decreasing, having the same limit
P, so (16) follows. From

A+G A+ G
Ty = 5 y Y1 =/ T1lYo = B A

we obtain relation (17).

Corollary 1.
A+G

L <M<

This follows by (13), (15) and (17).

Remark 1. Relation L <
(see e.g. [5], [7]) that

< P. (18)

follows also from the known fact

A G s s\ 1/s
L <Ay <Ayp= —; ,  where AS:A5($,y):<x ;—y) )

Theorem 2. For all n > 0 we have

n 2 n
Vyir, < P < HTy (19)
Particularly,
G+2A
VA2 < P < z | (20)

Proof. One has
2 _ 2 2
Yni1Tnt+1 = (xn+1yn>xn+l = Tp41Yn > YpTn
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iff o5, > 2y ie. 5

(Y22, )n>o is strictly increasing, laving as limit P3. This gives the first part
of (19). Next, from

< TpYn, which is true. Thus, the sequence

Ty + Yn Ty + Yn Ty + Yn Ty + Yn
9 < o
5 5 Y 5 T o TV

(by 2y/uv < u+ v for u # v) we get that the sequence (z,, + 2y )n>0 is
strictly decreasing, having the limit 3P. This implies the second part of
(19). For n = 0 we obtain the double inequality (20).

Corollary 2.

Tpi1 + 2yn+1 =

A—LG < VA2G < P< GJ;M <. (21)

The first inequality is a consequence of L > v/G2A, due to Leach
and Sholander (for refinements see [8]), and the last inequality is due to
the author (see [7]). We will see (Remark 4) that this relation, combined
with other results improves known inequalities.

Remark 2. The left side of (21) improves inequality (6). Similarly,
the left side of (20) improves inequality (5). Indeed,

Lr o2y _1/1 1 1) /1 1 1
3\G A) 3\G A A G A2~ p

by the arithmetic-geometric inequality
r+yt+=z

3
Remark 3. A better estimate for the right side of (21) can be ob-

tained by applying (19), e.g. for n = 1. Since

_A+G [A+G
- 9 ) Y1 = 9

> Yryz.

A,

x1

we obtain

2
2 + 2

<. (22)

Wl =

(A+G A+G> G +2A4
Al <
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In an analogous way, the left side of (19) gives

1
A 2 3
< + G) 4
2
which is better than the left side of (17).
This follows by the remark that

\/E A+G

Remark 4. A.A. Jagers (see [4]) proved that A,/ < P < Ay/3. The

left side inequality is exactly the left side of (17). Since, it is known that
G+ 2A

< P, (23)

< Ay (see [12], where it is mentioned that this inequality was
proposed at the ”16th Austrian-Polish Mathematics Competition 1993”),
the right side of (20) is better than the right side of Jager’s inequality.
By an inequality of Stolarsky (see [13]) we have Ay/3 < I so the right
side of (21) can be written also in an improved form.

Theorem 3. One has

a) P(a*,*) > (P(x,y))* and

M(a*, y*) = (M(z,y))* for all k > 1, (24)
b) P(a*,y*) > Af p > A" > (P(z,y))* for all k > 2, (25)
1 xkF— y’C

¢) M(a*,y¥) > - L(z,y) > AL > (M(z,y))"
r—Y
for all k > 2. (26)
Proof. a) As in [8] (for the mean M, with k = 2) we consider the

sequences (pp), (¢,) defined by

k k
" 4y P+
po=vVakyk, ¢ = . Do+l = s Gn+1 = \/Dnt1Gn-

2 2
Clearly, lim p, = lim ¢, = P(z",y*).
n—oo n—oo
We prove inductively that
pn > b g, >yf foralln >0, k> 1. (27)
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e T c+y\"
We have py = 2% and gy > y} since 5 > 5 , which follows

by the convexity of the function ¢ — t* (k > 1). Then, if (27) is valid for

an n, we can write

k k k
DPn+ Gn Ty +Yp Tn + Yn k
Pnt1 5 = 5 =z < 5 ) Lpt1

and
dn+1 = \/Pn+14n Z \/ xfz—i—lyfa = yrlj+1’

i.e. (27) is valid for n+ 1, too. By taking n — oo in (27), we get the first
part of (a). The second part can be proved in a completely analogous
way.

b) By writing the right side of inequality (18) for 2%, y* in place of

x,1, one has

2
2
xk + yk x% + y% F
Pl ) > (— S | e L N T T,

for k > 2 (since A is increasing in s), by A > P, we get b).
Finally, for ¢) remark that L(z*, y*) < M(2*,y*), but
ok — b ok — b

L(z*, ") = =L :
(@) Inzk — In gk k(x —y)

We shall prove that

A CL’k _ yk
(M@j?y)) < m[z(%,y) for k > 2. (*)

First, we note that the function ¢ — ¢*~! is convex for k > 2, so by

Hadamard’s inequality

r+vy

[ sz @-nr (1) <o
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we get

r =y >Ak—1

It is sufficient to prove that

ZW<Ak%(§Eij£é>
k(z —y)

It is known that (see [14], [8]) M? < AL, i.e. M* < A¥2[F?2 < AFLL,
since this is equivalent to L*/?~1 < A*/2~1 valid by L < A and k > 2.
So (*) holds true, and this finishes the proof of (26).

Finally, we prove

Theorem 4. a) For all k > 1 we have

k k

+y
Pk ) < 2 P(z, ). 27
CD p (z,y) (27)

b) For 0 < k < 2 we have

k k
koky L XY 2 2
P($7y)>mp($€7y)- (28)

c¢) For all k > 0,
kL g gk

P I’k+1, k+1 <
(@) <

P(a*,y"). (29)

Proof. We have seen in Introduction that

A arcsinz x—y
7 . f(2), where =z Tty 0<y<ux)

is an increasing function of x. Since

ok gk

r—y
P >x+yf0rk>1(and0<y<x),

we get




giving (27).
Relation (28) follows from

ok gk 2%y

2
< for k < 2
$k+yk x2+y2

in the same manner. Finally, (29) is a consequence of

gt gkt gk gk

a;k-l—l + yk+1 I’k + yk '
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6.4 On two means by Seiffert

1

Let A, G, Q be the classical means of two arguments defined by
Tty

A= Az,y) = 5 G = G(z,y) = 2y,
1,2_’_ 2
Q:Q<x7y): 2y’x7y>o'

Let L and I denote the logarithmic and identric means. It is well known
that G < L < I < A for x # y.
In 1993 H.-J. Seiffert [4] introduced the mean

P=Play)=———  (z4y), Pz)=u

[x
4darctan , /— — 7
Y

and proved that L < P < I for x # y. In [5] he obtained other relations,

too. The mean P can be written also in the equivalent form

Plry) = ———— (z#y), (1)

2 arcsin

r+y

see e.g. [3].
Let x < y. In the paper [1] we have shown that the mean P is the

common limit of the two sequences (z,), (y,), defined recurrently by

T + Yn
To = G(x,y), Yo = A(l‘,y), Tpy1 = 5 s Yn+1 = \/Tn4+1Yn-

This algorithm appeared in the works of Pfaff (see [1]). By using simple
properties of these sequences, strong inequalities for P can be deduced.

For example, in [1] we have proved that

n 2n
a:n<<’/y%a:n<P<%<yn(n20)
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and that e.g.
P(a* y*) > (P(z,y))" for all k& > 1.

As applications, the following inequalities may be deduced:

A 3 24
TG<\/A2G<P<GE <, (2)

A+G _ /A+GA7
2 2
A 2
P>f/( ;G> A, (3)

In 1995 Seiffet [6] considered another mean, namely

ete.

r—y
2 arctan
r+y

(Here T, as P in [1], is our notation for these means, see [2]). He proved
that
A<T<Q. (5)

Our aim in what follows is to show that by a transformation of argu-
ments, the mean 7' can be reduced to the mean P. Therefore, by using
the known properties of P, these will be transformed into properties of 7T'.

Theorem 1. Let y,v > 0 and put

22 +v?) +u—v 22 +v?)+v—u

v 2 Y= 2

Then x,y > 0 and T'(u,v) = P(z,y).
Proof. From /2(u? + v?) > |u—v| we get that x > 0, y > 0. Clearly

one has
r+y=+2u?+0v?), r—y=u-—o.
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From the definitions (1) and (4) we must prove

uU—v , u—v
arctan —— = arcsin ———.
u—+v 2(u? + v?)
—v
Let v > v and put a = arctan . By

U+ v

tan o

V1 +tan® o

sina = cosatano =

and
U —v
u+v _ u—-v
\/ (u—v>2 V2(u? +0v?)
1+
u—+v
we get
) U—v U—v
arcsin ————— =  — arctan ,
2(u? + v?) u+v

and the proof of the above relation is finished.

It is interesting to remark that

x—i—y_ u2+v2
2 2

Az, y) = = Q(u,v)

U+ v

G(z,y) =y = 5 = A(u,v).

Therefore, by using the transformations of Theorem 1, the following

transformations of means will be true:
G—A A—Q, P—T.

Thus, the inequality G < P < A valid for P, will be transformed into
A < T < @, ie. relation (5). By using our inequality (2), we get for T

the following results:

A+20Q
3 )

vV@Q*A<T < (6)
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while using (3), we get

Q+AY’
T > ( 5 Q. (7)
In fact, the following is true:

Theorem 2. Let 0 < u < v. Then T = T(u,v) is the common limit
of the sequences (u,) and (v,) defined by

Uy, + Uy,

uy = A(u,v), wvo=Q(u,v), Upi1 = B Upy1 = \/Unt1Un-

Up, + 20,

For al In > 0 one has u, <T < v, and {/viu, <T < 3
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6.5 The Schwab-Borchardt mean

1. Introduction

The Schwab-Borchardt mean of two numbers x > 0 and y > 0, de-
noted by SB(z,y) = SB, is defined as

( 2 2

y:—z
B = ——— <
5B(z,y) arccos(z/y)’ O<e<y
SB(x,y) = V22 -y y < (1.1)
arccosh(z/y)’
(7, r=1Yy

(see [1, Th. 8.4], [3, (2.3)]). It follows from (1.1) that SB(z,y) is not
symmetric in its arguments and is a homogeneous function of degree 1
in z and y. Using elementary identities for the inverse circular function,
and the inverse hyperbolic function, one can write the first two parts of
formula (1.1) as

2 2
SB(z,y) = S - Y L (12)

arcsin ( 1-— (x/y)Q) arctan ( (y/z)? — 1)

and

o x? — 2 — vty
SB(y) arcsinh ( (z/y)* — 1) arctanh ( Lo (y/x)2>

2 _ 4,2
- — Ly < (1.3)

In <x+ \ x? —y2> —Iny

respectively.

The Schwab-Borchardt mean is the iterative mean i.e.,

SB = lim z, = lim y,, (1.4)
n—oo

n—00
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where

To=%, Yo=Y, Tpy1 — (xn + yn>/2a Yn+1 = A/ Tnt1Yn, (1'5)

n=0,1,... (see [3, (2.3)], [2]). It follows from (1.5) that the member of

two infinite sequences {x,} and {y,} satisfy the following inequalities

o<1 <..<Tp<...<SB<..<y,<...<y1 <y (x<y)
(1.6)
and

Yo<yYy <...<y,<...<SB<...<zx,<...<m <710 (Y <2).
(1.7)
For later use, let us record the invariance formula for the Schwab-

SB(z,y) =SB (x;—y7”x-;—yy> (1.8)

which follows from (1.5).

This paper deals mostly with the inequalities involving the mean un-

Borchardt mean

der discussion and is organized as follows. Particular cases of the Schwab-
Borchardt mean are studied in Section 2. They include two means intro-
duced recently by H.-J. Seiffert, the logarithmic mean and a possible new
mean of two variables. The Ky Fan inequalities for these means are also
included. The main results of this paper are contained in Section 3. Lower
and upper bounds for SB, that are stronger than those in (1.6)-(1.7) are
contained in Theorem 3.3. Inequalities involving the Schwab-Borchardt
mean and the Gauss arithmetic-geometric mean are also obtained. Addi-
tional bounds for the mean under discussion are presented in Appendix
1. Inequalities involving numbers x,, and ¥, and those used in Theorem

3.3 are presented in Appendix 2.
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2. Inequalities for the particular means

Before we state and prove the main results of this section let us in-

troduce more notation. Let > 0 and y > 0. The following function

Ro(z,y) = 1/Ooo(t + ) V2t y)lat (2.1)

2
plays an important role in the theory of special functions (see [5], [7]).
B.C. Carlson [3] has shown that

SB(z,y) = [Re(2®, y*)] (2.2)

(see also [2, (3.21)]). It follows from (2.2) and (2.1) that the mean
SB(zx,y) increases with an increase in either z or y.

To this end we will assume that the numbers x and y are positive and
distinct. The symbols A, L, G and H will stand for the arithmetic, loga-
rithmic, geometric, and harmonic mean of x and y, respectively. Recall
that

Liw,y) = — 2 = Y (2.3)

 Inz—Ilny —
BETMY S garctanh (x y)
T+y

(see, e.g., [4]-[5]). Other means used in the paper include two means

introduced recently by H.-J. Seiffert

r—Y

P(z,y) = — (2.4)
T aresin (=)
(see [12]) and L
T(x,y) = . (i J_r z) (2.5)

(see [13]). For the last two means we have used notation introduced in

[10] and [11]. Several inequalities for the Seiffert means are obtained in
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8], [10]-[11]. Also, we define a possibly new mean

L=y

2arcsinh (x _ y)
r+y

In what follows we will write Q(z,y) = @ for the power mean of order

M(z,y) = (2.6)

two of z and y

%+ y2

It is easy to see that the means, L, P,T, and M are the Schwab-Borchardt
means. Use of (1.2) and (1.3) gives

(2.7)

L= SB(A,B), P=SB(G,A),

(2.8)
T = SB(A,Q), M =SB(Q,A).
A comparison result for SB(-,-) is contained in the following:
Proposition 2.1. Let x > y. Then
SB(z,y) < SB(y, x). (2.9)

Proof. Using the invariance formula (1.8) together with the mono-

tonicity property of the mean SB in its arguments, we obtain
SB(z,y) = SB (A, \/Ay> < SB (A, \/Am) — SB(y, z). O

Inequalities connecting means L, P, M, and T with underlying means
G, A, and @ can be established easily using (2.9). We have

G<L<P<A<M<T<Q. (2.10)

For the proof of (2.10) we use monotonicity of the Schwab-Borchardt

mean in its arguments, inequalities G < A < ), and (2.8) to obtain

G = SB(G,G) < SB(A,G) < SB(G, A) < SB(A, A)
— A< SB(Q,A) < SB(A,Q) < SB(Q,Q) = Q.
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The first three inequalities in (2.10) are known (see [4]-[5], [12], [14])
and the sixth one appears in [13]. (See also [11] for the proof of the last
inequality in (2.10) and its refinements.)

We shall establish now the Ky Fan inequalities involving the first six
means that appear in (2.10). For 0 < z, y < 1, let ' = 1 — 2 and
y' =1 —y. In what follows we will write G’ for G(2/,y'), L' for L(2',y'),
etc.

Proposition 2.2. Let 0 < z, y < —. The following inequalities

o N ORI

G L P M T
E<E<F<E<M<F (211)
hold true.
Proof. The first inequality in (2.11) is established in [9]. For the proof

of the second one we use (2.3) and (2.4) to obtain

L arcsin z
—_——= — 2.12
P arctanhz’ ( )

where z = (z —y)/(z +y). Let 2/ = (2’ —¢)/(z' + ¢). One can easily

verify that z and 2’ satisfy the following inequalities
0< ] <|z| <1, 22/ <. (2.13)

Let f(z) stand for the function on the right side of (2.12). The following
properties of f(z) will be used in the proof of (2.11). We have: f(z) =
f(=2), f(2) is strictly increasing on (—1,0) and strictly decreasing on
(0,1),

max{f(2) ¢ |2 <1} = £(0) = 1.

1
Assume that y < x < =. It follows from (2.13) that 0 < —z’ < z < 1. This
in turn implied that f(—z') > f(z) or what is the same, L/P < L'/ P".
1
One can show that the last inequality is also valid if z < y < —. This

completes the proof of the second inequality in (2.11). The remaining
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three inequalities in (2.11) can be established in the analogous manner

using the formulas

P B z A B arcsinhz M _arctan z (2.14)
A arcsinz’ M > 7 T  arcsinhz’ ’
They follow from (2.4), (2.6) and (2.5). O

We close this section giving the companion inequalities to the inequal-
ities 3 through 5 in (1.10). We have

gP > A > arcsinhM > %T. (2.15)

The proof of (2.15) let us note that the functions on the right side of (2.14)
share the properties of the function f(z), used above. In particular, they

attain the global minima at z = 41. This in turn implies that

P - 2 A - inh(1) M - T

— <=, — >arcsin - > —

AT M7 M® " T ~ darcsinh(1)
The assertion (2.15) now follows. The first inequality in (2.15) is also
established in [14] by use of different means.

3. Main results

We are in position to present the main results of this paper. Several
inequalities for the mean under discussion are obtained. New inequali-
ties for the particular means discussed in the previous section are also
included.

Our first result reads as follows:

Theorem 3.1. Let x and y be positive and distinct numbers. If x < vy,
then

T(x,y) < SB(z,y) (3.1)

and if x >y, then
SB(z,y) < L(z,y). (3.2)
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The following inequalities
SB(y,G) < SB(z,y) < SB(y, A) (3.3)

and

SB(x,y) > H(SB(y,x),y) (3.4)

are valid.
Proof. Let z < y. For the proof of (3.1) we use (1.8), the inequality
xy > 22 and (2.8) to obtain

r+y

SB(z,y) =SB (A, y> > SB(A,Q) =T(z,vy).

Assume now that x > y. Making use of (1.8) and (2.8) together with the
application of the inequality A < x gives

SB(z,y) = SB (A, \/Ay> < SB(A,G) = L(z,y).
In order to establish the first inequality in (3.3) we need the following
one
[(t+a”)(t+y")] 2 <+ G
(see [4]). Multiplying both sides by (1/2)(t +4?)~'/? and next integrating
from 0 to infinity we obtain, using (2.1),

Rc(xQ,yQ) < Rc(yz, GQ).

Application of (2.2) to the last inequality gives the desired result. The
second inequality in (3.3) follows from the first one. Substitution y := A
together with (1.8) give

SB (A, \/A_x) — SB(y,z) < SB(z, A).

Interchanging x with y in the last inequality we obtain the asserted result.
For the proof of (3.4) we apply the arithmetic mean - geometric mean in
inequality to [(t + 22)(t + 32)]~'/2 to obtain

[(t+ )+ )72 < (1/2)[(E+ )7+ (E+ "))
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Multiplying both sides by (1/2)(t + %?)~*/? and next integrating from 0

to infinity, we obtain

Rc(l'Q, y2) <

1
Rc(y2,l'2) + §:| .

N | —

Here we have used the identity Rc(y?, y?) = 1/y. Application of (2.2) to

the last inequality gives

1 {;j&] _ 1
SB(z,y) 2 |SB(y,x) y| H(SB(y.z),y)

This completes the proof. O
Corollary 3.2. The following inequalities

T(A,G) <P, T(AQ)<T, (3.5)

L<L(AG), M<L(AQ), (3.6)
L>H(P,G), P>H(L A, M>H(T,A), T>HM,Q) (3.7

hold true.

Proof. Inequalities (3.5) follows from (3.1) and (2.8) by letting
(z,y) := (G, A) and (z,y) := (4, Q). Similarly, (3.6) follows from (3.2).
Putting (z,y) := (A, G) and (x,y) := (Q, A) we obtain the desired result.
Inequalities (3.7) follow from (3.4). The substitutions (z,y) := (A, G),
(x,y) == (G, A), (z,y) := (Q,A), and (z,y) = (A,Q) together with
application of (2.8) give the desired result. O

The first inequality in (3.6) is also established in [8].

Before we state and prove the next result, let us introduce some nota-
tion. In what follows, the symbols o and S will stand for positive numbers
such that a + f = 1. The weighted arithmetic mean and the weighted
geometric mean of x,, and y,, (see (1.5)) with weights o and [ are defined
as

Up = Ty + By, vy =2y’ n=0,1,... (3.8)
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Theorem 3.3. In order for the sequence {u, }* ({vn}5°) to be strictly
decreasing (increasing) it suffices that « = 1/3 and § = 2/3. Moreover,
lim u, = lim v, = SB(z,y) (3.9)

n—oo n—oo
and the inequalities

Tn + 2Yn

(eay2)* < SB(z,y) < 0

(3.10)

hold true for all n > 0.
Proof. For the proof of the monotonicity property of the sequence
{u,}5° we use (3.8), (1.5), and the arithmetic mean - geometric mean

inequality to obtain

Up+1 = ATpy1 + ﬁynﬂ

= OTn+1 + ﬁ(xn-i-lyn)l/2

:I"TL + n
< QTpy1 + 5%

(a B a 30

In order for the inequality u,,1 < u, to be satisfied it suffices that

a f a 3p B
(§+Z>xn+(§+z>yn—axn+ﬁyn.

This implies that « = 1/3 and 8 = 2/3. For the proof of the monotonicity

result for the sequence {v,}3° we follow the lines introduced above to

obtain

B 2
Up41 = xz+1yn+1 = x%+1($n + yn)ﬁ/

_ (SUn +yn>a+ﬁ/2 /2

= :z:g/2+5/4

2+33/4
Yo 2T = oyl
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where the last equality holds provided o = 1/3 and § = 2/3. The asser-

tion (3.9) follows from (3.8) and (1.4). Inequalities (3.10) are the obvious

consequence of (3.9) and the first statement of the theorem. g
Inequalities (3.10) for the Seiffert mean P are obtained in [10].
Corollary 3.4. The following inequality

1 172 1
SR S (. 3.11
SB(z,y) <3(A+y) 31
holds true.
Proof. Use of the first inequality in (3.10) with n = 1 gives

(A%y)'? < SB(z,y).

Application of the arithmetic mean - harmonic mean inequality with

weights leads to

L 12/311/3<2 L, 12 -
SB(z,y) A y 3 A 3y 3\A y/)’

Inequalities connecting the Schwab-Borchardt mean and the cele-
brated Gauss arithmetic-geometric mean AGM (x,y) = AGM are con-
tained in Theorem 3.5. For the reader’s convenience, let us recall that

the Gauss mean is the iterative mean, i.e.,

AGM = lim a,, = lim b,,

n—o0 n—o0

where the sequences {a, }5° and {b,}5° are defined as

ap = max(z,y), by = min(z,y),
Qpy1 = (an + bn)/27 bn+1 Y anbn

(n >0). (See, e.g., [1], [5]). Clearly,

(3.12)

bo<b <...<b,<...<AGM < ... <a,<...<a;<ag, (3.13)
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AGM(-,-) is a symmetric function in its arguments and
AGM (z,y) = AGM(ay,, by) (3.14)

for all n > 0.

For later use, let us record two inequalities. If = > y, then
SB(z,y) < AGM(x,y) (3.15)

and
AGM (z,y) < SB(z,y) (3.16)

provided = < y. Inequality (3.15) follows from
SB(x,y) < L(z,y) < AGM(z,y),

where the first inequality is established in Theorem 3.1 and the second

one is due to Carlson and Vuorinen [6]. Inequality (3.16) follows from
AGM (z,y) < A(z,y) < T(x,y) < SB(x,y).

The first inequality is a special case of (3.13) when n = 1, the second one
appears in [13] and [11], and the last inequality is established earlier (see

(3.1)).

We are in position to prove the following

Theorem 3.5. Let n = 0,1,.... The number SB(ay,,b,) form a
strictly increasing sequence while SB(by,a,) form a strictly decreasing
sequence. Moreover,

SB(an,b,) < AGM < SB(by, an). (3.17)
Proof. Using (1.8), (3.13), (3.15) and (3.14) we obtain

SB(an,b,) =SB (an+17 m) <SB (anﬂ; M)

= SB(an—i—la bn—i—l) < AGM(an—i—lv bn-‘,—l)
= AGM (z,y).
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Similarly, using (1.8), (3.13), (3.16) and (3.14) one obtains

SB(bn,an) = SB (ant1, /Oni10n) > SB(bpi1, Gni1)
> AGM (byi1, ans1) = AGM (2, y).

The proof is complete. O
Corollary 3.6. Let the numbers a,, and b, (n > 1) be the same as in
(8.12). If ap = A and by = G, then

L < L(ap, b,) < AGM(z,y) < P(a,,b,) < P (3.18)
for all n > 0. Similarly, if ag = Q and by = A, then
M < L(ay,b,) < AGM(A,Q) < P(a,b,) <T, n>0. (3.19)

Proof. Inequalities (3.18) follow immediately from Theorem 3.5 and

from the formulas
SB(ag,by) = SB(A,G) = L,
SB(ant1,bnr1 = L(ay, by),
SB(by,ap0) = SB(G,A) =P

and
SB(bns1, ans1) = P(bn,an) = P(an,by), n > 0.

Since the proof of (3.19) goes along the lines introduced above, it is
omitted. O

Appendix 1. Bounds for the Schwab-Borchardt mean

We shall prove the following:
Proposition Al. If x >y, then
2$2 _ ,y2
2 In(2x/y) — (y?/x)In2

202 — 92

52 In(22/g) < SB(x,y) <

(AL.1)
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Otherwise, if y > x > 0, then
4y 4y
m(x? + 2y?) — dxy m(22/2 4 2y?) — 4oy’
FEqualities hold in (A1.2) if and only if x = 0.

Proof. Assume that x > y. The following asymptotic expansion

< SB(z,y) < (Al1.2)

1 42 y? Oa?
2 2
Rc(l’ 7y>:%(ln?+2x2—_y2hl?), 1<6<4,

in established in [7, Eq. (23)]. Letting above # = 1 and § = 4 and next

using (2.2) we obtain inequalities (A1.1). Assume now that y > z > 0.

Then

s T 7TCL’2

Ro(2?,y) = % + 4—yg9,
where y/(x +y) < 6 <1 (see [7, Eq. (22)]). This in conjunction with
(2.2) gives (A1.2). O
It is worth mentioning that the bounds (A1.1) are sharp when = > y

while (A1.2) are sharp if y > x.

Appendix 2. Inequalities connecting sequences (1.5)
and (3.8)

Let the numbers z,, and y, (n > 0) be the same as in the Schwab-
Borchardt algorithm (1.5). Further, let u,, and v,, be defined in (3.8) with
a=1/3and f =2/3, i.e,

Tn + 2Yn
Up = ——F
3
These numbers have been used in [10, Ths. 1 and 2| to obtain several

vy = (zy2)Y3, n>0.

inequalities involving the Seiffert mean P and other means.
The following inequalities, which hold true for all n > 0, show that the
numbers u,, and v,, provide sharper bounds for SB than those obtained

from z, and y,. We have

Yp <v, and u, <z, if y<zx
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and

Tp <v, and u, <y, if xz<uy.

We shall prove that these inequalities can be improved if x and y belong
to certain cones in the plane.

Proposition A2. Let ¢ = v/5—2 = 0.236. .. and assume that x > 0,
y >0 with x #y. If

cr <y<ux, (A2.1)
then
Yni1 < Up  and Uy < Tpiq (A2.2)
for all n > 0. Simalarly, if
cy <z <y, (A2.3)
then
Tyl < Up  and Uy < Ypi (A2.4)
form=0,1,....

Proof of inequalities (A2.2) and (A2.4) is based upon results that are
contained in the following lemmas.
Lemma 1. Let x and y be distinct positive numbers. If cx < y < x,

then
Tty

2

< (xy®)V3, (A2.5)

If x <y, then

T+ 2y T4y
<
3 2

Proof. For the proof of (A2.5) let us consider a quadratic function

ply) = y* + day — 2* = [y—(\/5—2>x} [x+(¢5+2>x]

Y. (A2.6)

It follows that p(y) > 0 if cz < y. Inequality p(y) > 0 can be written as
(r —y)? < 2y(x + y). Multiplying both sides by x —y > 0 we obtain the
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desired result. In order to establish the inequality (A2.6) let us introduce

a quadratic function

q(y) = y* +xy —22° = (y — x)(y + 22).
Clearly ¢(y) > 0 if = < y. Inequality ¢(y) > 0 is equivalent to

1
< §(aty + 7).

Adding 4zy + 4y? to both sides of the last inequality we obtain

T+ 2y 2 T+y
< .
(57) <

Hence, the assertion follows. O

Lemma 2. If cx < y < z, then the following inequalities
Ty < Yn < Ty (A2.7)
hold true for all n > 0. Simularly, if cy < x <y, then
CYn < Tpn < Yn (A2.8)

for alln > 0.

Proof. The second inequalities in (A2.7) and (A2.8) follows from (1.7)
and (1.6), respectively. For the proof of the first inequalities in (A2.7) and
(A2.8) we will use the mathematical induction on n. There is nothing to
prove when n = 0. Assume that cz,, < y,, for some n > 0. Using (1.5),

the inductive assumption and (1.7) we obtain

CLpy1 = C 5 5 5 Y Y Yn+1

Now let cy < x < y. Assume that cy, < z, for some n > 0. Using
(1.5), the arithmetic mean - geometric mean inequality and the inductive
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assumption we obtain

Tpt1 + Un 1
CYn+1 = C xn+1yn<c.Ly<_
2 2

1

< §(cyn +2,) <

(an+1 + xn)

1 )
S \In T
2 y

= Tp+1-

Proof of Proposition A2. For the proof of the first inequality in
(A2.2) we use (A2.7) and (A2.5) to obtain

Tn + Yn
P
2

Making use of (1.5) and (A2.9) we obtain

(z,92)3, n >0, (A2.9)

T+ 1/2
Y1 = (Tar1ya)'? = (%) u? < (wnya)? = vn.

The second inequality in (A2.2) can be established as follows. We add to
both sides of y,, < x,, (see (1.7)) 2z, + 3y, and next divide the resulting
inequality by 6 to obtain the desired result. For the proof of the first
inequality in (A2.4) we use (A2.5) with x replaced by y and y replaced
by x, the inequalities (A2.8) and z,, < y, (see (1.6)) to obtain

Tn + Yn

Tpy1 = 5 < (xiyn)l/?) < (xnyi)l/:g

= Up.

The second inequality in (A2.4) is obtained with the aid of (A2.8), (A2.6)
and (1.5). We have

Ty, + 2y, [T + Yn
Uy = 5 < 5 Yn = Yntl- ]
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6.6 Refinements of the Mitrinovicé-

Adamovié¢ inequality with application

1. Introduction

The famous inequality due to D.D. Adamovié¢ and D.S. Mitrinovié¢
(see [2, p. 238]) states that for any € (0,%) one has

sinx

ol

(1.1)

The Seiffert mean P of two positive variables, (see [5], [6]) is defined by

> (cosx
“E > (o)

P(r,y) = —— 2 forx #y; P(e,x) =z (1.2)
2arcsmm?j

Let N
X
Az, y) = 5 Y Gy = VY

denote the arithmetic, resp. geometric means of x and .
Let

T4y

To = \/TY, Yo = 5

and
Tn + Yn

Tut1 = =5 Yl = VTur1ln (n>0)

be the Pfaff algorithm (see e.g. [3]).
In 2001 the author [3] has proved that for any n > 0 one has

n 2 n
gt < P < % (1.3)
Particularly, for n = 0, from (1.3) we get the double inequality
G+ 2A
VA2G < P < g , (1.4)

while for n = 1 we get

2
3A<A;G) < P<

2 2

1 (A A
5( ¢ +G-A) (15)

494



In what follows, we will use the above mean inequalities, as well as
certain algebraic inequalities, in order to obtain refinements of the Mitri-
novié-Adamovié¢ inequality (1.1). An application to a new and simple
proof of a result from [1] will be offered, too. For mean inequalities and

trigonometric and hyperbolic applications, see also [4].

2. Main results

The main result of this section is contained in the following:

Theorem 2.1. For any x € (0, g) one has

5 : (2.1)

T

2
1 1\3 1 1+8
sinx - (Cosx—I— > - ++/1+8cosz > Yoot

Proof. First remark that

P(1+sinz,1 —sinx) = MY

X

and
A(l+sinz,1 —sinz) =1, G(1+sinz,1 —sinz) = cosx.

Applying the left side of (1.5) we get the first inequality of (2.1).

1
For the second inequality of (2.1) put u = cosz and u; =

(here 0 < u,v < 1). Then u = 203 — 1 and the inequality becomes
(402 — 1) > 160° — 7 or

Pw)=2v" —20® —0v? +1>0 (2.2)
After elementary transformations, P(v) can be written as
P(v) = (v —1)*(20* 4+ 2v + 1),
0 (2.2) follows.
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For the proof of the last inequality of (2.1) let again u = cosz and
u = s3. Then we have to prove

4s <14+ V1+8s3 or (4s—1)* <1+ 85>

This becomes 16s% — 8s < 8s3 or 2s — 1 < s%, which is (s — 1)? > 0, so it
is true. g

Remark 1. Clearly, by (1.3), the first inequality of (2.1) can be
further improved (e.g. by selecting n = 2, etc.), and in fact infinitively
many improvement are obtainable (as the sequence (y2x,) is strictly

increasing, see [3]).

3. An application

In what follows, we will apply the following part of inequality (2.1):

sinx - 14++/1+8cosz
T 4

In 2015 (see [1]) B. Bhayo, R. Klén and the author have proved the
following result:
Theorem 3.1. The best constants o and 5 such that

(3.1)

costr+a—1 sinx cosx+p—1
< <
Q x I}
T
d g =3.
5 and [

(3.2)

for any x € (0, g) are o =
The proof of this result in [1] is based on certain series expansions
with Bernoulli numbers, and applications of more auxiliary results.
Our aim is to show that (3.1) will offer an easy proof to this theorem.

The inequality
sinx coszx+[3—1

x < 15}

may be written also as

T —TCOST

B> f(z) =

r—sinx
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We will prove that this function f(z) is strictly decreasing. An immediate

computation gives

(z —sinx)?f'(r) = —sinz + sinzcosz + wcosz + 2?sinz — z = g(x).
Also,
g (z) = —2sin’ 2 + rsinz + 2% cosx = 2*(—2r* + r + cosx),
where .
sin x
r =
x

Now, the polynomial

P(r) = —2r* + 7+ cosz

1++1+8cosz

of variable r has roots . By inequality (3.1) we get

P(r) < 0forx € (0, g) . Therefore, ¢’(x) < 0, implying g(z) < ¢(0) = 0,
so f(x) is indeed strictly decreasing. This implies f(z) > lirr(l) f(z) =3,
T—

and also f(z) < f <g> = LQ, which are the best constants in (3.2).
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6.7 A note on bounds for the Neuman-
Sandor mean using power and identric

meamns

1. Introduction

For k € R the kth power mean A,(a,b), Neuman-Sandor Mean
M (a,b) [1] and the identric mean I(a,b) of two positive real numbers

a and b are defined by

ak + bk

1/k
Anlet) = (SE0) £ 0 Aulad) = Vab = Gla) ()

a—2b
M(a,0) = 2arcsinh((a — b)(a + b)) (a7 b);M(a,a) = a 2)
I(a,b) = é(bb/a“)l/ =9 (4 £ b): I(a,0) = a (3)

respectively, where arcsinh(z) = log(z + v/1 + 22) denotes the inverse
hyperbolic sine function.

While the kth power means and the identric mean have been studied
extensively in the last 30-40 years (see e.g. [2] or [3] for surveys of results),
the Neuman-Sédndor mean has been introduced in 2003 [1] and studied
also in 2006 [4], as a particular Schwab-Borchardt mean. In the last 10
years, the Neuman-Sandor mean has been studied by many authors, for
many references, see e.g. the papers [5] and [6], [7].

In 2012 and 2013, independently Z.-H. Yang [5] and Y.-M. Chu, B.-Y.
Long [7] have considered the bounds

A < M < Ayys, (4)

log 2
where M = M(a,b) for a # b, etc; and r = o8 =1.244 ...
loglog(3 + 2v/2)

Also, the constants r and 4/3 are best possible. Though not mentioned
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explicitly, the upper bound of (4) is due to E. Neuman and J. Sandor.
Indeed, they proved the strong inequalities (see also [7]):

24+ Q

M(a,b
(a,0) < =

< [He(a®,)]"? < Auss(a,b), (5)

where N N
T+ /Ty +vy
H@(aj, y) = f

denotes the Heronian mean and

a? + 62\ /2
A= A(a,b) = Ai(a,b), Q=Q(a,b)= ( 5 ) = As(a,b).
The first inequality of (5) appears in [1], while the second one results
by remarking that

20° + 0 Q* 4247

H 262:
ela?, 1) = = -

and the fact that

Q2 + 242 _(2A+Q 2
3 3 .
The last inequality of (5) follows by

He(a,b) < Ays(a,b) (6)

(see [8], [9]) applied to a := a?, b := b?.
We note also that for application purposes, we may choose 1.2 =

5
in place of r in (4), so the following bounds (though, the lower bound
slightly weaker) may be stated:

A6/5 <M < A4/3 (7)

In the recent paper [7], M is compared also to the identric mean I,

in the following manner:

M
1<7<C’ (8)
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where ¢ = ——— and M = M (a,b) for a # b; etc.

2log(1 + v/2)
Also, the constants 1 and ¢ in (8) follows from earlier known results.

Also, the optimality of constants follows from the proofs of these known

results.

2. Main results

In [1] it is shown that

1< M < ! = L
A " arcsinh(1)  log(1++/2)’
where M = M (a,b) for a # b; etc.
Now, by a result of H. Alzer [10] one has

A e
1< =< = 10
<7 <3 (10)

We note that inequality (10) has been rediscovered many times. See

e.g. the author’s papers [9], [11].

Now, by a simple multiplication of (9) and (10), we get (8).

For the proof of the fact that 1 and ¢ are best possible, we shall use
the proofs of (9) and (10) from [1] resp. [9]. In [1] it is shown that

M z b—a
T _—_ 2 wh = 11
A~ arcsinhz’ o * T bra (11)
Let b > a. Then the function
z
hi(z) = arcsinhz
is strictly increasing in (0,1). Put — = 2. Then z = —— is a strictly

x
increasing function of = > 1. Therefore fi(z), as a composite function,
will be strictly increasing also on = € (1, +00).

For the proof of (10) in [9] it is shown that
A(z, 1)

fa(w) = I(x,1)
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is strictly increasing of x > 1.

Now, remarking that

M(z,1)
I(z,1)

= fi(2(2)) - folz) = g(2),

from the above, we get that g(z) is a strictly increasing function, as the

product of two functions having the same property. This gives

lim g(z) < g(z) < lim g(z)

r—1 T—00
As
liy g(2) = limy (=0 iy o) = 1
and
lim g(a) = lm fi(=(x)) - I fo(a) SN
1m Xr) = 11m Z\T - 11m r)= —————"'"=—=8¢86
:r%oog Z—00 L T—00 2 10g(]_—|—\/§> 2

we get the optimality of the constants from (8).
We note that the proof of (8) given in [7] is complicated, and based

on subsequent derivatives of functions.
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6.8 A note on a bound of the combination
of arithmetic and harmonic means for

the Seiffert’s mean

1. Introduction
Let a,b > 0 and

a+b 2ab
A= Afa,b) = ——, G =G(a,b) =Vab, H = H(a,b)= S

be the classical means representing the arithmetic, geometric and har-
monic means of a and b.
Further, let

a—>b

4arctg (\/%) —-m

be the Seiffert mean of a and b. For references of this mean, see the

P = P(a,b) = , a#b; Pla,a)=a

Bibliography of papers [4], [2], [6].
In paper [4] the author remarked that P can be written as the common

limit of a pair of sequences (a,) and (b,), defined recurrently by

a+b an + by,
aoz\/@, bo = T’ Apt1 = 9 y b1 = \/an+1'bn (nZO).

Since this algorithm is due to Pfaff (see e.g. [1]), the author suggested
the use of letter ,,P” for this mean.

By using these sequences, the author proved in [4] that

2
Ry < P < ‘WT" for all > 0, (1)

Particularly, the left side of (1) for n = 0 gives

Wl

A3 -Gi < P, (2)
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which is the left side of inequality (20) in [4].

For n = 1 we get a better lower bound, namely (see (23) in [4])

A+G
2

>§-Aé<P. (3)

We note that from (1) we can deduce better-and-better results for

increasing values of n.

2. Main results

In paper [6] it is shown that
Aé . Hs < P, (4)

which in fact may be considered the main result of the paper.
2

As H = — it is easy to see that A¢ - Hs = A% -G3, i.e. relation (4)
coincides in fact with (2). The complicated method used by the authors

in [6] should be compared to the natural sequential method from [4].
5
The authors prove also that 6 is the best value of k in
AP gtk < p, (5)

but this has been remarked also in [2], where a generalization of the
method from [4] to the general Schwab-Borchardt mean was deduced. In
fact one may consider instead the Seiffert mean P, the more general mean
SB(a,b), representing the ,,Schwab-Borchardt” mean (see also [3]).

The Schwab-Borchardt mean of a,b > 0, and denoted by SB =
SB(a,b) is defined by

( 2 2
g, ifo<a<b
arccos(a/b)
$B(ab) = _vai b ifb<a (6)
arccosh(a/b)’
a, ifa=>5

\
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(see e.g. [1]). It follows that S B is not symmetric in its arguments and is a
homogeneous function of degree 1 in a and b. Using elementary identities
for the inverse circular function, and the inverse hyperbolic function, one
can write the first two parts of (6) as

b2 — o2 Jh2 — a2
SB(a,b) = b a = b a , 0<a<bd

arcsin (1 - (a/b)?)  arctan < (b/a)? — 1>

(7)

and

JaZ — 12 JaZ — 12
SB(a,b) = a’?—b _ a’—b

arcsinh ( (a/b)? — 1) arctanh ( 1 - (b/a)2>

va? —b? )
= , ifb<a, (8)
In (a—l— Va2 — b2) —1Inbd

respectively.
The Schwab-Borchardt mean is the common limit of the pair of se-

quences (a,) and (b,) defined recurrently by

an + by,
ap = a, bO = b; Apt1 = 9 ) bn+1 =V anpy1 - bn (n > O)

(see [1]), which means that the mean P is a particular SB-mean, i.e.
P =S5B(G,A). 9)

Recall that the logarithmic mean L = L(a,b) of a and b is defined by

a—>b a—>b

L:L(a’b>:1na—lnb: (a—b)’a%b
2arctanh
a+b
L(a,a) = a,
so 1t 1s immediate that
L =SB(A,G). (10)
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Another Seiffert mean, denoted by 7" in [5] is

T(a,b) = —2"0 o a#b, (11)
2 arctan
(a—l—b)

as well as a new mean of Neuman and Sandor (see [2], [3]) is

a—>b

M(a,b) = N a # b. (12)
2arcsinh (a )
a+b

They may be represented also as

T = SB(A,Q) (13)
and

M = SB(Q, A), (14)
where

Q = Q(CL, b) =

is the power mean of order two of a and b.

2

In paper [2], among many other properties of SB(a,b), the following

inequalities have been proved:
Y2 ay < SB(a,b) < % for all n > 0. (15)

By relation (9), (15) extends (1) to the case of Schwab-Borchardt
means.

Since here we are interested in inequalities of type (2) (or (3)), we
note that for n = 0, via relations (9), (10), (13), (14), besides (2) we get

the following inequalities:

Gi-As < L, (16)
Q3 - A3 < T, (17)
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and

Wi
Wl

As - Q
and all these inequalities are optimal, in the sense of (5).
We note that, if we want, the left sides of (16)-(18) can be expressed

also in terms of A and H.

<M (18)
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6.9 The Huygens and Wilker-type
inequalities as inequalities for means

of two arguments

1. Introduction

The famous Wilker inequality for trigonometric functions states that

for any 0 < x < /2 one has

. 2
t
(smx) N anx 9. 1)

X i

while the Huygens inequality asserts that

2sinx tanzx
_l’_

> 3. (2)

T T

Another important inequality, called as the Cusa-Huygens inequality,

says that
sin coszT + 2

<
x 3 ’

in the same interval (0,7/2).

(3)

The hyperbolic versions of these inequalities are

inhz\? tanh
(sm x) N an x>2; ()

T T

2sinh z n tanh z S 3. (5)

T T

sinh z - coshzx + 2
x 3 ’

where in all cases, x # 0.
For history of these inequalities, for interconnections between them,

generalizations, etc., see e.g. papers [22], [23], [10].
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Let a,b > 0 be two positive real numbers. The arithmetic, geometric,

logarithmic and identric means of these numbers are defined by

A= Aa,b) = “‘2”’, G = G(a,b) = Vab,

a—b

I=I(a,8) = ~(0"/a") /") (a 1)
with L(a,a) = I(a,a) = a.
Let

k—l—bk 1/k
) kA0 -G

be the power mean of order k, and put

Ay = Ay(a,b) = <

Q - Q(CL, b) - 9 = A2(a’7 b)
The Seiffert’s means P and T are defined by

—b

P=Pla,b) = ¢ .

2 arcsin

(a + b)
—b

T = T(a,b) = -

(a — b) ’
2 arctan
a+b

while a new mean M of Neuman and Séndor (see [6], [8]) is
a—2>b

2arcsinh (a _ b)
a+b

M = M(a,b) =

(7)

(13)

For history and many properties of these means we quote e.g. [11],

[13], [6], [8].

The aim of this paper is to show that inequalities of type (1)-(6) are

in fact inequalities for the above stated means. More generally, we will

point out other trigonometric or hyperbolic inequalities, as consequences

of known inequalities for means.
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2. Main results

Theorem 1. For all 0 < a # b one has the inequalities

VG2A< L < 2G; A; (14)
L*A+ LG? > 2AG? (15)

and
2LA+ LG > 3AG. (16)

As a corollary, relations (4)-(6) are true.

Proof. The left side of (14) is a well-known inequality, due to Leach
and Sholander (see e.g. [3]), while the right side of (14) is another famous
inequality, due to Pélya-Stegé and Carlson (see [5], [2]).

For the proof of (15), apply the arithmetic mean - geometric mean
inequality

u+v > 2y/uv

(u# v >0) for u = L?A and v = LG?. By the left side of (14) we get
L*A+ LG? > 2VIBAG? > 21/(G2A)(AG?) = 2AG?,

and (15) follows.
Similarly, apply the inequality

w4 u -+ v > 3Vuv
(u#v>0) for u= LA, v = LG. Again, by the left side of (14) one has
2LA + LG > 3/ (L2A?)(LG) > 34/ (G?A)(A%G) = 3AG,

and (16) follows.
Put now a = €*, b = e (z > 0) in inequalities (14)-(16). As in this
case one has

A=A(e"e™) = % = coshz
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2z x
which are consequences of the definitions (7)-(8), from (14) we get the

inequalities

Veosha < T COSh; 2 (17)
T

The left side of (17) is called also as ”Lazarevié¢’s inequality” (see [5]),

while the right side is exactly the hyperbolic Cusa-Huygens inequality (6)
(18).

By the same method, from (15) and (16) we get the hyperbolic Wilker
inequality (4), and the hyperbolic Huygens inequality (5), respectively.

Remark 1. For any a,b > 0 one can find x > 0 and £ > 0 such
that a = €%k, b = e k. Indeed, for k = vab and = = %ln(a/b) this
is satisfied. Since all the means A, G, L are homogeneous of order one
(i.e. e.g. L(kt,kp) = kL(t,p)) the set of inequalities (14)-(16) is in fact
equivalent with the set of (4)-(6).

Thus, we could call (15) as the ”"Wilker inequality for the means
A,G,L”, while (16) as the "Huygens inequality for the means A, G, L”,
etc.

The following generalizations of (15) and (16) can be proved in the
same manner:

Theorem 2. For anyt > 0 one has
LHAY + ['G? > 2A'G* (18)

and

2L A" + L'G' > 3A'G. (19)

These will imply the following generalizations of (4) and (5) (see [9])

(sinh:zc)21t N (tanhx)t . (20)
x x
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. h t h t
2<sm a:) N (tan x) - 21)
x x

We now state the following Cusa-Wilker, Wilker and Huygens type
inequalities for the means P, A, G:

Theorem 3. For all 0 < a # b one has the inequalities

VARG < P < ;G; (22)
PG + PA? > 2GA?, (23)

and
2PG + PA > 3AG. (24)

As a corollary, relations (1)-(3) are true.

Proof. Inequalities (22) are due to Sandor [11].

For the proof of (23) and (24) apply the same method as in the proof
of Theorem 1, but using, instead of the left side of (14), the left side of
(22). Now, for the proof of the second part of this theorem, put

a=1+sinx, b=1—-sinz (xe (0,%))
in inequalities (22)-(24). As one has by (7) and (11)
A=A(l+sinz,1 —sinz) =1

G=G(l+sinz,1 —sinz) = cosz

sinx

P=P(l+sinz,1 —sinz) = :

x
from (22) we can deduce relation (3), while (23), resp. (24) imply the
classical Wilker resp. Huygens inequalities (1), (2).

Remark 2. Since for any a,b > 0 one can find x € <0, g) and k > 0
such that

a=(l+sinx)k, b= (1—sinx)k.
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b —b
ot , T = arcsin a4 n b], by the homogeneity of the means
a

[Indeed, k =
P, A, G one can state that the set of inequalities (22)-(24) is equivalent
with the set (1)-(3).

Thus, e.g. inequality (23) could be called as the ”classical Wilker
inequality for means”.

Remark 4. Inequalities (14) and (22) can be improved ”infinitely
many times” by the sequential method discovered by Sandor in [16] and
[11]. For generalization, see [6].

The extensions of type (18)-(19) and (20), (21) can be made here,
too, but we omit further details.

We now state the corresponding inequalities for the means T, A and
@ ((25), along with infinitely many improvements appear in [13]).

Theorem 4. For all 0 < a # b one has the inequalities

VQ2PA<T < QQ; A, (25)
T?A+TQ* > 2AQ? (26)

and
2TA+TQ > 3AQ. (27)

The corresponding inequalities for the means M, A and @) will be the
following:
Theorem 5. For all 0 < a # b one has the following inequalities:

YA2Q < M < 2A3+ Q. (28)
M?Q + MA? > 2AQ%; (29)
2MQ + MA > 3QA. (30)

Proof. Inequalities (28) can be found essentially in [6]. Relations (29)
and (30) can be proved in the same manner as in the preceding theorems,
by using in fact the left side of (28).
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Remark 5. For an application, put a = e*, b = e~ * in (28). Since

T —x 2x —2x
A= % =coshz, Q= e \/cosh(2x)

2
and
a—b=2sinhx, 977 _ tanhz
a+b
and by
arcsinh(t) = In(t + vVt2 + 1),
we get

sinh z

In(tanh x + /1 + tanh® z) ‘

For example, the Wilker inequality (29) will become:

M(a,b) =

(tanh z)? sinh z 1
+ : > 2.
In?(tanhz + /1 + tanh?z)  Vcosh2z In(tanhz + v/1 + tanh? z)

(31)

Since v/ cosh 2xr = \/ cosh? z — sinh? z < cosh z, here we have

sinh z

v/cosh z

so formula (31) is a little "stronger” than e.g. the classical form (1).

> tanh x,

Finally, we point out e.g. certain hyperbolic inequalities, which will

be the consequences of the various existing inequalities between means

of two arguments.

Theorem 6.

1< Sinht < 6tcotht—l

pltcotht—1)/2 _ Sillht _ cosht—l—zcosh t/3

3
inh ¢ Vcosht + 1
Vcosht < elteotht=1)/2 - SH; < L(cosht 1) < (%) (34)
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Vcosht < M < plteotht=1)/2 _ sinh ¢

3 13
- cosht + 2 - 2cosht +1  teothi-1 (35)
3 3
cosh 2t + 3 cosh 2t/3 _ 2eotht—2 _ 2cosh®t + 1 (36)
4 3
2cosht +1
Veosh?t < P(ef,et) < % (37)
2 tcotht—1 2
—cosht < e < —(cosht +1) (38)
e e
2cosh?t — 1 < 2ttanht (39)
41n(cos ht) > ttanht + 3t cotht — 3. (40)

Proof. For the identric mean of (8) one has I(ef, ") = ef«tht=1 go

for the proof of (32) apply the known inequalities (see the references in

[10])

I1<L<I<A (41)
For the proof of (33) apply
\/G']<L<A1/3. (42)

The left side of (42) is due to Alzer ([?]), while the right side to T.P. Lin
([4]). As

) (et _t) ot/3 4 o—t/3 3 et + et + 3(6216/3 + 6—2t/3)
e)=|——
1/3\€ 9 ] )

(33) follows. For the proof of (34) apply

VA-G2<VI-G<L<L(AQG) (43)
and L(t, 1) < Al/g(t, 1)
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The first two inequalities of (43) are due to Sandor [15] and Alzer
[1] respectively, while the last one to Neuman and Séandor [7]. Inequality
(35) follows by

A+2G
VA2 G <VIG<L< “; <1 (44)
and these can be found in [11].
For inequality (3) apply

24+ G?
—
The left side of (45) is due to Stolarsky [21], while the right side of
Sandor-Trif [12].
Inequality (37) follows by (22), while (38) by

AS < IP < (45)

2 2
EA<I< E(A+G)’ (46)

see Neuman-Sandor [7].
Finally, for inequalities (39) and (40) we will use the mean S defined
by S(a,b) = (a® - *)*/ (@Y and remarking that S(ef, e™) = efatt apply

the following inequalities:
24 - G* < §* (47)
(see Sdndor-Rasa [17]), while for the proof of (40) apply the inequality
S < AY PP (48)

due to Sandor [14].
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6.10 On Huygens’ inequalities

1. Introduction

The famous Huygens’ trigonometric inequality (see e.g. [3], [14], [7])
states that for all z € (0,7/2) one has

2sinx + tanx > 3. (1.1)

The hyperbolic version of inequality (1.1) has been established re-
cently by E. Neuman and J. Sandor [7]:

2sinh x 4+ tanh x > 3z, for z > 0. (1.2)

Let a,b > 0 be two positive real numbers. The logarithmic and iden-

tric means of a and b are defined by

b—a

L=1L = o L =
(a,0) = ———fora # b L{a,a) = a,
(1.3)
1
I=1I(a,b):=—("/a®)"*= (a #0); I(a,a) = a,
e
respectively. Seiffert’s mean P is defined by
a—b
P = P(a,b) := p— (a #0b), Pla,a)=a. (1.4)
2 arcsin ( )
b
Let .
A= Aab) = a; . G=Gla,b) = Vab,

H=H(a,b) =2/(1/a+1/b)

denote the arithmetic, geometric and harmonic means of a and b, respec-
tively. These means have been also in the focus of many research papers
in the last decades. For a survey of results, see e.g. [8], [10], [12]. In what

follows, we shall assume a # b.
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Now, by remarking that letting a = 1 +sinz, b = 1 — sinx, where
x € (0,7/2),in P,G, A we find that

sin
P=

o G =cosz, A=1, (1.5)

so Huygens’ inequality (1.1) may be written also as

3AG 2 1

Here H(a,b,c) denotes the harmonic mean of the numbers a, b, c:

1 1 1
H(a,b,c) =3/ (5+5+E>'

On the other hand, by letting a = e*, b=¢e " in L, G, A we find that

inh
L:Sln x’ G=1, A=coshuz, (1.7)
x

so Huygens’ hyperbolic inequality (1.2) may be written also as

3AG 2 1
L>2A+G_3/<5+Z)_H(G’G’A)' (1.8)
2. First improvements
Suppose a,b > 0, a # b.
Theorem 2.1. One has
3AG
P>H(L,A)>2G+A_H(A,A,G) (2.1)
and e
L>H(P,G)>2A+G:H(G,G,A). (2.2)

Proof. The inequalities P > H(L,A) and L > H(P,G) have been
proved in paper [5] (see Corollary 3.2). In fact, stronger relations are

valid, as we will see in what follows.
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Now, the interesting fact is that the second inequality of (2.1), i.e.

2LA - 3AG
L+A 2G+A

becomes, after elementary transformations, exactly inequality (1.8), while
the second inequality of (2.2), i.e.

2PG S 3AG
P+G  2A+G

becomes inequality (1.6).
Another improvements of (1.6), resp. (1.8) are provided by

Theorem 2.2. One has the inequalities

t 3AG
3/ A2
P>\/AG>2 A (2.3)
and 3AG
3/ 12
L>VGA>2A+G. (2.4)

Proof. The first inequality of (2.3) is proved in [12], while the first
inequality of (2.8) is a well known inequality due to Leach and Sholan-
der [4] (see [8] for many related references). The second inequalities of
(2.3) and (2.4) are immediate consequences of the arithmetic-geometric
inequality applied for A, A, G and A, G, G, respectively.

Remark 2.1. By (2.3) and (1.5) we can deduce the following im-
provement of the Huygens’ inequality (1.1):

sinx _ 3cosx
S —— 0,7/2). 2.5
> Cosx>2cosm+1,x€(,7r/) (2.5)

From (2.1) and (1.5) we get

sinx 2L% 3cosx
2 2.5)
x >L*+1>2cosx+l’$€<o’ﬂ/) (2.5)
Similarly, by (2.4) and (1.7) we get
sinh x 3 3coshzx
h _ 0. 2.6
x - Cosx>2coshx+1’x> (2:6)
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From (2.2) and (1.7) we get

sinh x - 2P* - 3coshx
x
x P*+1  2coshz+1’

> 0. (2.6)’

Here L* = L(1 +sinx, 1 —sinx), P* = P(e”, e 7).

We note that the first inequality of (2.5) has been discovered by
Adamovi¢ and Mitrinovi¢ (see [7]), while the first inequality of (2.6) by
Lazarevié¢ (see [7]).

Now, we will prove that inequalities (2.2) of Theorem 2.1 and (2.4)
of Theorem 2.2 may be compared in the following way:

Theorem 2.3. One has

3AG

2
L> GA>H(P’G)>2A+G'

(2.7)

Proof. We must prove the second inequality of (2.7). For this purpose,

we will use the inequality (see [12])

24
p< e (2.8)

This implies

G_ 3G L, G)_ 26+4
P Gr24 0 2 '

Now, we shall prove that

2G+A /G
—. 2.
Gr24~ V4 (2.9)
: G : :
By letting « = i € (0, 1) inequality (2.9) becomes
2z +1 5
. 2.10
g > Ve (2.10)

Put z = a®, where a € (0,1). After elementary transformations, inequal-
ity (2.10) becomes (a + 1)(a — 1)* < 0, which is true.
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Note. The Referee suggested the following alternative proof: Since
P < (2A + G)/3 and the harmonic mean increases in both variables, it
suffices to prove stronger inequality vA2G > H((24 4+ G)/3,G) which
can be written as (2.9).

Remark 2.2. The following refinement of inequalities (2.6)" is true:

sinh z - Veosha > 2P* - 3coshz
cosh z x
x P*+1" 2coshx+1’

> 0. (2.11)

Unfortunately, a similar refinement to (2.7) for the mean P is not pos-
sible, as by numerical examples one can deduce that generally H(L, A)
and V/A2G are not comparable. However, in a particular case, the fol-
lowing result holds true:

Theorem 2.4. Assume that A/G > 4. Then one has

3AG
2G + A’

First we prove the following auxiliary result:

P> H(L,A) > VA2G >

(2.12)

Lemma 2.1. For any x > 4 one has
S (x+ 1229z — 1) > aV/4. (2.13)

Proof. A computer computation shows that (2.13) is true for z = 4.

Now put z = a® in (2.13). By taking logarithms, the inequality becomes

a’+1

f(a)len( )—91na+3ln(2a—1)>0.
An easy computation implies
a(2a —1)(a* +1)f'(a) = 3(a — 1)(a* + a — 3).
As
VA2 44 -3=2V2+ (V2 =3=(V2-1)(V2+3) >0,

we get that f'(a) > 0 for a > /4. This means that f(a) > f(/4) > 0,
as the inequality is true for a = /4.
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Proof of the theorem. We shall apply the inequality

2
L > 3G(A;G),

due to the author [11]. This implies

AN 443
L CITIEC DU IV " R
2<1+L)<2<1+ G(A+G)2)

A
By letting © = a in (2.13) we can deduce

A
N < =
“Va

1 1+A <3A
2 L G

This immediately gives H(L, A) > v/ A2G.

SO

1
Remark 2.3. If cosz < T T € (0, g) then
sinx> 2L* - - 3cosx
cost > ———
x L*+1 2cosx + 1’

which is a refinement, in this case, of inequality (2.5)".

3. Further improvements

Theorem 3.1. One has

3 AG 3AG
2
P>+vVLA> AG>L>2G+A

and

5 AG 3AG
2
L>VGP > GA>P>2A+G'

(2.14)

(2.15)

(3.1)

(3.2)

Proof. The inequalities P > v/ LA and L > v/GP are proved in [6].
We shall see, that further refinements of these inequalities are true. Now,
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the second inequality of (3.1) follows by the first inequality of (2.3), while
the second inequality of (3.2) follows by the first inequality of (2.4). The
last inequality is in fact an inequality by Carlson [2]. For the inequalities
AG
on —5- we use (2.3) and (2.8).
Remark 3.1. One has

sinx CcoS ¥ 3cosx

>VELF > > > 0,7/2 3.3
T cos T L* 2cosx—|—1’m€(’7r/) ( )
and

cosh z - 3coshz
x
P* 2coshx + 1’

where L* and P* are the same as in (2.5)" and (2.6)".
Theorem 3.2. One has

sinh z
> vV P* > v/coshx >

>0 (3.4)

AL  AG 3AG

P>VIA>H(A L) >~ >~ > oot (3.5)
and e 3AG
L>L-——>VIG> VPG> VGA> (3.6)

A—-L 2A+ G
Proof. The first two inequalities of (3.5) follow by the first inequality
of (3.1) and the fact that G(x,y) > H(z,y) with z = L, y = A.

Now the inequality H(A, L) > —7 may be written also as

A+ L
I>——
2 Y

which has been proved in [8] (see also [9]).
Further, by Alzer’s inequality L? > GI (see [1]) one has
L - G
I L
2G+ A
and by the inequality L < +

(see [2]) we get

£>AG S 3AG
I L 2G + A’
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0 (3.5) is proved.
The first two inequalities of (3.6) have been proved by the author in
[10]. Since I > P (see [16]) and by (3.2), inequalities (3.6) are completely

proved.
Remark 3.2.
sinx 2L* Lx Ccos T 3cosx T
> VI > > — > > , (O,—), 3.7
T L*+1 I* L* 2cosx+1 v 2 (3.7)

where [* = I(1 +sinz, 1 — sinx);

: : tho—1
sinh - sinh e | < plwcothe=1)/2 o /Px
x x coshz — sinhz/z

3 3coshx
> he > ————. 3.8
COSIT 7 cosh o +1 (38)

Theorem 3.3. One has

/ A+G A+2G)>m

3AG
> H(A, L) > > G A (3.9)
and
A+G 2A+G
3AG
2
> VPG > VG2A 2A el (3.10)

Proof. In (3.9) we have to prove the first three inequalities, the rest
are contained in (3.5).

The first inequality of (3.9) is proved in [12]. For the second inequality,
put A/G =t > 1. By taking logarithms, we have to prove that

1 2
g(t) =4In (t%) —3In (t%) —1Int > 0.
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As
gt +1)(t+2)=2(t—1) >0,

g(t) is strictly increasing, so

g(t) > g(1) = 0.
The third inequality of (3.9) follows by Carlson’s relation

2 A
L<G;.

The first inequality of (3.10) is proved in [11], while the second one
2A+ G
in [15]. The third inequality follows by I > i (see [9]), while the

fourth one by relation (2.9). The fifth one follows by (2.3).
Remark 3.3. The first three inequalities of (3.9) offer a strong im-

provement of the first inequality of (3.1); and the same is true for (3.10)
and (3.2).

4. New Huygens type inequalities

The main result of this section is contained in
Theorem 4.1. One has

o (A+G\? 3A(A+G) ARG+ A)  3AG
P A 4.1
~ ( > )> A+ G C 2a+G a4 WY
and
o (A+G\® 3G(A+G) GRA+G)  3AG
L= G( 2 > 5G1A ~ 20+A 24+ G (42)

Proof. The first inequalities of (4.1), resp. (4.2) are the first ones in
relations (3.9) resp. (3.10).
Now apply the geometric mean - harmonic mean inequality
2

s (o) (1)

Y
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G
in order to deduce the second inequality of (4.1).

forx=A, y=

The last two inequalities become, after certain transformation,
(A-G)*>0.

The proof of (4.2) follows on the same lines, and we omit the details.
Theorem 4.2. For all x € (0,7/2) one has

sinz + 4tang > 3. (4.3)
For all z > 0 one has
sinh z + 4 tanh g > 3x. (4.4)

3A(A+G)

Proof. Apply (1.5) for P > SALC

As

of (4.1).

x . .z x
cosx—|—1:20082§ and 81nx:2sm§cos§,

we get inequality (4.3). A similar argument applied to (4.4), by an ap-
plication of (4.2) and the formulae

coshz + 1 = 2 cosh? g and sinh z = 2sinh % cosh ;

Remarks 4.1. By (4.1), inequality (4.3) is a refinement of the clas-
sical Huygens inequality (1.1):

2sinx + tanx > sinx + 4tan; > 3. (4.3)

Similarly, (4.4) is a refinement of the hyperbolic Huygens inequality
(1.2):
2sinh x 4+ tanh x > sinh x + 4tanh% > 3x. (4.4)
We will call (4.3) as the second Huygens inequality, while (4.4)
as the second hyperbolic Huygens inequality.
In fact, by (4.1) and (4.2) refinements of these inequalities may be

stated, too.
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A(2G + A)
2A+ G

sin x 2cosx +1

The inequality P > gives

>
x cosx +2

or written equivalently:

Si?*cosjm >2, x € (O,%). (4.5)
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6.11 New refinements of the Huygens and
Wilker hyperbolic and trigonometric

inequalities

1. Introduction

The famous Huygens, resp. Wilker trigonometric inequalities can be
stated as follows: For any x € (0, g) one has

2sinz + tanx > 3z, (1.1)
resp.
sinz\®>  tanz

( ) + > 2. (1.2)

x x

Their hyperbolic variants are: For any x > 0 hold

2sinh z + tanh x > 3z, (1.3)
(sinhx>2+tanhx Y (14)

x x

Clearly, (1.4) hold also for x > 0, so it holds for any x # 0. In what
follows, we shall assume in all inequalities z > 0 (or 0 < z < g in
trigonometric inequalities).

For references, connections, extensions and history of these inequali-
ties we quote the recent paper [5].

In what follows, by using the theory of means of two arguments, we

will offer refinements of (1.1) or (1.3), as well as (1.2) or (1.4).

2. Means of two arguments

Let a, b be positive real numbers. The logarithmic mean and the

identric mean of a and b are defined by
a—>b

L= L(a,b) = oy’ fora #b, L(a,a)=a (2.1)
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and .
I=1(a,b) = =(a®/b")Y @Y fora#b, I(a,a)=a. (2.2)
e

The Seiffert mean P is defined by

P = P(a,b) = a_s—b , fora#b, P(a,a)=a. (2.3)
2 arcsin
<a—|—b)
Let
a+b 2ab
A= Aa,b) = ——, G = G(a,b) = Vab, H = H(a,b) = =

denote the classical arithmetic, geometric, and harmonic means of a and
b.

There exist many inequalities related to these means. We quote e.g.
[1] for L and I, while [2] for the mean P. Recently, E. Neuman and the
author [3] have shown that all these means are the particular cases of the
so-called ”Schwab-Borchardt mean” (see also [4]).

In what follows, we will use two inequalities which appear in [3] (see

Corollary 3.2 of that paper), namely:
L> H(P,G), (2.4)

and
P> H(L,A). (2.5)
Our method will be based on the remark that

sinh z

= L(e®,e™), x#0 (2.6)

which follows by (2.1), as well as

sinx

=P(1+4cosxz,1 —cosx), x=€ (O, E) (2.7)

T 2

which may be obtained by definition (2.3).
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Note also that

and

G(1 +sinz,1 —sinx) =cosz, A(l+sinz,1 —sinz)=1.

3. Main result

Theorem 3.1. Define

2sinh
P*=P(e",e), X' = S;‘* °

Then for any x > 0 one has
tanhx + 2 > X* > 4o — 2sinhx

and

(sinhx) > tanhzx
- +

> k% — 2k + 3,
X

*

where k =

(2.8)

(2.9)

(3.1)

(3.2)

T
Proof. Writing inequality (2.4) for L = L(e®, e ), etc., and using

(2.6) and (2.8), we get:

sinh z - 2P*
x Px+1

Similarly, for (2.5), we get:

. 2sinh x cosh

sinhz + 2z coshz’
By (3.4) and (3.3) we can write that

sinhz + xzcoshz 2sinhz

tanhz + x = > > 4x — 2sinh z,

coshzx P
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so (3.1) follows.

Now,
X* sinh x L
=2- =2.—(e", e " 2
x x - P* P<€’e )<

by the known inequality (see e.g. [2])

L<P (3.5)

By the right side of (3.1) one has

inh X*
T S92 9 k>0 (3.6)
T 2x
From the left side of (3.1) we get
tanh X*
W2 =2k (3.7)
x x

Thus, by (3.6) and (3.7) we can write

>(2—-k)?+2k 1=k —-2k+3>2

i T

sinhz\> tanhz
()
by (k —1)? > 0. In fact, k = %(em, e ") < 1, so there is strict inequality
also in the last inequality.

In case of trigonometric functions, the Huygens inequality is refined
in the same manner, but in case of Wilker’s inequality the things are
slightly distinct. O

Theorem 3.2. Define

94
L*=L(1+sinz,1—sinz) and X = s;/r*m:
forz € (O, g)
Then one has the inequalities
tanz + 2 > X™ > 4r — 2sinz (3.8)
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and

N2 ()2 — 2k* +3, if k*<2
(smx) N tan x - S 9 (3.9)

x x 2k — 1, if k*>2

*k

where k* = .
T
Proof. Applying inequality (2.4) for L = L(1 +sinz, 1 —sinz) = L*,
by (2.7) and (2.9) we get
I* >..é%§§lfl§9§fl_. (3.10)
SIN X + X COST

From (2.5) we get
sin x 2L

> .
T L*+1

(3.11)

Thus,

sinx + cosx 2sinx .
tanx +x = > >4y — 2sinzx
cos T L*

by (3.10) and (3.11) respectively. This gives relation (3.8), which refines

(1.1).

Now, by the right side of (3.8) we can write

sinx sinx
> 2 — =2 -k
T x - L*

Since

P
k* = f(l +sinz, 1 —sinz) > 1,

and the upper bound of k* is 400 as z — g, clearly 2 — k* > 0 is not
true.
i) If 2—k* > 0, then as in the proof of Theorem 3.1, we get from (3.8)

. 2
(Smx> LT o ke okt — 1= () — 2% 43> 2.

x x
sinz >
ii) If 2 — k* < 0, then we use only ( ) > 0. Thus
x
(sin$>2 N tan z - tan z ok 1
x x x
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In this case 2k* — 1 >3 > 2.
Thus, in any case, inequality (3.9) holds true, so a refinement of the
trigonometric Wilker inequality (1.2) is valid. O
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6.12 On two new means of two variables

1. Introduction

Let a, b be two positive numbers. The logarithmic and identric means

of a and b b are defined by
a—2b

L = L(a,b) = o (a #£b), L(a,a)=a; "

[=I(ab) = é(bb/a“)l/(ba) (a#b), I(a,a)=a.

The Seiffert mean P is defined by
b—a

P = P(a,b) = — =4 (a #0b), P(a,a)=a. (1.2)
2 arcsin
a+b
Let
A= Ala,b) - “;b, G = Glab) = vab and H — H(a,b) — Zibb
a

denote the classical arithmetic, geometric, resp. harmonic means of a and
b. There exist many papers which study properties of these means. We
quote e.g. [1], [2] for the identric and logarithmic means, and [3] for the
mean P.

The means L, I and P are particular cases of the ”Schwab-Borchardt
mean”, see [4], [5] for details. The means of two arguments have impor-
tant applications also in number- theoretical problems. For example, the
solution of certain conjectures on prime numbers in paper [11] is based
on the logarithmic mean L.

The aim of this paper is the study of two new means, which we shall
denote by X = X(a,b) and Y = Y (a,b), defined as follows:

X=Aer !, (1.3)

resp.
Y =G ei !, (1.4)
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Clearly X(a,a) = Y(a,a) = a, but we will be mainly interested for

properties of these means for a # b.

2. Main results

Lemma 2.1. The function f(t) = te%_l, t > 1 is strictly increasing.
For allt > 0, t # 0 one has f(t) > 1. For 0 < t < 1, f is strictly
decreasing. As a corollary, for allt > 0, t # 1 one has

1
1- o <ht<t-1 (2.1)

1
Proof. AsIn f(t) =Int + T 1, we get

f) _t=1
f e

so tg = 1 will be a minimum point of f(¢), implying f(t) > f(1) =1, for

any t > 0, with equality only for t = 1. By taking logarithm, the left side

of (2.1) follows. Putting 1/t in place of ¢, the left side of (2.1) implies the

right side inequality. U
Theorem 2.1. For a # b one has

A-G AP
G<—< X<

Iz 2P——G‘<}2 (2.2)

X
Proof. Applying (2.1) for t = 1 (# 1, as G # P for a # b), and by
taking into account of (1.3) we get the middle inequalities of (2.2). As it

is well known that (see [3])

A+G

<P <A, (2.3)

the first inequality of (2.3) implies the last one of (2.2), while the second
inequality of (2.3) implies the first one of (2.2).

In a similar manner, the following is true:
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Theorem 2.2. For a # b one has

L-G G-A
H<T<Y<2A—L

<G. (2.4)

Y
Proof. Applying (2.1) for t = el by (1.4) we can deduce the second
GQ
and third inequalities of (2.4). Since H = —, the first and last inequality

of (2.4) follows by the known inequalities (see e.g. [1] for references)
G<L<A. (2.5)

O
The second inequality of (2.2) can be strongly improved, as follows:
Theorem 2.3. For a # b one has

L? L ¢ X-P
1 — el < ——. 2.6
DRy AR W (26)
Proof. As L < P (due to Seiffert; see [3] for references) and
P P
“l=x.--_ 2.

where f is defined in Lemma 2.1, and by taking into account of the

inequality (see [1])

L
7 < er !, (2.8)
by the monotonicity of f one has
P L ¢, L L L?
) == —_ .- = . 2.
f(G) ¢ TG I1Ta (2.9)

By an inequality of Alzer (see [1] for references) one has
L*>G-1, (2.10)

thus all inequalities of (2.6) are established.
The following estimates improve the left side of (2.4):
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Theorem 2.4. For a # b,

@ LG G- (A+L)
H<p<—QF <35-1

<Y. (2.11)

2
Proof. Since H = G—, the first inequality of (2.11) follows by the

known inequality I < A (see [1] for references). The second inequality
of (2.11) follows by another known result of Alzer (see [1] for references,

and [3] for improvements)
A-G<L-I (2.12)

Finally, to prove the last inequality of Y, remark that the logarithmic
mean of Y and G is
Y-G (G-Y)A
- InY/G  A-L

L(Y,G) (2.13)

Now, by the right side of (2.5) applied to a =Y, b = G we have
L(Y,G) < (Y +G)/2,

SO

2A(G—Y) < (A= L)(Y +G),

which after some transformations gives the desired inequality. O
Similarly to (2.11) we can state:

Theorem 2.5.
A-G AP+G)

P S 3P_G

< X. (2.14)

Proof. L(X,A) = (X — A)log X/A = (AP—_XC;P X+A

simple computations we get the second inequality of (2.14). The first

, so after

inequality becomes
(P—-G)*>0. O

A connection between the two means X and Y is provided by:
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Theorem 2.6. For a # b,
A Y <P -L-X. (2.15)

Proof. By using the inequality (see [3])

A < P (2.16)
L G '
and remarking that
A A
f (f) b AYe Y, (2.17)

by the monotonicity of f one has

(z)<r(e)

so by (2.7) and (2.17) we can deduce inequality (2.15). O
Remark 2.1. By the known identity (see [1], [2])
I o

— =e

e (2.18)

and the above methods one can deduce the following inequalities (for

a#b): L .
1l 22 <« 2. et
A-G P

F(EY Lo Ll
A) -4 Taaq

we reobtain inequality (2.12). On the other hand, by (2.16) we can write,
L G L G
as 1 > 1 > — that f ( ) <f (F) i.e. the complete inequality (2.19)

(2.19)

Indeed, as

P A
is established.
Theorem 2.7. Fora # b

xealt(1-1)9] o

e
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and
Y <@

é N (1 _ %) ﬂ | (2.21)

Proof. The following auxiliary result will be used:
Lemma 2.2. For the function f of Lemma 2.1, for any t > 1 one

has
ﬂﬂ<é@+e—m (2.92)
and 1 1 3 1

Proof. By the series expansion of e* and by ¢ > 1, we have

ﬂw:1<t+y+i+~i—+¥L+n“)

e 2t 32 4l
1 1 1 1

—(tt o) = re—1
e<+1!+2!+ ) e(+e )

so (2.22) follows.

Similarly,
1 1 1 1
)=—(t+14+—4+-—=5+—7+...
/) e<+ TR TR )
1 1 1 1 1 1 3
<-|t+l+-Fe—(1l+-5+5)|=-|t++e—5 ],
e

e 2t 1 2 2t 2
so (2.23) follows as well.
Now, (2.20) follows by (2.22) and (2.7), while (2.21) by (2.23) and
(2.17). O
Theorem 2.8. For a # b one has

P> A-X (2.24)
Proof. Let x € (0, g) In the recent paper [7] we have proved the

following trigonometric inequality:

n 'x - sin:c.—cos:c‘ (2.95)
sin x 2sinz
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Remark that by (1.2) one has

P(l+sinz,1 —sinz) = sm:):,
T

A(l+4sinz,1 —sinz) =1, G(1+sinz,1 —sinz) = cosz,
so (2.24) may be rewritten also as
P?*(1 +sinz,1 —sinz) > A(1 +sinz,1 —sinz) - X(1 + sinz, 1 — sinz).

(2.26)
For any a,b > 0 one can find x € (0, g) and k£ > 0 such that

a=(1+sinx)k, b= (1-sinz)k.

a+b . a—b
and z = arcsin

Indeed, let k =

+0b
Since the means P, A and X are homogeneous of order one, by mul-
tiplying (2.26) by k, we get the general inequality (2.24). O
Corollary 2.1.
A?L?
P? > — > A%G. (2.27)

Proof. By (2.6) of Theorem 2.3 and (2.24) one has

L?A p?
X < — 2.28
I . P < < A Y ( )
A2L?
so we get P3 > 7 > A%G by inequality (2.10). O

Remark 2.2. Inequality (2.27) offers an improvement of
P? > A*G (2.29)

from paper [3]. We note that further improvements, in terms of A and G
can be deduced by the ”sequential method” of [3]. For any application of
(2.29), put a =1 +sinz, b =1 —sinz in (2.29) to deduce

sin x

> /cosx, T € (O, g) , (2.30)
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which is called also the Mitrinovié-Adamovi¢ inequality (see [6]).
Since (see [3])

2A+ G
p< ; , (2.31)
by the above method we can deduce
sinz  cosxz + 2
< 2.32
s (232)

called also as the Cusa-Huygens inequality. For details on such trigono-
metric or related hyperbolic inequalities, see [6].

Theorem 2.9. One has the inequalities

4
P> {’/m <A;G) > A-X, (2.33)

Proof. The first inequality of (2.33) appeared in our paper [3]|. For

the second inequality, consider the application

1
flz) = ln% — %(:ccotx— 1).

An easy computation gives
4(sinz)*(cosz + 1) f'(x) = 3x + 3w cosz — (sinz)?

— 3sinz — 3sinz cosz = g(x).

Here
¢ (x) =3sinz - h(zx),
where
h(z) = 2sinz — x — sin x cos .
One has

h'(z) = 2(cosx)(1 — cosx) > 0,

so h(xz) > h(0) = 0. This in turn gives g(z) > ¢(0) implying f'(x) > 0.
Therefore, f(z) > f(0) = 0 for z € <0, g) This proves the second
inequality of (2.33).
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Remark 2.3. From the second inequality of (2.14) it is immediate
that the following weaker inequality holds:

2G+ A
3 Y
This follows by P < (2A+ G)/3 (See [3]). Since L < (2G + A)/2, we get

X >

(2.34)

2G+ A
3

X > > L, (2.35)

so we can deduce by (2.33) a chain of inequalities for P, which improves
a result from our paper [8].
Theorem 2.10. One has

X>A+G-P, (2.36)

Proof. By using the notations from the proof of Theorem 2.8, and
by taking logarithms, the inequality becomes

f(z)=xcotz —1—1In(1+cosz —sinz/z)) >0
After elementary computations one finds that the sign of derivative of f

depends on the sign of the function

_ T . 2 (.2 2
g(x) sinx+<81nx) (x%) cosx — z*.

To prove that g(z) > 0 we have to show that
F(z) = zsinz + (sinz)? — (2?)(cosx) — 2 > 0.
We get
F'(z) =sinxz — xcosx + 2sinx cos x + z% cos x — 2z

and

F"(x) = 3wsinz + 2% cos ¥ — 4(sinz)?.
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We will prove that
F"(z) >0, or equivalently 4t* —t —cosz < 0,

where ¢t = sinz/z. By solving the above quadratic inequality, and by
taking into account of the Cusa-Huygens inequality ¢t < (2+u)/3, where

u = cos x, we have to prove the following relation

(2+u)/3 < [3+ V9 +16u]/8.

Or after some computations, with (2u + 1)(u — 1) < 0, which is true.
Since F”(xz) > 0, we get F'(z) > F'(0) = 0, so F(xz) > F(0) = 0. The
function f being strictly increasing, the result follows, as f(0+) = 0. O

Remark 2.4. Inequality (2.36) is slightly stronger than the right side

of (2.14). Indeed, after some transformations, this becomes
3P? — 2P (A+2G) +2AG + G* < 0.
Resolving this quadratic inequality, this becomes
BP - (2A+G)|(P-G) <0,

which is true by G < P < (2A+ G)/3.
Theorem 2.11.

(2.37)

2
P.X < <A+G> |

2
Proof. It is immediate that we have to prove the following inequality
f(z) =In(z/sinz) — 2In[2/(1 4 cosx)] — (zcotx — 1) > 0.

After computations we get that the sign of f’(z) depends on the sign of

g(x) = (sinz)(1 + cosz)(sinz — xcosx) — (xsinx cosx)(1 + cosx)

= (2°)(1 + cos z) + 2z(sin z)*.
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1 = cosx = 2[cos(z/2)]?
and
sinx = 2sin(z/2) cos(x/2)
we can write
9(x) = 2[cos(z/2)]*h(=),

where
h(z) = (sinx)® — 2z sinx cos x + 2% + 8 cos(z/2)[sin(x/2)]>.
We can deduce
R (z)/4[sin(z/2)]* = Tx[cos(z/2)]* + 2sin(z/2) cos(x/2) — x[sin(z/2)]>.

As cos(z/2) > sin(x/2), we get h'(x) > 0. Thus we have h(z) > h(0) =0,
so g(x) > 0 and finally, f'(x) > 0. The result follows by the remark that
f(x) > f(0+) =0. O

Remark 2.5. Relation (2.37) combine with the weaker inequality of
(2.14) shows that, /(P - X) lies between the geometric and arithmetic
means of A and G.

Remark 2.6. In a recent paper, B. Bhayo and the author [9] have
proved the following counterpart of relation (2.24):

Theorem 2.12. The following inequality holds true:
P < (X (A7), where c¢=In(n/2), (2.38)

Remark 2.7. An earlier version of this work appeared in the last

paragraph of the arXiv paper [10].
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