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Preface

The aim of this book is to present short notes or articles, as well as

studies on some topics of the Theory of means and their inequalities.

This is mainly a subfield of Mathematical analysis, but one can find here

also applications in various other fields as Number theory, Numerical

analysis, Trigonometry, Networks, Information theory, etc. The material

is divided into six chapters: Classical means; Logarithmic, identric and

related means; Integral inequalities and means; Means and their Ky Fan

type inequalities; Stolarsky and Gini means; and Sequential means.

Chapter 1 deals essentially with the classical means, including the

arithmetic, geometric, harmonic means of two or more numbers and the

relations connecting them. One can find here more new proofs of the

classical arithmetic mean-geometric mean-harmonic mean inequality, as

well as their weighted version. The famous Sierpinski inequality connect-

ing these means, or applications of the simple Bernoulli inequality offer

strong refinements of these results, including the important Popoviciu

and Rado type inequalities. One of the subjects is the log-convexity prop-

erties of the power means, which is applied so frequently in mathematics.

The chapter contains also applications of some results for certain arith-

metic functions, the theory of Euler’s constant e, or electrical network

theory.

The largest chapter of the book is Chapter 2 on the identric, logarith-

mic and related means. These special means play a fundamental role in

the study of many general means, including certain exponential, integral
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means, or Stolarsky and Gini means, etc. There are considered various

identities or inequalities involving these means, along with strong refine-

ments of results known in the literature. Monotonicity, convexity and

subhomogeneity properties are also studied. Series representations, and

their applications are also considered. Applications for certain interesting

logarithmic inequalities, having importance in other fields of mathemat-

ics, or in the entropy theory are also provided.

Chapter 3 contains many important integral inequalities, as the

Cauchy-Bouniakowski integral inequality, the Hadamard (or Hermite-

Hadamard) integral inequalities, the Jensen integral inequality, etc. Re-

finements, as well as generalizations or extensions of these inequalities

are considered. As the inequalities offer in fact results for the integral

mean of a function, many consequences or applications for special means

are obtained. The classical monotonicity notion and its extension of sec-

tion 1 give in a surprising manner interesting and nice results for means.

The Jensen functionals considered in the last section, offer very general

results with many applications.

Chapter 4 studies the famous Ky Fan type inequalities. As this in-

equality contains in a limiting case the arithmetic mean-geometric mean

inequality, these results are connected with Chapter 1. However, here

one obtains a more detailed and complicated study of these inequalities,

involving many new means. Section 1 presents one of the author’s early

results, rediscovered later by other authors, namely the equivalence of

Ky Fan’s inequality with Henrici’s inequality. Extensions, converses, re-

finements are also provided. The related Wang-Wang inequality is also

considered.

Ky Fan type inequalities will be considered also in Chapter 5, on the

Stolarsky and Gini means. These general means are studied extensively

in sections 7 and 9 of this chapter. Particular cases, as the generalized

logarithmic means, and a particular Gini mean, which is also a weighted

geometric mean, are included, too. This last mean is strongly related, by
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an identity, with the identric mean of Chapter 2, and has many connec-

tions with other means, so plays a central role in many results.

Finally, Chapter 6 deals with means, called by the author as “sequen-

tial means”, which may be viewed essentially as the common limit of

certain recurrent sequences. These are the famous arithmetic-geometric

mean of Gauss, the Schwab-Borchardt mean, etc. Here the classical loga-

rithmic mean is considered also as a such mean, and many other famous

particular means, as the Seiffert means, or the Neuman-Sándor mean, are

studied. Two new means of the author are introduced in the last section.

These means have today a growing literature, and their importance is

recognized by specialists of the field.

All sections in all chapters are based on the author’s original papers,

published in various national and international journals. We have in-

cluded a “Final references” section with the titles of the most important

publications of the author in the theory of means. The book is concluded

with an author index, focused on articles (and not pages). A citation of

type I.2(3) shows that the respective author is cited three times in section

2 of chapter 1.

Finally, we wish to mention the importance of this domain of mathe-

matics. Usually, researchers encounter in their studies the need of certain

bounds, which essentially may be reduced to a relation between means.

They need urgently some exact informations (on bounds, inequalities,

approximations, etc.) on these means. So, such a work could be an ideal

place and reference for their needs. On the other hand, beginning re-

searchers, students, teachers of colleges or high schools would find a clear

introduction and explanation of methods and results. The primary au-

dience for this work are the mathematicians working in mathematical

analysis and its applications. Since this is a very extensive field, with

many subfields, researchers working in theoretical or applied domains

would be interested, too. Also, since this work contains material with

historical themes, teachers and their students would benefit from the in-
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formations and methods used in this book. This is a very active research

field, and here one can find the basis for further study. The author thinks

that the main strengths of the work are the new and interesting results,

published for the first time in a book form.

I wish to express my gratitude to a number of persons and organiza-

tions from where I received valuable advice and support in the prepara-

tion of this book. These are Mathematics and Informatics Departments of

Babeş-Bolyai University of Cluj (Romania); the Domus Hungarica Foun-

dation of Budapest (Hungary); the Sapientia Foundation (Cluj); and also

to Professors H. Alzer, B.A. Bhayo, M. Bencze, S.S. Dragomir, E. Egri,

M.V. Jovanović, R. Klén, R.-G. Oláh, J.E. Pečarić, T. Pogány, M.S.

Pop, E. Neuman, I. Raşa, M. Räissouli, H.-J. Seiffert, V.E.S. Szabó, Gh.

Toader, T. Trif and W. Wang, who were coauthors along the years, and

who had an impact on the activity and realizations of the author.

The author
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Chapter 1

Classical means

“Mathematics is concerned only with the enumeration

and comparison of relations.”

(C.-F. Gauss)

“Thus each truth discovered was a rule available

in the discovery of subsequent ones.”

(R. Descartes)

1.1 On the arithmetic mean – geometric

mean inequality for n numbers

This is an English version of our paper [2].

In paper [1] we have obtained a simple method of proof for the

arithmetic-geometric inequality for three numbers. This method gave

also a refinement. In what follows, we shall generalize the method for

n numbers. In [1] we used the following simple lemma:

x3 + y3 ≥ xy · (x+ y), x, y > 0. (1)
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This may be generalized as follows:

xn + yn ≥ xy · (xn−2 + yn−2) = xn−1y + yn−1x, for any n ≥ 2. (2)

Indeed, (2) may be rewritten also as

(xn−1 − yn−1)(x− y) ≥ 0,

which is trivial for any x, y > 0, n ≥ 2.

Let now xi (i = 1, n) be positive numbers, and apply inequality (2).

Let first x = x1 and y successively x2, x3, . . . , xn; then let x = x2 and

y = x3, x4, . . . , xn; finally let x = xn−1, y = xn. By adding the obtained

inequalities, we can write

(xn1 + xn2 ) + (xn1 + xn3 ) + . . .+ (xn1 + xnn)

≥ (x1x
n−1
2 + x2x

n−1
1 ) + . . .+ (x1x

n−1
n + xnx

n−1
1 )

(xn2 +xn3 ) + . . .+ (xn2 +xnn) ≥ (x2x
n−1
3 +x3x

n−1
2 ) + . . .+ (x2x

n−1
n +xnx

n−1
2 )

. . . . . . . . . . . .

xnn−1 + xnn ≥ xn−1x
n−1
n + xnx

n−1
n−1

Adding again the inequalities, finally we get:

(n− 1)(xn1 + xn2 + . . .+ xnn) ≥
n∑
i=1

xi(x
n−1
1 + . . .+ x̂n−1i + . . .+ xn−1n ), (3)

where we have used for simplification,

xn−11 + . . .+ x̂n−1i + . . .+ xn−1n

a sum, where the ith term is missing (thus xn−1i ).

Now let us suppose inductively that, the arithmetic-geometric in-

equality holds true for any positive real numbers of n − 1 terms. Then

we have

xn−11 + . . .+ x̂n−1i + . . .+ xn−1n ≥ (n− 1)(x1 . . . x̂i . . . xn),

14



so we get by using (4):

(n− 1)(xn1 + xn2 + . . .+ xnn) ≥
n∑
i=1

xi(x
n−1
1 + . . .+ x̂n−1i + . . .+ xn−1n )

≥ (n− 1)nx1 . . . xn (4)

This is the generalization of inequality (∗ ∗ ∗) from [1]. From (4) we get

particularly that

xn1 + . . .+ xnn ≥ nx1 . . . xn,

i.e. for the numbers x1, . . . , xn the arithmetic-geometric inequality

holds true. By the principle of mathematical induction, the arithmetic-

geometric inequality is proved. By letting n
√
xi in place of xi, from (4) we

get the following:

Theorem.

x1 + . . .+ xn ≥
1

n− 1

n∑
i=1

n
√
xi

(
x
n−1
n

1 + . . .+ x̂
n−1
n

i + . . .+ x
n−1
n

n

)
≥ n n
√
x1 . . . xn.

For n = 3 we reobtains the result from [1].

Bibliography

1. J. Sándor, On the arithmetic-geometric mean inequalities in case

of three numbers, Matlap 2016/10, p. 370 (in Hungarian).

2. J. Sándor, On the arithmetic mean – geometric mean inequality in

case of n numbers, Matlap 2017/p, p. 254.
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1.2 A refinement of arithmetic mean

– geometric mean inequality

There exist many proof of the famous arithmetic mean – geometric

mean inequality

Gn = n
√
a1 . . . an ≤ An =

a1 + · · ·+ an
n

, (1)

where ai ≥ 0(i = 1, 2, . . . , n), see [2]. For a proof, based on an identity

involving Riemann’s integral, see [1].

In what follows, we will offer a new approach, which gives in fact

infinitely many refinements.

Theorem 1. For any x ∈ [0, 1] one has

1 ≤ 1

n
·

n∑
i=1

(
ai
Gn

)x
≤ An
Gn

(2)

Proof. The function f : [0,∞) → R, f(x) =
n∑
i=1

(
ai
Gn

)x
has the

following property:

f ′′(x) =
n∑
i=1

(
ai
Gn

)x
· log2 ai

Gn

≥ 0.

This implies that

f ′(x) =
n∑
i=1

(
ai
Gn

)x
· log

ai
Gn

is an increasing function, yielding

f ′(x) ≥ f ′(0) =
n∑
i=1

log
ai
Gn

= 0.

This in turn implies that f(x) is increasing, so f(0) ≤ f(x) ≤ f(1) for

x ∈ [0, 1], giving inequality (2).
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Since f ′′(x) = 0 iff
a1
Gn

= · · · = an
Gn

= 1, there is equality in each side

of (2) only if a1 = . . . = an. �

Remark 1. For x =
1

2
, from (2) we get the following simple refine-

ment of (1):

1 ≤
√
a1 + · · ·+√an

n
√
Gn

≤ An
Gn

(3)

An application

Let d1, . . . , dn denote all distinct positive divisors of a positive integer

m ≥ 1. Let a1 = d2k1 , . . . , an = d2kn (k fixed real number). As

m

d1
· . . . · m

dn
= d1 · . . . · dn,

we get d1 · . . . · dn = m
n
2 , so in our case we get Gn = Gn(ai) = mk. Let

σs(m) denote the sum of sth powers of divisors of m. From (3) we get

immediately (with σ(m) = σ1(m) and d(m) = σ0(m))

1 ≤ σk(m)

d(m) ·m k
2

≤ σ2k(m)

d(m) ·mk
(4)

We note that for k ≥ 1, the left side of (4) was discovered by R.

Sivaranakrishnan and C.S. Venkataraman [3]. The second inequality of

(4) may be rewritten as

σ2k(m) ≤ m
k
2 · σk(m) (5)

We note that in the left side of (4), as well as in (5), it is sufficient to

consider k > 0. Indeed, if k < 0, put k = −K. Remarking that

σ−K(m) =
σK(m)

mK
,

it is immediate that we obtain the same inequalities for K as for k in

both of (4) and (5).
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Remark 2. The weighted arithmetic mean – geometric mean inequal-

ity

Aα,n = α1a1 + · · ·+ αnan ≥ aα1
1 · · · aαnn = Gα,n

(with ai ≥ 0, αi ∈ [0, 1], α1 + · · · + αn = 1) can be proved in the similar

manner, by considering the application

fα(x) =
n∑
i=1

αi ·
(

ai
Gα,n

)x
As

f ′α(x) =
n∑
i=1

αi

(
ai
Gα,n

)x
· log

ai
Gα,n

and f ′α(0) = 0, all can be repeated, and we get the inequality (for any

x ∈ [0, 1])

1 ≤
n∑
i=1

αi

(
ai
Gα,n

)x
≤ Aα,n
Gα,n

, (6)

which is an extension of (2), for x =
1

2
, we get an extension of (3):

1 ≤
α1
√
a1 + · · ·+ αn

√
an√

Gα,n

≤ Aα,n
Gα,n

(7)

Bibliography

1. H. Alzer, A proof of the arithmetic mean – geometric mean inequal-

ity, Amer. Math. Monthly, 103(1996), 585.

2. P.S. Bullen, Handbook of means and their inequalities, Kluwer

Acad. Publ., 2003.

3. R. Sivaramakrishnan, C.S. Venkataraman, Problem 5326, Amer.

Math. Monthly, 72(1965), 915.
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1.3 On Bernoulli’s inequality

1

The famous Bernoulli inequality states that for each real number x ≥ −1

and for a natural number n ≥ 1 one has

(1 + x)n ≥ 1 + nx. (1)

This simple relation has surprisingly many applications in different

branches of Mathematics. In this Note we will obtain a new application

with interesting consequences. For example, the well-known arithmetic-

geometric inequality follows.

2

Let us write (1) firstly in the form (by using the substitution y = x+1)

yn − 1 ≥ n(y − 1), y ≥ 0. (2)

For the sake of completeness, we shall give also the short proof of (2).

By the algebraic identity

yn − 1 = (y − 1)(yn−1 + . . .+ y + 1),

the new form of (2) will be

(y − 1)[(yn−1 − 1) + (yn−2 − 1) + . . .+ (y − 1)] ≥ 0. (3)

The terms in the right parenthesis have the same sign as y−1 in all cases

(i.e. if y ≥ 1, or 0 ≤ y − 1), thus yielding simply relation (3). One has

equality only for n = 1 or y = 1.

Remark. Inequality (2) (or (1)) is valid also for all real numbers

n ≥ 1, but the proof in that case is not so simple as above. See e.g. [1].
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3

Let us apply now (2) for

y =
(u
v

) 1
n−1

, where n ≥ 2. (4)

After some simple computations we get the following result:

Theorem. Let u, v > 0 be real numbers, and n ≥ 2 a positive integer.

Then one has the inequality(
nv − u
n− 1

)n−1
≤ vn

u
. (5)

Applications. 1) As a first application, put

v =
1

n
V, u = U, where U, V > 0.

One gets: (
V − U
n− 1

)n−1
≤ V n

U
· 1

nn
. (6)

For V = u+ 1 this yields that

(U + 1)n

U
≥ nn

(n− 1)n−1
. (7)

Inequality (7) can be obtained also by studying the function

U → (U + 1)n

U

(by using derivatives), but it is more interesting in this case the simple

way of obtaining this result. For U = 1, V = n+ 1, relation (6) implies(
1 +

1

n− 1

)n−1
≤
(

1 +
1

n

)n
. (8)

Thus the monotonicity of the Euler sequence

xn =

(
1 +

1

n

)n
.

20



(For n > 1 one has in fact strict inequality, see the proof of (2)).

2) Let now ai (i = 1, n) be positive real numbers, and

An =
a1 + a2 + . . .+ an

n
, Gn = (a1a2 . . . an)

1
n

their arithmetic, respectively geometric means. Apply (5) for v = An,

n = an. Then clearly

nv − u = a1 + . . .+ an−1,

so one has

An−1n−1 ≤
Ann
an
. (9)

Since an =
Gn
n

Gn−1
n−1

, (9) is equivalent to

(
An−1
Gn−1

)n−1
≤
(
An
Gn

)n
, n ≥ 2. (10)

As a corollary,(
A1

G1

)1

≤
(
A2

G2

)2

≤ . . . ≤
(
Ar
Gr

)r
, for all r ≥ 1. (11)

Here
A1

G1

= 1, so (11) gives, as a simple consequence that

Ar ≥ Gr (12)

i.e. the well-known arithmetic-geometric inequality.

For generalizations and other applications of Bernoulli’s inequality we

quote the monograph [1].

Bibliography

1. D.S. Mitrinović (in coop. with P.M. Vasić), Analytic Inequalities,

Springer Verlag Berlin, Heidelberg, New York, 1970.
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1.4 A refinement of the harmonic

– geometric inequality

Let x = (x1, . . . , xn), where xi > 0, and put

A = A(x) =
x1 + . . .+ xn

n
, G = G(x) =

√
x1 . . . xn,

H = H(x) =
n

1

x1
+ . . .+

1

xn

for the arithmetic, geometric and harmonic means of xi, i = 1, n. Put

M(x) =
G(x) n

√
A(x)

A ( n
√
x)

(1)

where n
√
x =

(
n
√
x1, . . . , n

√
xn
)
. Since

G

(
1

x

)
=

1

G(x)
, A

(
1

x

)
=

1

H(x)
, for

1

x
=

(
1

x1
, . . . ,

1

xn

)
,

clearly the inequality

G ≤M(x) ≤ A, (2)

is equivalent to

H ≤ N(x) ≤ G, (3)

where

N(x) =
G(x) n

√
H(x)

H ( n
√
x)

. (4)

We will prove that (3) holds true (i.e. (2), too), even with a chain of

improvements.

Theorem. One has the inequalities

H ≤ N2(x) ≤ N1(x) ≤ N(x) ≤ G (5)

where

N1(x) =
H n
√
A

H ( n
√
x)
, N2(x) =

H · A ( n
√
x)

H ( n
√
x)

,
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with H = H(x) etc., and N(x) given by (4).

Proof. We will apply the famous Sierpinski inequality (see [1], with

a generalization), which can be written as follows:

Hn−1A ≤ Gn ≤ An−1H. (6)

From the left side of (6) we get

HnA

H
≤ Gn, i.e. H

n
√
A ≤ G

n
√
H,

thus
H n
√
H

H
≥ n
√
A. (∗)

Now, the inequality n
√
A(x) ≥ A ( n

√
x) is valid, being equivalent to

n

√√√√ 1

n

n∑
k=1

xk ≥
1

n

n∑
k=1

n
√
xk,

and this follows by Jensen’s classical inequality, for the concave function

f(x) = n
√
x, (x > 0, n ≥ 1).

Now

A
(
n
√
x
)
≥ H

(
n
√
x
)
,

so by (∗), we get the relation

G n
√
H

H
≥ n
√
A ≥ A

(
n
√
x
)
≥ H

(
n
√
x
)

(∗∗)

Thus, we get
G n
√
H

H ( n
√
x)
≥ H,

but by (∗∗), even two refinements of this inequalities, can be deduced.

The right side of (2) is

n
√
H(x) ≤ H

(
n
√
x
)
,
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which with x→ 1

x
becomes in fact

n
√
A(x) ≥ A

(
n
√
x
)
,

and this is true, as we have pointed out before. Thus the theorem follows.
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1.5 On certain conjectures on classical

means

1

Let

An = An(x1, . . . , xn) =

n∑
i=1

xi

n
,

Gn = Gn(x1, . . . , xn) = n

√√√√ n∏
i=1

xi,

Hn = Hn(x1, . . . , xn) =
n

n∑
i=1

1

xi

,

Qn = Qn(x1, . . . , xn) =

(
1

n

n∑
i=1

x2i

)1/2

denote the classical means of positive real numbers xi > 0, i = 1, n.

In [1], as well as in [2], the following conjectures are stated:

An ≥
Qn +Gn

2
(1)

(see Conjecture 1 of [1], and OQ. 1919 of [2]).

Another conjecture is (see Conjecture 4 of [1]):

Gn ≤
aAn + bHn

a+ b
(2)

for certain a, b > 0. Our aim in what follows is to show, that (1) is not

true for all n ≥ 3, and that (2) holds true e.g. with a =
n− 1

n
, b =

1

n
.
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2

Though, relation (1) is true for n = 2, we can show that even weaker

inequality (by
Qn +Gn

2
≥
√
QnGn)

An ≥
√
QnGn (3)

is not generally true for n ≥ 3. For this purpose, select

x1 = x2 = . . . = xn−1 = 1 and xn = n− 1.

Then

An =
2(n− 1)

n
, Gn = n

√
n− 1, Qn =

√
n− 1 + (n− 1)2

n
,

so (3) becomes in this case

4(n− 1)2

n2
≥ (n− 1)

1
n (n− 1)

1
2 = (n− 1)

1
n
+ 1

2 . (4)

For n = 2, there is equality in (4). By supposing however, n ≥ 3, then

4(n− 1)3n−2 ≥ n4n = n4n−2 · n2

is not possible, as n2 > 4 and n4n−2 > (n− 1)3n−2.

Remark. If (1) is not true, one may think that a weaker inequality

An ≥
Qn +Hn

2
(5)

is valid. And indeed, by quite complicated computations (e.g. by using

computer algebra), Čerin, Gianella and Starc [3] have shown, that (5)

holds for all n ≤ 4. However, a counterexample shows that it is false for

n ≥ 5. In [3] are shown also the following facts:

Gn ≤
Hn +Qn

2
(6)
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is true for all n ≤ 4; false for n ≥ 5;

Gn ≤
√
HnQn (7)

is true for n ≤ 2; false for n ≥ 3;

Gn ≥
2

1

Hn

+
1

An

(8)

true for n ≤ 2; false for n ≥ 3;

An ≥
√
H2
n +Q2

n

2
(9)

true for n ≤ 2; false for n ≥ 3;

Gn ≤
√
H2
n +Q2

n

2
(10)

true for n ≤ 4; false for n ≥ 8.

They conjecture that (10) is valid also for 5 ≤ n ≤ 7.

3

We now settle, in the affirmative, relation (2). The famous Sierpinski

inequality (see e.g. [4] for a generalization) states that

Hn−1
n An ≤ Gn

n ≤ An−1n Hn. (11)

Now, the right side of (11) (which is equivalent, by a simple transforma-

tion, with the left side of (11)) implies

Gn ≤ A
n−1
n

n H
1
n
n = AαnH

β
n ≤ αAn + βHn, for α =

n− 1

n
, β =

1

n
,

by the classical Young inequality

xαyβ ≤ αx+ βy (x, y > 0; α, β > 0; α + β = 1). (12)

Therefore, we have proved (9), in the following refined form:

Gn ≤ A
n−1
n

n H
1
n
n ≤

(n− 1)An +Hn

n
. (13)

The weaker form of inequality (13) for n = 2 and n = 3 is proved also in

[1].
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4

We want to point out now, weaker versions of (6)-(10), which are

always true. First remark that

Hn ≤ Gn ≤ An ≤ Qn, for all n ≥ 2. (14)

Now, by the first inequality of (13), and the last one of (14) one can write

Hn ≤ Q
n−1
n

n H
1
n
n ≤

(n− 1)Qn +Hn

n
,

by an application of (12). Thus, at another hand,

Gn ≤ Q
n−1
n

n H
1
n
n , ∀ n ≥ 2 (15)

which coincides for n = 2 with (7), but unlike (7), (15) is always true;

and at another hand,

Gn ≤
(n− 1)Qn +Hn

n
, (16)

which for n = 2 coincides with (6), and is true for all n. By (16), and the

classical inequality

(x1 + x2 + . . .+ xn)2 ≤ n(x21 + . . .+ x2n),

applied the x1 = . . . = xn−1 = Qn, xn = Hn one has

((n− 1)Qn +Hn)2 ≤ n((n− 1)Q2
n +H2

n),

so an extension of (10) has been found:

Gn ≤
√

(n− 1)Q2
n +H2

n

n
. (17)

Unlike (10), this is valid for all n ≥ 2.
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1.6 On weighted arithmetic-geometric

inequality

Let xi > 0, pi > 0 and
n∑
i=1

pi = 1 (i = 1, 2, . . . , n, n ∈ N). Since the

function f(x) = log(1+ex) is convex for all x > 0, by Jensen’s inequality

f(p1a1 + . . .+ pnan) ≤ p1f(a1) + . . .+ pnf(an), ai ∈ R,

we get

log(1 + ep1a1+...+pnan) ≤ log(1 + ea1)p1 . . . (1 + ean)pn .

By letting eai = xi > 0, we obtain the following inequality:

1 + xp11 . . . xpnn ≤ (1 + x1)
p1 . . . (1 + xn)pn . (1)

This is in fact, an extended Chrystal inequality (see [1]). Now, let

g(x) = log log(1 + ex).

It is immediate that g is concave, which after some computations is equiv-

alent to

log(1 + ex) < ex.

Now, applying the some procedure as above, we can deduce the following

relation:

log(1 + xp11 . . . xpnn ) ≥ log(1 + x1)
p1 . . . log(1 + xn)pn (2)

Now, by the weighted arithmetic-geometric mean inequality, it can be

written that:

(1 + x1)
p1 . . . (1 + xn)pn ≤ p1(1 + x1) + . . .+ pn(1 + xn)

= 1 + p1x1 + . . .+ pnxn. (3)
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By taking into account of (1), (2), (3), the following chain of inequalities

holds true:

Theorem. elog(1+x1)
p1 ... log(1+xn)pn − 1 ≤ xp11 . . . xpnn

≤ (1 + x1)
p1 . . . (1 + xn)pn − 1 (4)

For p1 = p2 = . . . = pn =
1

n
, from (4) we get:

e
n
√

log(1+x1)... log(1+xn) − 1 ≤ n
√
x1 . . . xn

≤ n
√

(1 + x1) . . . (1 + xn)− 1 ≤ x1 + x2 + . . .+ xn
n

, (5)

which among other contains a refinement of the classical arithmetic-

geometric inequality.
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1.7 A note on the inequality of means

1. Introduction

Let α1, . . . , αn > 0, α1+. . .+αn = 1 and x1, . . . , xn > 0. The weighted

arithmetic mean-geometric mean inequality states that

Gα = G(x, α) = xα1
1 . . . xαnn ≤ α1x1 + . . .+ αnxn = A(x, α) = Aα. (1)

This is one of the most important inequalities, with applications and

connections to many fields of Mathematics.

When (α) = (α1, . . . , αn) =

(
1

n
, . . . ,

1

n

)
, we get the classical inequal-

ity of means

G = n
√
x1 . . . xn ≤

x1 + . . .+ xn
n

= A (2)

In 1998 [2] the author introduced the so-called ”tangential mean”

T (x) = n
√

(1 + x1) . . . (1 + xn)− 1

and proved that

G ≤ T ≤ A (3)

In fact, the method of proof immediately gives the more general in-

equality

Gα ≤ Tα ≤ Aα, (4)

where

Tα = Tα(x) = (1 + x1)
α1 . . . (1 + xn)αn − 1 (5)

An application of (3) to Wilker and Huygens type inequalities has

been provided in our paper [3].

Recently, Y. Nakasuji and S.-E. Takahasi [1] have rediscovered re-

lation (4), by an application of Jensen type inequalities in topological

semigroups.
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Let a > 0 be an arbitrary positive real number. We introduce a gen-

eralization of Tα of (5) by

T aα = T aα(x) = (a+ x1)
α1 . . . (a+ xn)αn − a (6)

The aim of this note is to offer generalizations and refinements of

inequality (4).

2. Main results

The following auxiliary results will be used:

Lemma 1. If x1, . . . , xn > 0 and y1, . . . , yn > 0. Then

(x1 + y1)
α1 . . . (xn + yn)αn ≥ xα1

1 . . . xαnn + yα1
1 . . . yαnn , (7)

where (α) are as in the Introduction.

Lemma 2. The application f : (0,∞) → R given by f(a) = T aα is

increasing.

3. Proofs

Lemma 1. By inequality (1) applied to

x1 :=
x1

x1 + y1
, . . . , xn :=

xn
xn + yn

we get(
x1

x1 + y1

)α1

. . .

(
xn

xn + yn

)αn
≤ α1 ·

x1
x1 + y1

+ . . .+ αn ·
xn

xn + yn
(8)

Apply (1) in the same manner to x1 :=
y1

x1 + y1
, . . . , xn :=

yn
xn + yn

.

We get(
x1

x1 + y1

)α1

. . .

(
yn

xn + yn

)αn
≤ α1 ·

y1
x1 + y1

+ . . .+ αn ·
yn

xn + yn
(9)
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Now, by a simple addition of (8) and (9), one gets (7).

Lemma 2. By computing the derivative f ′(a) one has

f ′(a) = α1(a+ x1)
α1−1(a+ x2)

α2 . . . (a+ xn)αn

+α2(a+ x1)
α1(a+ x2)

α2−1 . . . (a+ xn)αn + . . .+

+αn(a+ x1)
α1 . . . (a+ xn−1)

αn−1(a+ xn)αn−1 − 1.

Now applying inequality (1) to

x1:=(a+x1)
α1−1(a+x2)

α2 . . . (a+xn)αn , . . . , xn :=(a+x1)
α1 . . . (a+xn)αn−1

we get that

f ′(a) ≥ (x1 + a)α1(α1−1+α2+...+αn) . . . (xn + a)(α1+α2+...+αn−1) − 1 = 0

as α1 + α2 + . . .+ αn = 1.

The main result of this note is:

Theorem. One has:

Gα ≤ T aα ≤ Aα, for a > 0 (10)

Gα ≤ T aα ≤ T bα ≤ Aα, when 0 < a ≤ b (11)

Gα ≤ T bα ≤ T aα ≤ Aα, when a ≥ b. (12)

Proof. By applying inequality (1) to x1 := x1 + a, . . . , xn := xn + a,

we get

(x1+a)α1 . . . (xn+a)αn ≤ α1(x1+a) . . .+αn(xn+a) = α1x1+. . .+αnxn+a,

so the right side of (10) follows.

Applying now Lemma 1 for y1 = . . . = yn = a, we get

(x1 + a)α1 . . . (xn + a)αn ≥ xα1
1 . . . xαnn + a,

so the left side of (10) follows as well.
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Relations (11) and (12) are consequences of Lemma 2, by remarking

that f(a) ≤ f(1) for a ≤ 1 and f(a) ≥ f(1) for a ≥ 1.

Remarks. 1) Particularly, when b = 1 we get the following refine-

ments of (10):

Gα ≤ T aα ≤ Tα ≤ Aα, when 0 < a ≤ 1 (13)

Gα ≤ Tα ≤ T aα ≤ Aα, when a ≥ 1. (14)

These offer infinitely (continuously) many refinements of inequalities

(4) and (3).

Remark. An alternate proof for left side of (10) can be given by

considering the application

g : R→ R, g(x) = ln(a+ ex).

Since g′′(x) =
aex

(a+ ex)2
> 0, g is strictly convex, so by Jensen’s

inequality

g(α1y1 + . . .+ αnyn) ≤ α1g(y1) + . . .+ αng(yn), y1, . . . , yn ∈ R

we get

(a+ ey1)α1 . . . (a+ eyn)αn ≥ a+ eα1y1+...+αnyn (15)

Let now yi = lnxi (i = 1, 2, . . . , n), where xi > 0 in (15). Then we get

(a+ x1)
α1 . . . (a+ xn)αn ≥ a+ xα1

1 . . . xynn , (16)

so Gα ≤ T aα follows.
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1.8 On an inequality of Sierpinski

1

Let xi, i = 1, n, be strictly positive numbers and denote their usual

arithmetic, geometric and harmonic mean by

An(x) =

n∑
i=1

xi

n
, Gn(x) =

(
n∏
i=1

xi

) 1
n

, Hn(x) =
n

n∑
i=1

1

xi

,

where x = (x1, . . . , xn).

In 1909 W. Sierpinski ([5]) discovered the following double-inequality:

(Hn(x))n−1An(x) ≤ (Gn(x))n ≤ (An(x))n−1Hn(x). (1)

The aim of this note is to obtain a very short proof of (1) (in fact, a

generalization), by using Maclaurin’s theorem for elementary symmetric

functions. For another idea of proof for (1) (due to the present author),

which leads also to a refinement of an inequality of Ky Fan, see [1].

For application of (1) see [4]. Now we state Maclaurin’s theorem as the

following:

Lemma. Let cr be the r-th elementary symmetric function of x (i.e.

the sum of the products, r at a time, of different xi) and pr the average

of these products, i.e.

pr =
cr(
n

r

) .
Then

p1 ≥ p
1
2
2 ≥ p

1
3
3 ≥ . . . ≥ p

1
n−k
n−k ≥ . . . ≥ p

1
n
n . (2)

See [2], [3] for a proof and history of this result.
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2

Our result is contained in the following

Theorem. Let k = 1, 2, . . . and define the k-harmonic mean of x by

Hn,k(x) =

(
n

k

)
∑
(nk)

1

x1 . . . xk

.

Then one has the inequalities

(Gn(x))n ≤ (An(x))n−k ·Hn,k(x) (3)

(Gn(x))n ≥ (Hn,k(x))n−k · An,k(x), (4)

where

An,k(x) = pk =

∑
x1 . . . xk(
n

k

) .

Proof. Apply p1 ≥ p
1

n−k
n−k from (2), where

pn−k =
∑ x1 . . . xn−k(

n

n− k

) =

(
n∏
i=1

xi

)
∑ 1

x1 . . . xk(
n

k

)
 ,

and we easily get (3).

For k = 1 one reobtains the right side of inequality (1). By replacing

x by
1

x
=

(
1

x1
, . . . ,

1

xn

)
,

and remarking that

Gn

(
1

x

)
=

1

Gn(x)
, An

(
1

x

)
=

1

Hn(x)
, Hn

(
1

x

)
=

1

An(x)
,

we immediately get the left side of (1) from the right side of this relation.

This finishes the proof of (3). Letting
1

x
in place of x, we get (4).
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1.9 On certain inequalities for means of

many arguments

1. Introduction

Let ai > 0 (i = 1, 2, . . . , n) and introduce the well-known means of n

variables

An =
1

n

n∑
i=1

ai, Gn = n

√√√√ n∏
i=1

ai, Qn =

√√√√ 1

n

n∑
i=1

a2i .

Recently, V.V. Lokot and S. Phenicheva [1] have proved the following

inequality: For all n ≥ 3,

nA2
n ≥ (n− 1)G2

n +Q2
n. (1)

The proof of (1) is based on mathematical induction, combined with

the introduction and quite complicated study of an auxiliary function.

The aim of this note is to provide a very simple proof of (1). A related

result, as well as an extension will be given, too.

2. The proof

Remark that (1) may be written equivalently also as

(a1 + a2 + . . .+ an)2 − (a21 + a22 + . . .+ a2n) ≥ n(n− 1)G2
n. (2)

Now, the left side of (2) may be written also as 2
∑
i<j

aiaj, where the

number of terms is
n(n− 1)

2
. Apply now the arithmetic mean-geometric

mean inequality

As ≥ Gs (s ≥ 1), where As =
x1 + . . .+ xs

s
, Gs = s

√
x1 . . . xs (3)

with s =
n(n− 1)

2
and x1 = a1a2, . . . , xs = an−1an.
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Then, as each term ai appears n− 1 times, we get from (3):∑
i<j

aiaj ≤
n(n− 1)

2
[(a1a2 . . . an)n−1]

2
n(n−1) =

n(n− 1)

2
G2
n.

This proves relation (2), and so relation (1), too.

Remark. As for n = 2 there is equality in (1), this holds for all n ≥ 2.

3. A related result

Apply now the inequality

As ≤ Qs (s ≥ 1), where s =
n(n− 1)

2
, etc. (4)

As 2
∑
i<j

(aiaj)
2 =

(∑
a2i

)2
−
∑

a4i = n2Q4
n − nR4

n, where

Rn = 4

√√√√ n∑
i=1

a4i /n, (5)

we get by (4) the following inequality:

nA2
n −Q2

n

n− 1
≤

√
nQ4

n −R4
n

n− 1
, n ≥ 2, (6)

with Rn defined as in (5). By (1) and (6), we get also:

G2
n ≤

nA2
n −Q2

n

n− 1
≤

√
nQ4

n −R4
n

n− 1
, n ≥ 2 (7)

4. An extension

In analogy with (5) let us define

Rn,k =

(
ak1 + ak2 + . . .+ akn

n

)1/k

. (8)
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Now we will prove the following:

Theorem. For all n, k ≥ 2 one has

nk−1Akn ≥ (nk−1 − 1)Gk
n +Rk

n,k.

Proof. We shall use the multinomial theorem, as follows:

(a1 + . . .+ an)k =
∑

i1+i2+...+in=k
i1,i2,...,in≥0

(
k

i1, i2, . . . , in

)
ai11 a

i2
2 . . . a

in
n , (9)

where the multinomial coefficients(
k

i1, i2, . . . , in

)
=

k!

i1!i2! . . . in!
.

By letting a1 = a2 = . . . = an = 1 in (9), we get that the sum of all

multinomial coefficients is nk:∑(
k

i1, i2, . . . , in

)
= nk. (10)

By letting a2 = . . . = an = 1, a1 = x in (9) and by taking a derivative

upon x, one has

k(x+ n− 1)k−1 =
∑

i1

(
k

i1, i2, . . . , in

)
xi1 , (11)

and by putting x = 1 in (11) we get:

k · nk−1 =
∑

i1

(
k

i1, i2, . . . , in

)
. (12)

Now, remark that

(a1 + . . .+ an)k − (ak1 + . . .+ akn) = nk(Akn −Rk
n,k).

On the other hand, by using (9), we get

nk(Akn −Rk
n,k) =

∑
0≤i1≤k−1,...,0≤in≤k−1

(
k

i1, i2, . . . , in

)
ai11 . . . a

in
n . (13)
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On base of (10), the number of terms of the right hand side of (13) is

nk−n. Now write the sum on the right side of (13) as the sum x1 +x2 +

. . . + xs, where s = nk − n, where each term xk is of the form ai11 . . . a
in
n

(which appears in the sum

(
k

i1, . . . , in

)
times), with i1 + . . . + in = k,

i1 6= k, . . . , in 6= k.

Applying inequality (3), we have to calculate the powers of a1,

a2, . . . , an. We will show that each such power is knk−1 − k. First re-

mark that in (9) in such a writing a1 appears
∑

i1

(
k

i1, i2, . . . , in

)
times,

which is knk−1, by relation (12). But in (13) are missing the terms with

ak1, which appears k times. Thus in x1x2 . . . xs on the right side of (13),

the power of a1 will be knk−1−k. Clearly, the same is true for a2, . . . , an.

Now, by (3) we get

nk(Akn −Rk
n,k) ≥ (nk − n)[(a1a2 . . . an)kn

k−1−k]1/(n
k−n)

= n(nk−1 − 1)(a1a2 . . . an)k/n = n(nk−1 − 1)Gk
n.

By reducing with n, we get the Theorem.

Remarks. 1) For k = 2, we get relation (1). For k = 3 we get:

n2A3
n ≥ (n2 − 1)G3

n +R3
n,3. (14)

2) As by the inequality (x1 + . . .+ xn)2 ≤ n(x21 + . . .+ x2n) applied yo

x1 = . . . = xn−1 = Gn, xn = Qn implies

[(n− 1)Gn +Qn]2 ≤ n[(n− 1)G2
n +Q2

n] ≤ n2A2
n,

by (1); we get the most simple analogy to this relation:

nAn ≥ (n− 1)Gn +Qn. (15)

Such inequalities involving An, Gn, Hn (harmonic mean), or Gn, Qn, Hn

are proved in [2].
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1.10 A note on log-convexity of power

means

1. Introduction

Let Mp(a, b) = (a
p+bp

2
)1/p (p 6= 0),M0(a, b) =

√
ab denote the power

mean (or Hölder mean, see [2]) of two arguments a, b > 0. Recently A.

Bege, J. Bukor and J. T. Tóth [1] have given a proof of the fact that for

a 6= b, the application p → Mp is log-convex for p ≤ 0 and log-concave

for p ≥ 0. They also proved that it is also convex for p ≤ 0. We note

that this last result follows immediately from the well-known convexity

theorem, which states that all log-convex functions are convex, too (see

e.g. [2]). The proof of authors is based on an earlier paper by T.J. Mildorf

(see [1]).

In what follows, we will show that this result is well-known in the

literature, even in a more general setting. A new proof will be offered,

too.

2. Notes and results

In 1948 H. Shniad [6] studied the more general means

Mt(a, ξ) =

(
n∑
i=1

ξia
t
i

)1/t

(t 6= 0), M0(a, ξ) =
n∏
i=1

aξii ,

M−∞(a, ξ) = min{ai : i = 1, . . . },

M+∞(a, ξ) = max{ai : i = 1, . . . },

where 0 < ai < ai+1 (i = 1, . . . , n − 1) are given positive real numbers,

and ξi(i = 1, n) satisfy ξi > 0 and
n∑
i=1

ξi = 1.

Put Λ(t) = logMt(a, ξ). Among other results, in [6] the following are

proved:
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Theorem 2.1

If ξ1 ≥
1

2
then Λ(t) is convex for all t < 0; (1)

If ξn ≥
1

2
then Λ(t) is concave for all t > 0. (2)

Clearly, when n = 2, in case of Mp one has ξ1 = ξ2 = 1
2
, so the result

by Bege, Bukor and Tóth [1] follows by (1) and (2).

Another generalization of power mean of order two is offered by the

Stolarsky means (see [7]) for a, b > 0 and x, y ∈ R define

Dx,y(a, b) =



[
y(ax − bx)
x(ay − by)

]1/(x−y)
, xy(x− y) 6= 0

exp

(
−1

x
+
ax ln a− bx ln b

ax − bx

)
, x = y 6= 0[

ax − bx

(ln a− ln b)

]1/x
, x 6= 0, y = 0

√
ab, x = y = 0

The means Dx,y are called som3times as the difference means, or

extended means.

Let Ix(a, b) = (I(ax, bx))1/x, where I(a, b) denotes the identic mean

(see [2], [4]) defined by

I(a, b) = D1,1(a, b) =
1

e
(bb/aa)1/(b−a) (a 6= b),

I(a, a) = a.

K. Stolarsky [7] proved also the following representation formula:

logDx,y =
1

y − x

∫ y

x

log Itdt for x 6= y. (3)

Now, in 2001 the author [4] proved for the first time that the appli-

cation t→ log It is convex for t > 0 and concave for t < 0.
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This in turn implies immediately (see also [3]) the following fact:

Theorem 2.2

If x > 0 and y > 0, then Dx,y is log-concave in both x and y.

If x < 0 and y < 0, then Dx,y is log-convexe in both x and y.
(4)

Now, remark that

Mp(a, b) = D2p,p(a, b) (5)

so the log-convexity properties by H. Shniad are also particular cases of

(4).

We note that an application of log-convexity of Mp is given in [5].

3. A new elementary proof

We may assume (by homogeneity properties) that b = 1 and a > 1.

Let

f(p) =
ln((ap + 1)/2)

p
,

and denote x = ap. Then, as

x′ =
dx

dp
= ap ln a = x ln a,

from the identity

pf(p) = ln(x+ 1)/2

we get by differentiation

f(p) + pf ′(p) =
x ln a

x+ 1
(6)

By differentiating once again (6), we get

2f ′(p) + pf ′′(p) =
(x ln2 a)(x+ 1)− x2 ln2 a

(x+ 1)2
,
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which implies, by definition of f(p) and relation (6):

p3f ′′(p)=
(x ln2 x)(x+ 1)− x2 ln2 x

(x+ 1)2
− 2

x+ 1

[
x lnx−(x+ 1) ln

(
x+ 1

2

)]

=
x ln2 x+ 2(x+ 1)2 ln(x+ 1)− 2x(x+ 1) lnx

(x+ 1)2
, (7)

after some elementary computations, which we omit here.

Put

g(x) = x ln2 x+ 2(x+ 1)2 ln(
x+ 1

2
)− 2x(x+ 1) lnx.

One has successively:

g′(x) = ln2x+ 4(x+ 1) ln

(
x+ 1

2

)
− 4x lnx,

g′′(x) =
2 lnx

x
+ 4 ln

(
x+ 1

2

)
− 4 lnx,

g′′′(x) = 2

[
1− lnx

x2
− 2

x(x+ 1)

]
=

−2

x2(x+ 1)
[x− 1 + (x+ 1) lnx].

Now, remark that for x > 1, clearly g′′′(x) < 0, so g′′(x) is strictly

decreasing, implying g′′(x) < g′′(1) = 0. Thus g′(x) < g′(1) = 0, giving

g(x) < g(1) = 0. Finally, one gets f ′′(p) < 0, which shows that for x > 1

the function f(p) is strictly concave function of p. As x = ap with a > 1,

this happend only when p > 0.

For x < 1, remark that x − 1 < 0 and lnx < 0, so g′′′(x) > 0, and

all above procedure may be repeted. This shows that f(p) is a strictly

convex function of p for p < 0.
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1.11 A note on the ϕ and ψ functions

1. Introduction

In a recent paper [1] V. Kannan and R. Srikanth have stated the

following inequality

ϕ(n)ϕ(n) · ψ(n)ψ(n) ≥ n2nµ(n), (1)

where ϕ(n) and ψ(n) are the Euler, resp. Dedekind arithmetic functions,

while µ(n) is defined by

µ(n) =
1

2

∏
p|n

(
1− 1

p

)
+
∏
p|n

(
1 +

1

p

) (2)

where p runs through the prime divisors of n.

Recall that ϕ(1) = ψ(1) = 1, and one has

ϕ(n) = n ·
∏
p|n

(
1− 1

p

)
. ψ(n) = n ·

∏
p|n

(
1 +

1

p

)
. (3)

The proof given in [1] depends on inequality

∏
p|n

(
1− 1

p

)∑
p|n

log

(
1− 1

p

)
+
∏
p|n

(
1 +

1

p

)∑
p|n

log

(
1 +

1

p

)
≥ 0. (4)

In what follows, we shall give another proof of inequality (1), and this

proof offers in fact a stronger relation.

2. The proof

First remark that, by using (3), the expression µ(n) given by (2) may

be written as

µ(n) =
ϕ(n) + ψ(n)

2n
. (5)
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Therefore, the inequality may be rewritten as

ϕ(n)ϕ(n) · ψ(n)ψ(n) ≥ nϕ(n)+ψ(n). (6)

The following auxiliary results are needed:

Lemma 1. For any a, b > 0 real numbers one has

aa · bb ≥
(
a+ b

2

)a+b
. (7)

Lemma 2. For any n ≥ 1 one has

ϕ(n) + ψ(n) ≥ 2n. (8)

Lemma 2 is well-known, see e.g. [2]. Lemma 1 is also well-known, but

we shall give here a complete proof.

Let us consider the application f(x) = x log x, x > 0. Since f ′′(x) > 0,

f is strictly convex, so by Jensen’s inequality we can write

f

(
a+ b

2

)
≤ f(a) + f(b)

2
. (9)

There is equality only for a = b. After simple computations, we get

relation (7).

Another proof is based on the fact that the weighted geometric mean

of a and b is greater than the weighted harmonic mean, i.e.

ap · bq ≥ 1
p

a
+
q

b

, (10)

where p, q > 0, p + q = 1. Put p =
a

a+ b
, q =

b

a+ b
, and from (10) we

get (7).

Now, for the proof of (6) apply Lemma 1 and Lemma 2 in order to

deduce:

ϕ(n)ϕ(n) · ψ(n)ψ(n) ≥
(
ϕ(n) + ψ(n)

2

)ϕ(n)+ψ(n)
≥ nϕ(n)+ψ(n). (11)

Therefore, in fact a refinement of inequality (6) (and (1), too), is

offered.
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2. J. Sándor, D.S. Mitrinović and B. Crstici, Handbook of number

theory I, Springer Verlag, 2006 (see p. 12).

52



1.12 Generalizations of Lehman’s

inequality

1. Introduction

A. Lehman’s inequality (see [6], [2]) (and also SIAM Review 4(1962),

150-155), states that if A,B,C,D are positive numbers, then

(A+B)(C +D)

A+B + C +D
≥ AC

A+ C
+

BD

B +D
. (1)

This was discovered as follows: interpret A,B,C,D as resistances of

an electrical network. It is well-known that if two resistances R1 and R2

are serially connected, then their compound resistance is R = R1 + R2,

while in parallel connecting one has 1/R = 1/R1 + 1/R2. Now consider

two networks, as given in the following two figures:

A

B

C

D

A

B

C

D

R =
(A+B)(C +D)

A+B + C +D
R′ =

AC

A+ C
+

BD

B +D

By Maxwell’s principle, the current chooses a distribution such as

to minimize the energy (or power), so clearly R′ ≤ R, i.e. Lehman’s

inequality (1).

In fact, the above construction may be repeated with 2n resistances,

in order to obtain:
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Theorem 1. If ai, bi (i = 1, n) are positive numbers, then

(a1 + · · ·+ an)(b1 + · · ·+ bn)

a1 + · · ·+ an + b1 + · · ·+ bn
≥ a1b1
a1 + b1

+ · · ·+ anbn
an + bn

(2)

for any n ≥ 2.

Remark. Since
2ab

a+ b
= H(a, b) is in fact the harmonic mean of two

positive numbers, Lehman’s inequality (2) can be written also as

H(a1 + · · ·+ an, b1 + · · ·+ bn) ≥ H(a1, b1) + · · ·+H(an, bn) (3)

2. Two-variable generalization

In what follows, by using convexity methods, we shall extend (3) in

various ways. First we introduce certain definitions. Let f : A ⊂ R2 → R
be a function with two arguments, where A is a cone (e.g. A = R2

+). Let

k ∈ R be a real number. Then we say that f is k-homogeneous, if

f(rx, ry) = rkf(x, y) (4)

for any r > 0 and x, y ∈ A. When k = 1, we simply say that f is

homogeneous.

Let F : I ⊂ R → R be a function of an argument defined on an

interval I. We say that F is k-convex (k-concave), if

F (λa+ µb) ≤
(≥)

λkF (a) + µkF (b), (5)

for any a, b ∈ I, and any λ, µ > 0, λ + µ = 1. If k = 1, then F will be

called simply convex. For example, F (t) = |t|k, t ∈ R is k-convex, for

k ≥ 1, since |λa+µb|k ≤ λk|a|k +µk|b|k by (u+ v)k ≤ uk + vk (u, v > 0),

k ≥ 1. On the other hand, the function F (t) = |t|, though is convex, is

not 2-convex on R.

The k-convex functions were introduced, for the first time, by W.

W. Breckner [4]. See also [5] for other examples and results. A similar
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convexity notion, when in (5) one replaces λ+µ = 1 by λk +µk = 1, was

introduced by W. Orlicz [12] (see also [8] for these convexities).

Now, let A = (0,+∞) × (0,+∞) = R2
+ and I = (0,+∞). Define

F (t) = f(1, t) for t ∈ I.

Theorem 2. If f is k-homogeneous, and F is k-convex (k-concave)

then

f(a1 + · · ·+ an, b1 + · · ·+ bn) ≤
(≥)

f(a1, b1) + · · ·+ f(an, bn) (6)

for any ai, bi ∈ A (i = 1, 2, . . . , n).

Proof. First remark, that by (4) and the definition of F , one has

akF

(
b

a

)
= akf

(
1,
b

a

)
= f(a, b) (7)

On the other hand, by induction it can be proved the following Jensen-

type inequality:

F (λ1x1 +λ2x2 + · · ·+λnxn) ≤
(≥)

λk1F (x1) +λk2F (x2) + · · ·+λknF (xn), (8)

for any xi ∈ I, λi > 0 (i = 1, n), λ1 + · · ·+ λn = 1.

E.g. for n = 3, relation (8) can be proved as follows:

Put

a =
λ1

λ1 + λ2
x1 +

λ2
λ1 + λ2

x2, b = x3, λ = λ1 + λ2, µ = λ3

in (5). Then, as λ1x1 + λ2x2 + λ3x3 = λa+ µb, we have

F (λ1x1 + λ2x2 + λ3x3) ≤ λkF (a) + µkF (b)

≤ (λ1 + λ2)
k

[
λk1

(λ1 + λ2)k
F (x1) +

λk2
(λ1 + λ2)k

F (x2)

]
+ λk3F (x3)

= λk1F (x1) + λk2F (x2) + λk3F (x3).
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The induction step from n = m to n = m+ 1 (m ≥ 2) follows on the

same lines, by letting

a =
λ1
λ
x1 + · · ·+ λm

λ
xm, b = xm+1, λ = λ1 + · · ·+ λm, µ = λm+1

in (5).

Put now in (8)

x1 =
b1
a1
, x2 =

b2
a2
, . . . , xn =

bn
an
,

λ1 =
a1

a1 + · · ·+ an
, λ2 =

a2
a1 + · · ·+ an

, . . . , λn =
an

a1 + · · ·+ an

in order to obtain

F

(
b1 + · · ·+ bn
a1 + · · ·+ an

)
≤
(≥)

ak1F

(
b1
a1

)
+ ak2F

(
b2
a2

)
+ · · ·+ aknF

(
bn
an

)
(a1 + · · ·+ an)k

(9)

Now, by (7) this gives

f(a1 + · · ·+ an, b1 + · · ·+ bn) ≤ f(a1, b1) + · · ·+ f(an, bn),

i.e. relation (6).

Remark. Let f(a, b) =
a+ b

ab
. Then f is homogeneous (i.e. k = 1),

and

F (t) = f(1, t) =
t+ 1

t

is 1-convex (i.e., convex), since F ′′(t) = 2/t3 > 0. Then relation (6) gives

the following inequality:

1

H(a1 + · · ·+ an, b1 + · · ·+ bn)
≤ 1

H(a1, b1)
+ · · ·+ 1

H(an, bn)
. (10)

Let now f(a, b) =
ab

a+ b
. Then f is homogeneous, with F (t) =

t

t+ 1
,

which is concave. From (6) (with ≥ inequality), we recapture Lehman’s

inequality (3).
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The following theorem has a similar proof:

Theorem 3. Let f be k-homogeneous, and suppose that F is l-convex

(l-concave) (k, l ∈ R). Then

(a1 + · · ·+ an)l−kf(a1 + · · ·+ an, b1 + · · ·+ bn)

≤ (≥)al−k1 f(a1, b1) + · · ·+ al−kn f(an, bn). (11)

Remarks. For k = l, (11) gives (9).

For example, let f(a, b) =
a

b
, where a, b ∈ (0,∞)×(0,∞). Then k = 0

(i.e. f is homogeneous of order 0), and F (t) =
1

t
, which is 1-convex, since

F ′′(t) =
2

t3
> 0.

Thus l = 1, and relation (11) gives the inequality

(a1 + · · ·+ an)2

b1 + · · ·+ bn
≤ a21
b1

+ · · ·+ a2n
bn

(12)

Finally, we given another example of this type. Put

f(a, b) =
a2 + b2

a+ b
.

Then k = 1. Since

F (t) =
t2 + 1

t+ 1
,

after elementary computations,

F ′′(t) = 4/(t+ 1)3 > 0,

so l = 1, and (11) (or (9)) gives the relation

(a1 + · · ·+ an)2 + (b1 + · · ·+ bn)2

a1 + · · ·+ an + b1 + · · ·+ bn
≤ a21 + b21
a1 + b1

+ · · ·+ a2n + b2n
an + bn

(13)
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Since L1(a, b) =
a2 + b2

a+ b
(more generally, Lp(a, b) =

ap+1 + bp+1

ap + bp
) are

the so-called ”Lehmer means” [9], [7], [1] of a, b > 0, (13) can be written

also as

L1(a1 + · · ·+ an, b1 + · · ·+ bn) ≤ L1(a1, b1) + · · ·+ L1(an, bn). (14)

Clearly, one can obtain more general forms for Lp. For inequalities on

more general means (e.g. Gini means), see [10], [11].

3. Hölder’s inequality

As we have seen, there are many applications to Theorems 2 and 3.

Here we wish to give an important application; namely a new proof of

Hölder’s inequality (one of the most important inequalities in Mathemat-

ics).

Let f(a, b) = a1/pb1/q, where 1/p+ 1/q = 1 (p > 1). Then clearly f is

homogeneous (k = 1), with F (t) = t1/q. Since

F ′(t) =
1

q
t−1/p, F ′′(t) = − 1

pq
t−(1/p)−1 < 0,

so by Theorem 2 one gets

(a1 + · · ·+ an)1/p(b1 + · · ·+ bn)1/q ≥ a
1/p
1 b

1/q
1 + · · ·+ a1/pn b1/qn (15)

Replace now ai = Api , bi = Bq
i (i = 1, n) in order to get

n∑
i=1

AiBi ≤

(
n∑
i=1

Api

)1/p( n∑
i=1

Bq
i

)1/q

, (16)

which is the classical Hölder inequality.

4. Many-variables generalization

Let f : A ⊂ Rn
+ → R be of n arguments (n ≥ 2). For simplicity, put

p = (x1, . . . , xn), p′ = (x′1, . . . , x
′
n),
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when p + p′ = (x1 + x′1, . . . , xn + x′n) and rp = (rx1, . . . , rxn) for r ∈ R.

Then the definitions of k-homogeneity and k-convexity can be extended

to this case, similarly to paragraph 2. If A is a cone, then f is k-

homogeneous, if f(rp) = rkf(p) (r > 0) and if A is convex set then

f is k-convex, if f(λp + µp′) ≤ λkf(p) + µkf(p′) for any p, p′ ∈ A,

λ, µ > 0, λ+ µ = 1. We say that f is k-Jensen convex, if

f

(
p+ p′

2

)
≤ f(p) + f(p′)

2k
.

We say that f is r-subhomogeneous of order k, if f(rp) ≤ rkf(p).

Particularly, if k = 1 (i.e. f(rp) ≤ rf(p)), we say that f is r-

subhomogeneous (see e.g. [14], [15]). If f is r-subhomogeneous of order

k for any r > 1, we say that f is subhomogeneous of order k. For

k = 1, see [13]. We say that f is subadditive on A, if

f(p+ p′) ≤ f(p) + f(p′) (17)

We note that in the particular case of n = 2, inequality (6) with ”≤”

says exactly that f(a, b) of two arguments is subadditive.

Theorem 4. If f is homogeneous of order k, then f is subadditive if

and only if it is k-Jensen convex.

Proof. If f is subadditive, i.e. f(p+p′) ≤ f(p)+f(p′) for any p, p′ ∈ A,

then

f

(
p+ p′

2

)
=

1

2k
f(p+ p′) ≤ f(p) + f(p′)

2k
,

so f is k-Jensen convex. Reciprocally, if f is k-Jensen convex, then

f

(
p+ p′

2

)
≤ f(p) + f(p′)

2k
,

so

f(p+ p′) = f

[
2

(
p+ p′

2

)]
= 2kf

(
p+ p′

2

)
≤ f(p) + f(p′),

i.e. (17) follows.
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Remark. Particularly, a homogeneous subadditive function is con-

vex, a simple, but very useful result in the theory of convex bodies (e.g.

”distance function”, ”supporting function”, see e.g. [3], [16]).

Theorem 5. If f is 2-subhomogeneous of order k, and is k-Jensen

convex, then it is subadditive.

Proof. Since

f(p+ p′) = f

(
2

(
p+ p′

2

))
≤ 2kf

(
p+ p′

2

)
,

and

f

(
p+ p′

2

)
≤ f(p) + f(p′)

2k
,

we get f(p+ p′) ≤ f(p) + f(p′), so (17) follows.

Remark. Particularly, if f is 2-subhomogeneous, and Jensen convex,

then it is subadditive. (18)

It is well-known that a continuous Jensen convex function (defined on

an open convex set A ⊂ Rn) is convex. Similarly, for continuous k-Jensen

convex functions, see [4].

To give an interesting example, connected with Lehman’s inequality,

let us consider A = Rn
+, f(p) = H(p) = n/

(
1

x1
+ · · ·+ 1

xn

)
.

Let
1

g(p)
=

1

x1
+ · · ·+ 1

xn
.

Then
dg

g2
=

n∑
i=1

dxi
x2i
,

d2g

g2
− 2

dg2

g3
= −2

n∑
i=1

dx2i
x3i

,

so

1

2

d2g

g3
=

(
n∑
i=1

dxi
x2i

)2

−

(
n∑
i=1

1

xi

)(
n∑
i=1

dx2i
x3i

)
.

(Here d denotes a differential.) Now apply Hölder’s inequality (16) for

p = q = 2 (i.e. Cauchy-Bunjakovski inequality),

Ai = 1/
√
xi, Bi = (1/xi

√
xi)dxi.
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Then one obtains
d2g

g3
≤ 0, and since g > 0, we get d2g ≤ 0. It is well-

known ([16]) that this implies the concavity of function g(p) = H(p)/n,

so −H(p) will be a convex function. By consequence (17) of Theorem 5,

H(p) is subadditive, i.e.

H(x1 + x′1, x2 + x′2, . . . , xn + x′n) ≥ H(x1, x2, . . . , xn)+

+H(x′1, x
′
2, . . . , x

′
n), (xi, x

′
i > 0). (19)

For n = 2 this coincides with (3), i.e. Lehman’s inequality (1).

Finally, we prove a result, which is a sort of reciprocal to Theorem 5:

Theorem 6. Let us suppose that f is subadditive, and k-convex, where

k ≥ 1. Then f is subhomogeneous of order k.

Proof. For any r > 1 one can find a positive integer n such that

r ∈ [n, n + 1]. Then r can be written as a convex combination of n and

n+ 1: r = nλ+ (n+ 1)µ. By the k-convexity of f one has

f(rp) = f(nλp+ (n+ 1)µp) ≤ λkf(np) + µkf [(n+ 1)p].

Since f is subadditive, from (17) it follows by induction that

f(np) ≤ nf(p),

so we get

f(rp) ≤ nλkf(p) + (n+ 1)µkf(p) = [nλk + (n+ 1)µk]f(p).

Now, since k ≥ 1, it is well-known that

[λn+ (n+ 1)µ]k ≥ (λn)k + ((n+ 1)µ)k.

But (λn)k ≥ nλk and ((n+ 1)µ)k ≥ (n+ 1)µk, so finally we can write

f(rp) ≤ [λn+ (n+ 1)µ]kf(p) = rkf(p),

which means that f is subhomogeneous of order k.
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Remark. For k = 1 Theorem 6 contains a result by R. A. Rosenbaum

[13].

Final remarks. After completing this paper, we have discovered

that Lehman’s inequality (2) (or (3)) appears also as Theorem 67 in G.

H. Hardy, J. E. Littlewood and G. Polya [Inequalities, Cambridge Univ.

Press, 1964; see p.61], and is due to E. A. Milne [Note on Rosseland’s

integral for the stellar absorption coefficient, Monthly Notices, R.A.S.

85(1925), 979-984]. Though we are unable to read Milne’s paper, perhaps

we should call Lehman’s inequality as the ”Milne-Lehman inequality”.
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Chapter 2

Logarithmic, identric and

related means

“Mathematical discoveries, small or great are never born

of spontaneous generation. They always presuppose a soil

seeded with preliminary knowledge and well prepared by

labor, both conscious and subconscious.”

(H. Poincaré)

“Try a hard problem. You may not

solve it, but you will prove something else.”

(J.E. Littlewood)

2.1 On the identric and logarithmic means

1

Let a, b > 0 be positive real numbers. The identric mean I(a, b) of a

and b is defined by

I = I(a, b) =
1

e
·
(
bb

aa

)1/(b−a)

, for a 6= b, I(a, a) = a,
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while the logarithmic mean L(a, b) of a and b is

L = L(a, b) =
b− a

log b− log a
for a 6= b, L(a, a) = a.

In what follows it will be convenient to denote the arithmetic mean of a

and b by

A = A(a, b) =
a+ b

2

and the geometric mean by

G = G(a, b) =
√
ab.

More generally, we will use also the mean

A(k) = A(k; a, b) =

(
ak + bk

2

)1/k

where k 6= 0 is a real number. B. Ostle and H.L. Terwilliger [11] and B.C.

Carlson [5], [6] have proved first that

G ≤ L ≤ A. (1)

This result, or a part of it, has been rediscovered and reproved many

times (see e.g. [10], [12], [13]).

In 1974 T.P. Lin [9] has obtained an important refinement of (1):

G ≤ L ≤ A(1/3) ≤ A. (2)

For new proofs see [12], [13]. We note that A(k) is an increasing function

of k, so

L ≤ A(1/3) ≤ A(k) ≤ A for all k ∈ [1/3, 1]

but, as Lin has showed, the number 1/3 cannot be replaced by a smaller

one.

For the identric mean, K.B. Stolarsky [17], [18] has proved that

L ≤ I ≤ A, (3)
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A(2/3) ≤ I (4)

and that the constant 2/3 in (4) is optimal.

Recently inequalities (1) and (3) appear also in a problem proposed

by Z. Zaiming [19]. In [1] and [2] H. Alzer proved the following important

inequalities:
√
G · I ≤ L ≤ 1

2
(G+ I), (5)

A ·G ≤ L · I and A+G ≥ L+ I. (6)

We notice that, in all inequalities (1)-(6), equality can occur only for

a = b.

Very recently, H. Seiffert [16] has obtained the following result:

If f : [a, b]→ R is a strictly increasing function, having a logarithmi-

cally convex inverse function, then

1

b− a

∫ b

a

f(x)dx ≤ f(I(a, b)). (7)

The aim of this note is to obtain some improvements and related

results of type (1)-(7) as well as some new inequalities containing the

identric and logarithmic means. We also define some new means and

prove inequalities involving them.

2

We start with the relation

L(a, b) ≤

(
3
√
a+ 3
√
b

2

)3

(see (2)), applied with a→ a2, b→ b2. Since

L(a2, b2) = A(a, b) · L(a, b),

we get by a simple transformation, taking (4) into account, that

√
A · L ≤ A(2/3) ≤ I. (8)
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As for the inequality (5), one may ask (in view of (8)) whether

I ≤ 1

2
(A+ L)

holds always true. We shall prove that the reverse inequality

I >
1

2
(A+ L) if a 6= b (9)

is valid. For this purpose, let us divide by a all terms of (9) and write

x =
b

a
> 1.

Then it is immediate that (9) becomes equivalent to

f(x) =

(
x− 1

log x
+
x+ 1

2

)
/g(x) <

2

e
(x > 1), (10)

where g(x) = xx/(x−1).

Since

g′(x) = g(x)

[
1

x− 1
− log x

(x− 1)2

]
,

an elementary calculation show that

2x(x− 1)2(log x)2g(x)f ′(x) = x(x+ 1)(log x)3 − 2(x− 1)3. (11)

According to a result of E.B. Leach and M.C. Sholander [8], one has

3
√
G2(x, y) · A(x, y) < L(x, y), x 6= y. (12)

Letting y = 1 in (12), one finds that the right side of (11) is strictly

negative, that is, f(x) is a strictly decreasing function for x > 1. Now,

relation

lim
x→1+

f(x) =
2

e

concludes the proof of (10).

Remark. Inequality (9) is better than the right side of (5). Indeed,

I >
1

2
(A+ L) and

1

2
(A+ L) > 2L−G by L <

1

3
(2G+ A),

which is a known result proved by B.C. Carlson [6].
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3

Let us first note that the proof of (7) (see [16]) shows that, if f is

strictly increasing and f−1 logarithmically concave (which we abbreviate

as ”log conc” and analogously ”log conv”, for logarithmically convex),

then (7) is valid with reversed sign of inequality (when f is strictly de-

creasing and f−1 log conc, then (7) is valid as it stands). It is easy to see

that, for a twice differentiable function f with f ′(x) > 0, then f−1 is log

conv iff

f ′(x) + xf ′′(x) ≤ 0,

and f−1 is log conc iff

f ′(x) + xf ′′(x) > 0.

If f ′(x) < 0 then these inequalities are reversed.

Take now f(x) = xs and notice that

f ′(x) = sxs−1 > 0 for s > 0

and

f ′(x) < 0 for s < 0.

In all cases,

f ′(x) + xf ′′(x) = s2xs−1 > 0.

Thus for s > 0 we can write

1

b− a

∫ b

a

xsdx ≥ (I(a, b))s,

yielding (with the notation s+ 1 = t)

t(b− a)

bt − at
< (I(a, b))1−t, t ≷ 1. (13)

Since, for s < 0, f is strictly decreasing with f−1 strictly log conv, (13)

is true also for t < 1.

69



Using the method in [13], set a = xt, b = yt (x, y > 0, t 6= 0) in (1).

We get

(xy)t/2 · t(y − x)

yt − xt
< L(x, y) <

xt + yt

2
· t(y − x)

yt − xt
, t 6= 0, (14)

a double inequality attributed to B.C. Carlson [6]. In view of (13) we

obtain

L(a, b) · (I(a, b))t−1 < L(a, b) · b
t − at

t(b− a)
<
at + bt

2
, t 6= 0. (15)

Some particular cases of (15) are of interest. For t = −1, 1 see (1); for

t = 1/2 one obtains (by (6))

I >
A+G

2
>
L+ I

2
. (16)

For t = 2 we get

a+ b

2

√
ab < L(a, b) · I(a, b) <

a2 + b2

2
. (17)

4

By simple calculation we can deduce the formulae

log I(a, b) =
b log b− a log a

b− a
− 1

and

log I
(√

a,
√
b
)

=
b log b− a log a

2(b− a)
− 1 +

√
ab(log b− log a)

2(b− a)

= log
√
I(a, b) +

G(a, b)

2L(a, b)
− 1

2
.

This relation implies, among others, that

I2
(√

a,
√
b
)
≤ I(a, b) (19)
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since G ≤ L. On the other hand, the inequality

L2
(√

a,
√
b
)
≤ I2

(√
a,
√
b
)

is transformed, via (18), into

L2 ≤ I ·
(
A+G

2

)
e(G−L)/L. (20)

Now, Stolarsky’s inequality (4), after replacing a and b by
√
a and

√
b,

respectively, and with Lin’s inequality L ≤ A(1/3), easily implies

L(a, b) ≤

(
3
√
a+ 3
√
b

2

)3

≤ I2
(√

a,
√
b
)
≤ I(a, b) · e(G−L)/L ≤ I(a, b)

(21)

by (18), (19). This improves the inequality L ≤ I.

5

Some interesting properties of the studied means follow from the fol-

lowing integral representations:

log I(a, b) =
1

b− a

∫ b

a

log xdx, (22)

1

L(a, b)
=

1

b− a

∫ b

a

1

x
dx (23)

A(a, b) =
1

b− a

∫ b

a

xdx, (24)

1

G2(a, b)
=

1

b− a

∫ b

a

1

x2
dx, (25)

where, in all cases, 0 < a < b.

Using, in addition to (7), some integral inequalities, (22)-(25) give

certain new relations involving the means I, L,A,G.
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For f(x) = 1/(x+m), x ≥ m we have

f ′(x) < 0, f ′(x) + xf ′′(x) ≥ 0,

thus f−1 is log conv, so (7) implies

I(a, b) +m ≥ L(a+m, b+m), for min(a, b) ≥ m. (26)

Analogously, letting f(x) = log(x+m), m ≥ 0, one obtains

I(a+m, b+m) ≥ I(a, b) +m, m ≥ 0. (27)

Notice that (26) and (27) written in a single line:

I(a+m, b+m) ≥ I(a, b) +m ≥ L(a+m, b+m) (28)

for min(a, b) ≥ m ≥ 0 improve also (in a certain sense) the inequality

I ≥ L.

The classical Jensen-Hadamard inequality ([10], [14]) states that if

f : [a, b]→ R is continuous and convex, then

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
. (29)

For f(x) = x log x, (29) gives

A2 ≤ I(a2, b2) ≤ (aa · bb)1/A (30)

If we observe that a simple integration by parts gives∫ b

a

x log xdx =
b2 − a2

4
log I(a2, b2). (31)

Since I2(a, b) ≤ A2, (30) refines relation (19):

I2(a, b) ≤ A2 ≤ I(a2, b2). (32)

Let [a, b] ⊂
[
0, 1

2

)
and f : [a, b]→ R be defined by

f(x) = log(x/(1− x))
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By f ′′(x) = (2x− 1)/x2(1− x)2 ≤ 0 and (29) we can derive

A

A′
≥ I

I ′
≥ G

G′
for [a, b] ⊂

[
0,

1

2

)
, (33)

where we wrote

A′ = A′(a, b) = A(1− a, 1− b),

I ′ = I ′(a, b) = I(1− a, 1− b),

G′ = G′(a, b) = G(1− a, 1− b).

This is a Ky Fan type inequality (see [3], [15]) for two numbers, in a

stronger form (involving I and I ′).

Furthermore, amongst the many integral inequalities related to our

situation, we mention two results. One is the classical Chebyshev inequal-

ity ([4], [7], [10]):

1

b− a

∫ b

a

f(x)g(x)dx ≤ 1

b− a

∫ b

a

f(x)dx · 1

b− a

∫ b

a

g(x)dx (34)

for f, g having different types of monotonicity. Let

f(x) = log x, g(x) =
1

x log x
.

Then (22), (23), (34) yield

L(log a, log b) ≤ log I(a, b) (35)

if we notice that

log log b− log log a

b− a
=

1

L(a, b)
· 1

L(log a, log b)
.

The second result we deal with is contained in the following inequality.

If f : [a, b]→ R is positive, continuous and convex (concave), then

1

b− a

∫ b

a

f 2(x)dx ≤
(≥)

1

3
(f 2(a) + f(a)f(b) + f 2(b)) (36)

73



with equality only for f linear function.

For a proof of (36) denote by K : [a, b] → R a linear function with

the properties

K(a) = f(a), K(b) = f(b).

Then

K(t) =
t− a
b− a

f(b) +
b− t
b− a

f(a), t ∈ [a, b].

Intuitively, the set {(t, z) : t ∈ [a, b], z = K(t)} represents the line

segment joining the points (a, f(a)), (b, f(b)) of the graph of f . The

function f being convex, we have

f(t) ≤ K(t), t ∈ [a, b]

and, because f is positive,

f 2(t) ≤ K2(t).

A simple computation gives∫ b

a

K2(t)dt = (b− a) · 1

3
(f 2(a) + f(a)f(b) + f 2(b)),

concluding the proof of (36).

Apply now (36) for f(x) = 1/
√
x, 0 < a < b. We get the interesting

inequality
3

L
<

1

G
+

2

H
(37)

where

H = H(a, b) =
2

1

a
+

1

b
denotes the harmonic mean of a and b. For another application choose

f(x) =
√

log x

in (36). One obtains

I3(a, b) > G2(a, b) · e
√
log a·log b. (38)
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Finally, we make two remarks. The mean

J = J(a, b) =
1

e
· (ba · ab)1/(b−a)

is related to the mean I. In fact,

J(a, b) =
1

I

(
1

a
,
1

b

) . (39)

Since I(u, v) = I(v, u), L(u, v) = L(v, u), by using certain inequalities

for I, we can obtain information about J . Apply e.g.

I

(
1

a
,
1

b

)
> L

(
1

a
,
1

b

)
and

I

(
1

a
,
1

b

)
<

L2

(
1

a
,
1

b

)
G

(
1

a
,
1

b

)
(see (3), (5)) in order to obtain

G3

L2
< J <

G2

L
(40)

where we have used the fact that

L2

(
1

a
,
1

b

)
=
L2(a, b)

G4(a, b)
, G

(
1

a
,
1

b

)
=

1

G(a, b)
.

The second remark suggest a generalization of the studied means. Let

p : [a, b]→ R be a strictly positive, integrable function and define

Ip(a, b) = exp

∫ b

a

p(x) log xdx∫ b

a

p(x)dx

(41)
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Ap(a, b) =

∫ b

a

xp(x)dx∫ b

a

p(x)dx

(42)

1

Lp(a, b)
=

∫ b

a

p(x)

xdx∫ b

a

p(x)dx

(43)

1

G2
p(a, b)

=

∫ b

a

p(x)

x2dx∫ b

a

p(x)dx

, (44)

which reduce to (22)-(25) if p(x) ≡ 1, x ∈ [a, b]. By the well known

Jensen inequality ([7], [10]):

log

∫ b

a

f(x)p(x)dx∫ b

a

p(x)dx

≥

∫ b

a

p(x) log f(x)dx∫ b

a

p(x)dx

(45)

applied to f(x) = x and f(x) = 1/x, respectively, we get

Lp(a, b) ≤ Ip(a, b) ≤ Ap(a, b). (46)

From the Cauchy-Schwarz inequality ([7]) we can easily obtain(∫ b

a

(√
p(x)/x

)
·
√
p(x)dx

)2

≤
(∫ b

a

p(x)/x2dx

)
·
(∫ b

a

p(x)dx

)
,

getting

Lp(a, b) ≥ Gp(a, b). (47)
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2.2 A note on some inequalities for means

1

The logarithmic and identric means of two positive numbers a and b

are defined by

L = L(a, b) :=
b− a

ln b− ln a
for a 6= b; L(a, a) = a

and

I = I(a, b) :=
1

e
(bb/aa)1/(b−a) for a 6= b; I(a, a) = a

respectively.

Let

A = A(a, b) :=
a+ b

2
and G = G(a, b) :=

√
ab

denote the arithmetic and geometric means of a and b, respectively. For

these means many interesting results, especially inequalities, have been

proved (see e.g. [1], [2], [3], [5], [6], [7], [10]). Recently, in two interesting

papers, H. Alzer [1], [2] has obtained the following inequalities:

A ·G ≤ L · I and L+ I < A+G (1)

√
G · I < L <

1

2
(G+ I) (2)

which hold true for all positive a 6= b.

The aim of this note is to prove that the left side of (1) is weaker than

the left side of (2), while the right side of (1) is stronger than the right

side of (2). Namely, we will prove:

A ·G/I <
√
G · I < L (3)

L < A+G− I < 1

2
(G+ I). (4)
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2

The left side of (3) may be proved in different ways. Apply, e.g. the

well-known Simpson quadrature formula ([4]):∫ b

a

f(x)dx =
b− a

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
− (b− a)5

2880
f (4)(ξ), (5)

ξ ∈ (a, b), where f : [a, b]→ R has a continuous 4-th derivative on (a, b),

for f(x) = − lnx. Since f (4)(x) > 0, a simple derivation from (5) gives:

I3 > A2 ·G (6)

i.e. the desired result. For the method, based on integral inequalities, see

also [7], [8], [9].

A slightly stronger relation can be obtained by the following way:

T.P. Lin [6] and K.B. Stolarsky [10] have proved that for a 6= b one

has:

L(a, b) <

(
a1/3 + b1/3

2

)3

(7)

and (
a2/3 + b2/3

2

)3/2

< I(a, b), (8)

respectively. Set a = x2, b = y2 in (7) and remark that

L(x2, y2) = A(x, y) · L(x, y),

so via (8) we get:
√
A · L < I. (9)

Now, it is easy to see that
√
A · L > 3

√
A2 ·G, since this is exactly a result

of B.C. Carlson [3]:
3
√
G2 · A < L. (10)
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3

For establish (1) and (2), H. Alzer [1], [2] has applied an ingenious

method attributed to E.B. Leach and M.C. Sholander [5]. This can be

summarized as follows:

Let (e.g. in (1)) a = et, b = e−t, t ∈ R, and prove (by using certain

hyperbolic functions) the corresponding inequality. Then replace t by
1

2
ln
x

y
and multiply both sides of the proved inequality by

√
xy.

In what follows we shall prove by a different argument the following:

Theorem. For a 6= b one has:

I >
2A+G

3
>
A+ L

2
. (11)

Proof. First we note that the second inequality in (11), written in

the form

L <
2G+ A

3
(12)

has been proved by E.B. Leach and M.C. Sholander [5].

For the first inequality divide all terms by a < b and denote x :=
b

a
> 1.

Then the inequality to be proved is transformed into

x+ 1
√
x

g(x)
<

3

e
(13)

where

g(x) = xx/(x−1), x > 1.

Introduce the function f : [1,∞)→ R defined by

f(x) =
x+ 1 +

√
x

g(x)
, x > 1; f(1) = lim

x→1+
f(x) =

3

e
.

If we are able to prove that f is strictly decreasing, then clearly (13) and

(11) is proved. On has

g′(x) = g(x) ·
[

1

x− 1
− lnx

(x− 1)2

]
,
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and after some elementary calculations, we can deduce:

2
√
x · (x− 1)2g(x)f ′(x)

= 2(lnx)
√
x
(
x+ 1 +

√
x
)
− 4
√
x(x− 1)− (x2 − 1). (14)

We now show that the right side of (14) is strictly negative, or equiva-

lently

L >
G · (2A+G)

A+ 2G
(15)

where in our case L = L(x, 1), etc.

The obvious inequality u/v > (2u3 +v3)/(u3 +2v3), for u > v applied

for u = 3
√
A, v = 3

√
G, leads to

G2A >
G3(2A+G)3

(A+ 2G)3
,

thus by (10), relation (15) is valid. This finishes the proof of the theo-

rem. Since the right side of (4) is exactly the first part of (11), we have

completed our aim stated at the beginning of the paper.

Remark. By (A+L)/2 >
√
A · L, (11) gives a refinement and a new

proof for (9).
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2.3 Refinements of certain inequalities for

means

1

The logarithmic and identric means of two positive numbers a and b

are defined by

L = L(a, b) :=
b− a

ln b− ln a
for a 6= b; L(a, a) = a

and

I = I(a, b) :=
1

e
(bb/aa)1/(b−a) for a 6= b; I(a, a) = a,

respectively.

Let

A = A(a, b) :=
a+ b

2
and G = G(a, b) :=

√
ab

denote the arithmetic and geometric means of a and b, respectively. For

these means many interesting inequalities have been proved. For a survey

of results, see [1] and [6].

The aim of this note is to indicate some connections between the

following inequalities. B.C. Carlson [3] proved that

L <
2G+ A

3
(1)

(where, as in what follows, L = L(a, b), etc., and a 6= b) while E.B. Leach

and M.C. Sholander [4] showed that

L >
3
√
G2A (2)

These two inequalities appear in many proofs involving means. H. Alzer

[1], [2] has obtained the following inequalities:

A ·G < L · I and L+ I < A+G (3)
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√
G · I < L <

G+ I

2
(4)

J. Sándor [7] has proved that the first inequality of (3) is weaker that

the left side of (4), while the second inequality of (3) is stronger than the

right side of (4). In fact, the above statement are consequences of

I >
3
√
A2G (5)

and

I >
2A+G

3
. (6)

Clearly, (6) implies (5), but one can obtain different methods of proof

for these results (see [7]). In [6] J. Sándor has proved (relation 21 in that

paper) that

ln
I

L
> 1− G

L
. (7)

2

Particularly, as application of (7), one can deduce (1) and the right

side of (4). First we note that (e.g. from (1), (2) and (5))

G < L < I < A. (8)

Let x > 1. Then L(x, 1) > G(x, 1) implies lnx < (x − 1)/
√
x which

applied to x =
I

L
> 1 gives, in view of (7):

(I − L)
√
L > (L−G)

√
I. (9)

This inequality contains a refinement of the right side of (4), for if we

put a =
√
I/
√
L > 1, (9) gives

L <
I + aG

1 + a
<
I +G

2
(10)

since the function a 7→ (I + aG)/(1 + a) (a ≥ 1) is strictly decreasing.

Now, inequality L(x, 1) < A(x, 1) for x > 1 yields

lnx >
2(x− 1)

x+ 1
.
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Since

ln
I

G
=
A− L
L

(which can be obtained immediately by simple computations) and

ln
I

L
= ln

I

G
− ln

L

G
,

from ln
L

G
> 2 · L−G

L+G
in (7) one obtains

2 · L−G
L+G

<
A+G

L
− 2 (11)

By L > G this refines Carlson’s inequality (11), since by L+G < 2L one

has
2(L−G)

L+G
> 1− G

L
,

so by (11) one can derive

0 <
(L−G)2

L(L+G)
<
A+ 2G

L
− 3. (12)

3

Inequality (6) and (1) improves also the right side of (4). This follows

by

I >
2A+G

3
> 2L−G (13)

where the second relation is exactly (1). We note that
√
G · I > 3

√
G2 · A

follows by (5), so from the left side of (4) one can write:

L >
√
G · I > 3

√
G2 · A (14)

improving inequality (2). The left side of (4) can be sharpened also, if we

use the second inequality of (3). Indeed, by the identity

ln
I

G
=
A− L
L

and lnx <
x− 1√
x
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applied with x =
I

G
> 1 one can deduce

√
IG <

I −G
A− L

· L < L. (15)

Remark. Inequality (6) with (1) can be written also as

I >
2A+G

3
>
A+ L

2
. (16)

Relation

I >
A+ L

2
(17)

appears also in [6], inequality (9). Since
A+ L

2
>
√
AL, one has

I >
√
AL. (18)

For a simple method of proof of (18), see [7]. As an application of (18)

we note that in a recent paper M.K. Vamanamurthy and M. Vuorinen

[11] have proved, among other results, that for the arithmetic-geometric

mean M of Gauss we have

M <
√
AL (19)

M < I. (20)

Now, by (18), relation (20) is a consequence of (19). In the above men-

tioned paper [11] the following open problem is stated:

Is it true that I <

(
at + bt

2

)1/t

= S(t) for some t ∈ (0, 1)?

We note here that by a result of A.O. Pittinger [5] this is true for

t = ln 2. The reversed inequality I > S(t) is valid for t =
2

3
as has

been proved by K.B. Stolarsky [10]. The values given by Pittinger and

Stolarsky are best possible, so I and S(t) are not comparable for t < ln 2

and t >
2

3
, respectively.
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2.4 On certain identities for means

1. Introduction

Let

I = I(a, b) =
1

e
(bb/aa)1/(b−a) for a 6= b; I(a, a) = a (a, b > 0)

denote the identric mean of the positive real numbers a and b. Similarly,

consider the logarithmic mean

L = L(a, b) = (b− a)/ log(b/a) for a 6= b; L(a, a) = a.

Usually, the arithmetic and geometric means are denoted by

A = A(a, b) =
a+ b

2
and G = G(a, b) =

√
ab,

respectively. We shall consider also the exponential mean

E = E(a, b) = (aea − beb)/(ea − eb)− 1 for a 6= b; E(a, a) = a.

These means are connected to each others by many relations, espe-

cially inequalities which are valid for them. For a survey of results, as well

as an extended bibliography, see e.g. H. Alzer [1], J. Sándor [6], J. Sándor

and Gh. Toader [8]. The aim of this paper is to prove certain identities for

these means and to connect these identities with some known results. As

it will be shown, exact identities give a powerful tool in proving inequal-

ities. Such a method appears in [6] (Section 4 (page 265) and Section 6

(pp. 268-269)), where it is proved that

log
I2
(√

a,
√
b
)

I(a, b)
=
G− L
L

(1)

where G = G(a, b) etc. This identity enabled the author to prove that

(see [6], p. 265)

L2 ≤ I ·
(
a+G

2

)
· e(G−L)/L (2)
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and

L ≤ I · e(G−L)/L
(

i.e. log
I

L
≥ 1− G

L

)
(3)

In a recent paper [9] it is shown how this inequality improves certain

known results.

In [10] appears without proof the identity

log
I

G
=
A− L
L

(4)

We will prove that relations of type (1) and (4) have interesting con-

sequences, giving sometimes short proofs for known results of refinements

of these results.

2. Identities and inequalities

Identity (4) can be proved by a simple verification, it is more inter-

esting the way of discovering it. By

log I(a, b) =
b log b− a log a

b− a
− 1 =

b(log b− log a)

b− a
+ log a− 1 (∗)

it follows that

I(a, b) =
b

L(a, b)
+ log a− 1,

and by symmetry,

log I(a, b) =
a

L(a, b)
+ log b− 1 (a 6= b)

i.e.

log
I

a
=
b

L
− 1 and log

I

b
=
a

L
− 1 (5)

Now, by addition of the two identities from (5) we get relation (4). From

(5), by multiplication it results:

log
I

a
· log

I

b
=
G2

L2
− 2 · A

L
+ 1 (6)
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and similarly

log
I

a
/ log

I

b
=
b− L
a− L

(7)

As analogous identity to (1) can be proved by considering the logarithm

of identric mean. Indeed, apply the formula (∗) to a → 3
√
a, b → 3

√
b.

After some elementary transformations, we arrive at:

log
I3
(

3
√
a, 3
√
b
)

I(a, b)
=

2
3
√
G2 ·M
L

− 2, (8)

where

M = A1/3(a, b) =

(
3
√
a+ 3
√
b

2

)3

denotes the power mean of order 1/3. More generally, one defines

Ak = Ak(a, b) =

(
ak + bk

2

)1/k

.

Now, Lin’s inequality states that

L(u, v) ≤M(u, v)

(see [5]), and Stolarsky’s inequality ([11]) that

I(u, v) ≥ A2/3(u, v).

Thus one has

I3
(

3
√
a,

3
√
b
)
≥

{(
(a2/3)1/3 + (b2/3)1/3

2

)3
}3/2

≥ L3/2(a2/3, b2/3)

by the above inequalities applied to u = a1/3, v = b1/3 and u = a2/3,

v = b2/3, respectively. Thus

I3
(

3
√
a,

3
√
b
)
≥ L3/2(a2/3, b2/3). (9)
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This inequality, via (8) gives:

L3/2(a2/3, b2/3) ≤ I(a, b) · e2
3√
G2·M/L−2 (10)

or

log
I

L3/2(a2/3, b2/3)
≥ 2− 2

3
√
G2 ·M
L

. (11)

This is somewhat similar (but more complicated) to (3).

Finally, we will prove certain less known series representations of

log
A

G
and log

I

G
, with applications.

First, let us remark that

log
A(a, b)

G(a, b)
= log

a+ b

2
√
ab

= log
1

2

(√
a

b
+

√
b

a

)
.

Put z =
b− a
b+ a

(with b > a), i.e. t =
1 + z

1− z
, where t =

a

b
∈ (0, 1). Since

1

2

(√
1 + z

1− z
+

√
1− z
1 + z

)
=

1√
1− z2

and

log 1/
(√

1− z2
)

= −1

2
log(1− z2) =

1

2
z2 +

1

4
z4 + . . .

(by log(1− u) = −u− u2

2
− u3

3
− . . .), we have obtained:

log
A(a, b)

G(a, b)
=
∞∑
k=1

1

2k

(
b− a
b+ a

)2k

. (12)

In a similar way, we have

A

L
− 1 =

a+ b

2

(
log b− log a

b− a

)
− 1 =

1

2z
log

1 + z

1− z
− 1

=
1

z
arctanhz − 1 =

z2

3
+
z4

5
+ . . . ,
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implying, in view of (4),

log
I(a, b)

G(a, b)
=
∞∑
k=1

1

2k + 1
·
(
b− a
b+ a

)2k

(13)

The identities (12) and (13) have been transmitted (without proof) to

the author by H.J. Seiffert (particular letter). We note that parts of these

relations have appeared in other equivalent forms in a number of places.

For (13) see e.g. [4]. (Nevertheless, (4) is not used, and the form is slightly

different).

Clearly, (12) and (13) imply, in a simple manner, certain inequalities.

By
z2

3
<
z2

3
+
z4

5
+ . . . <

z2

3
(1 + z2 + z4 + . . .) =

z2

3
· 1

1− z2
we get

1 + (b− a)2/3(b+ a)2 < log
I

G
< 1 + (b− a)2/12ab (14)

improving the inequality I > G. On the same lines, since

z2

2
<
z2

2
+
z4

4
+ . . . <

1

2
(z2 + z4 + . . .) =

z2

2
· 1

1− z2

one obtains

1

2
(b− a)2/(b+ a)2 < log

A

G
< (b− a)2/8ab. (15)

3. Applications

We now consider some new applications of the found identities.

a) Since it is well-known that log x < x − 1 for all x > 0, by (4) we

get

A ·G < L · I (16)

discovered by A. Alzer [1]. By considering the similar inequality

log x > 1− 1

x
(x > 0),
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via (4) one obtains
A

L
+
G

I
> 2 (17)

due to H.J. Seiffert (particular letter).

b) The double inequality G(x, 1) < L(x, 1) < A(x, 1) for x > 1 (see

the References from [5]) can be written as

2 · x− 1

x+ 1
< log x <

x− 1√
x

(x > 1) (18)

Let x =
I

G
> 1 in (18). By using (4) one obtains:

2 · I −G
I +G

<
A− L
L

<
I −G√
IG

. (19)

These improve (16) and (17), since

2(I −G)

I +G
> 1− G

I
and

I −G√
IG

<
I

G− 1
.

Let us remark also that, since it is known that ([1])

I −G < A− L,

the right side of (19) implies

√
IG <

I −G
A− L

· L < L, (20)

improving
√
IG < L (see [2]).

c) For another improvement of (16), remark that the following ele-

mentary inequality is known:

ex > 1 + x+
x2

2
(x > 0) (21)

This can be proved e.g. by the classical Taylor expansion of the exponen-

tial function. Now, let x = A/L− 1 in (21). By (4) one has

I = G · eA/L−1 > G

[
A

L
+

1

2

(
A

L
− 1

)2
]

=
1

2
G

(
1 +

A2

L2

)
.
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Thus we have

G · A <
1

2
· G
L

(L2 + A2) < L · I, (22)

since the left side is equivalent with 2LA < L2 +A2. This result has been

obtained in cooperation with H.J. Seiffert.

d) Let us remark that one has always

log
I

a
· log

I

b
< 0,

since, when a 6= b, I lies between a and b. So, from (6) one gets

G2 + L2 < 2A · L, (23)

complementing the inequality 2A · L < A2 + L2.

e) By identities (1) and (4) one has

2G+ A

L
= 3 + log

I4
(√

a,
√
b
)

I(a, b) ·G(a, b)
. (24)

In what follows we shall prove that

I4
(√

a,
√
b
)

I(a, b) ·G(a, b)
≥ 1, (25)

thus (by (24)), obtaining the inequality

L ≤ 2G+ A

3
(26)

due to B.C. Carlson [3]. In fact, as we will see, a refinement will be

deduced.

Let us define a new mean, namely

S = S(a, b) = (aa · bb)1/2A = (aa · bb)1/(a+b) (27)

which is indeed a mean, since if a < b, then a < S < b. First remark that

in [6] (inequality (30)) it is proved that

A2 ≤ I(a2, b2) ≤ S2(a, b). (28)
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(However the mean S is not used there). In order to improve (28), let us

apply Simpson’s quadrature formulas (as in [7])∫ b

a

f(x)dx =
b− a

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
− (b− a)5

2880
f (4)(ξ),

ξ ∈ (a, b), to the function f(x) = x log x. Since f (4)(x) > 0 and∫ b

a

x log xdx =
b2 − a2

4
log I(a2, b2)

(see [6], relation (3.1)), we can deduce that

I3(a2, b2) ≤ S2 · A4. (29)

Now, we note that for the mean S the following representation is valid:

S(a, b) =
I(a2, b2)

I(a, b)
. (30)

This can be discovered by the method presented in part 2 of this paper

(see also [6]). By (29) and (30) one has

I(a2, b2) ≤ A4/I2(a, b) (31)

which is stronger than relation (25). Indeed, we have

I(a2, b2) ≤ A4/I2(a, b) ≤ I4(a, b)

G2(a, b)
,

since this last inequality is

I3 ≥ A2 ·G (32)

due to the author [7]. Thus we have (by putting a →
√
a, b →

√
b in

(31))

I4
(√

a,
√
b
)

I(a, b) ·G(a, b)
≥

A4
(√

a,
√
b
)

I2
(√

a,
√
b
)
I(a, b)

≥ 1 (33)
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giving (by (1)):

2G+ A

L
≥ 3 + log

A4
(√

a,
√
b
)

I2
(√

a,
√
b
)
· I(a, b)

≥ 3, (34)

improving (26).

f) If a < b, then a < I < b and the left side of (5), by taking into

account of (18), implies

1− a

I
< 2 ·

(
I − A
I + a

)
<
b− L
L

<
I − a√
aI

<
I

a
− 1. (35)

Remark that the weaker inequalities of (35) yields

b

L
+
a

I
> 2. (36)

Similarly, from (5) (right side) one obtains:

a

L
+
b

I
> 2. (37)

g) For the exponential mean E a simple observation gives

log I(ea, eb) = E(a, b),

so via (4) we have

E − A =
A(ea, eb)

L(ea, eb)
− 1. (38)

Since A > L, this gives the inequality

E > A (39)

due to Gh. Toader [11]. This simple proof explains in fact the meaning

of (39). Since I3 > A2G (see [6]), the following refinement is valid

E >
A+ 2 logA(ea, eb)

3
> A, (40)

where the last inequality holds by (ea + eb)/2 > e(a+b)/2, i.e. the Jensen

convexity of ex.
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2.5 Inequalities for means

1

Let a, b > 0 be positive real numbers. The ”identric mean” I(a, b) of

a and b is defined by

I = I(a, b) =
1

e
(bb/aa)1/(b−a) for a 6= b; I(a, a) = a;

while the ”logarithmic mean” L(a, b) of a and b is

L(a, b) = (b− a)/(log b− log a) for a 6= b; L(a, a) = a.

Denote

Mt = Mt(a, b) =

(
at + bt

2

)1/t

for t 6= 0

the root-power mean of a and b. Plainly,

M1(a, b) = A(a, b) = t, M0(a, b) = lim
t→0

Mt(a, b) = G(a, b) = G

are the arithmetic and geometric means of a and b, respectively.

B. Ostle and H.L. Terwilliger [8] and B.C. Carlson [3], [4] have proved

first that

G ≤ L ≤ A. (1)

This result, or a part of it, has been rediscovered and reproved many

times (see e.g. [6], [9], [10]).

In 1974 T.P. Lin [6] has obtained an important refinement of (1):

G ≤ L ≤M1/3 ≤ A. (2)

For new proofs, see [9], [10], [11]. We note that Mk is an increasing

function of k, so L ≤ M1/3 ≤ Mk ≤ A for all k ∈ [1/3, 1] but, as Lin

showed, the number 1/3 cannot be replaced by a better one.

For the identric mean, K.B. Stolarsky [13], [14], has proved that

L ≤ I ≤ A. (3)
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M2/3 ≤ I (4)

and the constant 2/3 in (4) is optimal.

Recently, inequalities (1) and (3) appear also in a problem proposed

by Z. Zaiming [16]. The relations G ≤ L ≤ M1/2 ≤ I ≤ A have been

proved also by Z.H. Yang [15].

In [1] and [2] H. Alzer proved the following inequalities:

√
G · I ≤ L ≤ 1

2
(G+ I) (5)

A ·G ≤ L · I and A+G ≥ L+ I. (6)

We notice that, in all inequalities (1)-(6), equality can occur only for

a = b.

In [12] the following integral inequality is proposed. If f : [a, b] → R
is a strictly increasing function, having a logarithmically convex inverse

function, then
1

b− a

∫ b

a

f(x)dx ≤ f(I(a, b)). (7)

Finally, we recall that ([10], Theorem 2, k = 2), for a 4-times differ-

entiable function, having a continuous 4-th derivative on [a, b], with

f (4)(x) > 0, x ∈ (a, b), one has

1

b− a

∫ b

a

f(x)dx > f

(
a+ b

2

)
+

(b− a)2

24
· f ′′

(
a+ b

2

)
. (8)

This is a refinement of the famous Hadamard inequality, and has inter-

esting applications for the exponential function and logarithmic means

(see [10], [11]).

2

Applying (8) for f(t) = − log t, t > 0, an easy calculation shows that

log
A(a, b)

I(a, b)
>

1

6

(
1− a

A(a, b)

)2

> 0. (9)
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Remarking that ∫ b

a

x log xdx =
1

4
(b2 − a2) log I(a2, b2),

and letting f(x) = x log x in (8), we get

log
A2(a, b)

I(a2, b2)
< −1

3

(
1− a

A(a, b)

)2

< 0. (10)

As a simple consequence of (10) and (1), (3), we note that:

I2(a, b) < A2(a, b) < I(a2, b2). (11)

Inequality I2(a, b) < I(a2, b2) follows also from the representation

log
I2
(√

a,
√
b
)

I(a, b)
=
G(a, b)− L(a, b)

L(a, b)
(12)

which can be obtained e.g. by writing

log I(a, b) =
b log b− a log a

b− a
− 1.

On the other hand, the inequality

L2
(√

a,
√
b
)
< I2

(√
a,
√
b
)

is transformed via (12) into

L2 < I ·
(
A+G

2

)
· e(G−L)/L, (13)

where L = L(a, b), etc.

3

Using the method of [10], set a = xt, b = yt (x, y > 0, t 6= 0) in (1)

we get

(xy)t/2t(y − x)

yt − xt
< L(x, y) <

t(y − x)

yt − xt
· x

t + yt

2
(x 6= y) (14)
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a double-inequality attributed to B.C. Carlson [4].

Let now t > 1 and f(x) = xt−1. Then f is increasing with f−1 log.

conc. (i.e. logarithmically concave). The proof of (7) shows that (7) is

valid also in this case, with reversed sign of inequality. So, on account of

(14) we obtain

L(a, b) · (I(a, b))t−1 < L(a, b) · b
t − at

t(b− a)
<
at + bt

2
, t 6= 0, 1. (15)

Since for t < 1, f is strictly decreasing with f−1 strictly log. convex,

(15) is valid also for t < 1.

Some particular cases for (15) are of interest to note:

For t = 1/2 one obtains (by (6)):

I >
A+G

2
>
L+ I

2
. (16)

For t = 2 we have:

a+ b

2
·
√
ab < L(a, b) · I(a, b) <

a2 + b2

2
. (17)

4

Let us first remark that, when f(x) > 0 and f has a second order

derivative, a simple computation proves that f−1 is log. conv. iff

f ′(x)[f ′(x) + xf ′′(x)] < 0

and f−1 is log. conc. iff

f ′(x)[f ′(x) + xf ′′(x)] > 0.

The proof in [12] can entirely be repeated in order to see that, in (7) we

have the sign of inequality:

≤, if f ′ > 0, f−1 log. conv. or f ′ < 0, f−1 log. conc.

≥, if f ′ > 0, f−1 log. conc. or f ′ < 0, f−1 log. conv.
(18)
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where the sign of inequality is strict whenever f−1 is strictly log. conv.

or log. conc.

Let f(x) = (log x)/x. Then

f ′(x) =
1− log x

x2
, f ′(x) + xf ′′(x) =

log x− 2

x2
.

Using (18), we can derive the relations

GI > IL for a, b ∈ (e2,∞),

GI < IL for a, b ∈ (0, e2)
(19)

5

For a generalization of the studied means, let p : [a, b] → R be a

strictly positive, integrable function and define:

Ip(a, b) = exp

∫ b

a

p(x) log xdx∫ b

a

p(x)dx

(20)

Ap(a, b) =

∫ b

a

xp(x)dx∫ b

a

p(x)dx

(21)

1/Lp(a, b) =

∫ b

a

p(x)/xdx∫ b

a

p(x)dx

(22)

1/G2
p(a, b) =

∫ b

a

p(x)/x2dx∫ b

a

p(x)dx

(23)
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When p(x) ≡ 1, we get the classical means I, A, L,G. By the well-known

Jensen inequality ([5], [7])

log

∫ b

a

f(x)p(x)dx∫ b

a

p(x)dx

≥

∫ b

a

p(x) log f(x)dx∫ b

a

p(x)dx

(24)

applied to f(x) = x and f(x) = 1/x respectively, we obtain

Lp(a, b) ≤ Ip(a, b) ≤ Ap(a, b). (25)

By the Cauchy-Schwarz inequality [5] we can find easily(∫ b

a

√
p(x)/x ·

√
p(x)dx

)2

≤
(∫ b

a

p(x)/x2dx

)(∫ b

a

p(x)dx

)
,

getting

Gp(a, b) ≤ Lp(a, b). (26)

Finally, we note that these results have been obtain by the author in

1989 [17].
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2.6 Inequalities for means of two

arguments

1

The logarithmic and the identric mean of two positive numbers x and

y are defined by

L = L(x, y) :=
y − x

log y − log x
, if x 6= y, L(x, x) = x,

I = I(x, y) :=
1

e

(
yy

xx

)1/(y−x)

, if x 6= y, I(x, x) = x,

(1.1)

respectively.

Let A = A(x, y) := (x + y)/2 and G = G(x, y) :=
√
xy denote the

arithmetic and geometric mans of x and y, respectively. Many interest-

ing results are known involving inequalities between these means. For a

survey of results (cf. [1], [3], [4], [11], [13], [14]). Certain improvements

are proved in [5], [7], while connections to other means are discussed, (cf.

[6], [8], [9], [10], [15]). For identities involving various means we quote the

papers [6], [12].

In [5], [8], the first author proved, among other relations, that

(A2G)1/3 < I, (1.2)

(U3G)1/4 < I <
U2

A
, (1.3)

where

U = U(x, y) :=

(
8A2 +G2

9

)1/2

. (1.4)

We note that a stronger inequality than (1.2) is (cf. [5])

2A+G

3
< I, (1.5)

106



but the interesting proof of (1.2), as well as the left-hand side of (1.3), is

based on certain quadrature formulas (namely Simpson’s and Newton’s

quadrature formula, respectively). As a corollary of (1.3) and (1.5), the

double inequality

4A2 + 5G2 < 9I2 < 8A2 +G2 (1.6)

can be derived (see [8]). Here and throughout the rest of the paper we

assume that x 6= y.

The aim of this paper is twofold. First, by applying the method of

quadrature formulas, we will obtain refinements of already known in-

equalities (e.g., of (1.2)). Second, by using certain identities on series

expansions of the considered expressions, we will obtain the best possi-

ble inequalities in certain cases (e.g., for (1.6)).

2

Theorem 2.1. If x and y are positive real numbers, then

exp

(
(x− y)2

24s2

)
<
A

I
< exp

(
(x− y)2

24r2

)
, (2.1)

exp

(
(x− y)2

12s2

)
<
I

G
< exp

(
(x− y)2

12r2

)
, (2.2)

exp

(
(x− y)4

480s4

)
<

I

(A2G)1/3
< exp

(
(x− y)4

480r4

)
, (2.3)

exp

(
(x− y)2

96s2

)
<

√
3A2 +G2

2I
< exp

(
(x− y)2

96r2

)
, (2.4)

where r = min{x, y} and s = max{x, y}.
Proof. Let f : [0, 1]→ R be the function defined by

f(t) = log(tx+ (1− t)y).

Since

f ′′(t) = − (x− y)2

(tx+ (1− t)y)2
, (2.5)
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we have

m2 := min{−f ′′(t) | 0 ≤ t ≤ 1} =
(x− y)2

s2
,

M2 := max{−f ′′(t) | 0 ≤ t ≤ 1} =
(x− y)2

r2
.

(2.6)

Applying the ”composite midpoint rule” (cf. [2]) we get∫ 1

0

f(t)dt =
1

n

n∑
i=1

f

(
2i− 1

2n

)
+

1

24n2
f ′′(ξn), 0 < ξn < 1. (2.7)

Remarking that

I = exp

(∫ 1

0

log(tx+ (1− t)y)dt

)
,

relation (2.7) via (2.6) gives

exp
( m2

24n2

)
<

exp

(
1/n

n∑
i=1

f((2i− 1)/2n)

)
I

< exp

(
M2

24n2

)
. (2.8)

Letting n = 1, we get the double inequality (2.1). For n = 2, after a

simple computation we deduce (2.4).

In order to prove (2.2), we apply the ”composite trapezoidal rule”

(see [2]): ∫ 1

0

f(t)dt =
1

2
[f(0) + f(1)]− 1

12
f ′′(η), 0 < η < 1. (2.9)

As above, taking into account (2.6), relation (2.9) yields (2.2).

Finally, (2.3) follows as application of the ”composite Simpson rule”

(see [2], [5]):∫ 1

0

f(t)dt=
1

6
f(0) +

2

3
f

(
1

2

)
+

1

6
f(1)− 1

2880
f (4)(ζ), 0<ζ<1. (2.10)

We omit the details. �
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Remarks. Inequality (2.8) is a common generalization of (2.1) and

(2.4). The left-hand side of (2.3) is a refinement of (1.2), while the left-

hand side of (2.4) implies the inequality

4I2 < 3A2 +G2, (2.11)

which slightly improves the right-side of (1.6). However, the best inequal-

ity of this type will be obtained by other methods.

In [6] the following identities are proved:

log
I

G
=
∞∑
k=1

1

2k + 1
z2k, (2.12)

log
A

G
=
∞∑
k=1

1

2k
z2k, (2.13)

log
I

G
=
A

L
− 1, (2.14)

where z = (x− y)/(x+ y).

Relation (2.14) is due to H.-J. Seiffert [11]. With the aid of these and

similar identities, strong inequalities can be deduced. We first state the

following.

Theorem 2.2. The following inequalities are satisfied:

exp

(
1

6

(
x− y
x+ y

)2
)
<
A

I
< exp

(
(x− y)2

24xy

)
, (2.15)

exp

(
1

3

(
x− y
x+ y

)2
)
<
I

G
< exp

(
(x− y)2

12xy

)
, (2.16)

exp

(
1

30

(
x− y
x+ y

)4
)
<

I

(A2G)1/3
< exp

(
(x− y)4

120xy(x+ y)2

)
. (2.17)

Proof. We note that (2.16) appears in [6], while the left-hand side of

(2.15) has been considered in [12]. But proved first in 1989 by J. Sándor,
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Inequalities for means, Proc. Third Symp. Math. Appl., Timişoara, 3-4

nov. 1989, pp. 87-90. We give here a unitary proof for (2.15), (2.16) and

(2.17), which in fact shows that much stronger approximations may be

deduced, if we want.

We assume that x > y, that is, 0 < z < 1. Taking into account that

z2

3
<

∞∑
k=1

1

2k + 1
z2k <

z2

3
(1 + z2 + z4 + . . .) =

z2

3(1− z2)
, (2.18)

from (2.12) we obtain the double-inequality (2.16).

On the other hand, (2.12) and (2.13) yield

log
A

I
=
∞∑
k=1

1

2k(2k + 1)
z2k. (2.19)

Since

z2

6
<
∞∑
k=1

1

2k(2k + 1)
z2k <

z2

6
(1 + z2 + z4 + . . .) =

z2

6(1− z2)
, (2.20)

via (2.19) we get at once (2.15).

To prove (2.17), let us remark that from (2.12) and (2.19) we have

I

A2/3G1/3
= exp

(
∞∑
k=2

k − 1

3k(2k + 1)
z2k

)
. (2.21)

Since
k − 1

3k(2k + 1)
≤ 1

30
for all integers k ≥ 2, (2.22)

from (2.21) we get as above (2.17). �

Remarks. Inequalities (2.15), (2.16) and (2.17) improve (2.1), (2.2)

and (2.3). From (2.14), taking account of (2.16), one can deduce that

4(x2 + xy + y2)

3(x+ y)2
<
A

L
<
x2 + 10xy + y2

12xy
. (2.23)

In [4] it is proved that

log
I

L
> 1− G

L
. (2.24)
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Inequality (2.24) enabled the first author to obtain many refinements of

known results (see [7]).

If one uses the estimations

z2

6
+
z4

20
<
∞∑
k=1

1

2k(2k + 1)
z2k <

z2

6
+
z4

20
(1 + z2 + z4 + . . .)

=
z2

6
+

z4

20(1− z2)
, (2.25)

as well as

z2

3
+
z4

5
<
∞∑
k=1

1

2k + 1
z2k <

z2

3
+
z4

5
(1 + z2 + z4 + . . .)

=
z2

3
+

z4

5(1− z2)
, (2.26)

one could deduce the following inequalities:

exp

(
1

6

(
x− y
x+ y

)2

+
1

20

(
x− y
x+ y

)4
)
<
A

I

< exp

(
1

6

(
x− y
x+ y

)2

+
(x− y)4

80xy(x+ y)2

)
,

exp

(
1

3

(
x− y
x+ y

)2

+
1

5

(
x− y
x+ y

)4
)
<
I

G

< exp

(
1

3

(
x− y
x+ y

)2

+
(x− y)4

20xy(x+ y)2

)
.

(2.27)

The next theorem provides a generalization of (2.17).

Theorem 2.3. If p and q are positive real numbers with 2q ≥ p, then

exp

(
2q − p

6

(
x− y
x+ y

)2

+
4q − p

20

(
x− y
x+ y

)4
)
<

Ip+q

ApGq

< exp

(
2q − p

6

(
x− y
x+ y

)2

+
4q − p

80
· (x− y)4

xy(x+ y)2

)
. (2.28)
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Proof. We assume that x > y, that is, 0 < z < 1. From (2.12) and

(2.19) we can deduce the following generalization of (2.21):

Ip+q

ApGq
= exp

(
∞∑
k=1

2kq − p
2k(2k + 1)

z2k

)
. (2.29)

Since
2kq − p

2k(2k + 1)
≤ 4q − p

20
for all integers k ≥ 2, (2.30)

we have
2q − p

6
z2 +

4q − p
20

z4 <
∞∑
k=1

2kq − p
2k(2k + 1)

z2k

<
2q − p

6
z2 +

4q − p
20

· z4

1− z2
. (2.31)

The above estimation together with (2.29) yields (2.28). �

Remark 2.4. For p = 2/3 and q = 1/3, (2.28) gives (2.17), while for

p = q = 1/2 we get

exp

(
1

12

(
x− y
x+ y

)2

+
3

40

(
x− y
x+ y

)4
)
<

I√
AG

< exp

(
1

12

(
x− y
x+ y

)2

+
3

160
· (x− y)4

xy(x+ y)2

)
. (2.32)

Theorem 2.5. If x and y are positive real numbers, then

exp

(
1

45

(
x− y
x+ y

)4
)
<

√
2A2 +G2

√
3I

< exp

(
1

180
· (x− y)4

xy(x+ y)2

)
. (2.33)

Proof. Assume that x > y, that is, 0 < z < 1. We prove first the

following identity:

log

√
αA2 +G2

√
α + 1I

=
∞∑
k=1

1

2k

(
1

2k + 1
− 1

(α + 1)k

)
z2k, (2.34)
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for all positive real numbers α. Indeed, since

log
√
αA2 +G2 = log

√
xy + log

√
1 +

α

4

(√
x

y
+

√
y

x

)2

, (2.35)

letting z = (x− y)/(x+ y) we obtain

log
√
αA2 +G2 = logG+

1

2
log

(
1 +

α

1− z2

)
= logG+

1

2
log(1 + α− z2)− 1

2
log(1− z2). (2.36)

By the well-known formula

log(1− u) = −
∞∑
k=1

uk

k
, 0 < u < 1, (2.37)

we can deduce

log(1 + α− z2) = log(1 + α)−
∑∞

k=1

z2k

k(α + 1)k
,

log(1− z2) = −
∞∑
k=1

z2k

k
.

(2.38)

Thus

log

√
αA2 +G2

√
α + 1G

=
∞∑
k=1

1

2k

(
1− 1

(α + 1)k

)
z2k. (2.39)

This identity combined with (2.12) ensures the validity of (2.34).

For α = 2, (2.34) yields

log

√
2A2 +G2

√
3I

=
∞∑
k=1

1

2k

(
1

2k + 1
− 1

3k

)
z2k. (2.40)

Since
1

2k

(
1

2k + 1
− 1

3k

)
≤ 1

45
for all integers k ≥ 2, (2.41)

we have
z4

45
<
∞∑
k=2

1

2k

(
1

2k + 1
− 1

3k

)
z2k <

z4

45(1− z2)
. (2.42)
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This estimation together with (2.40) gives (2.33). �

Remarks. From (2.33) it follows that

3I2 < 2A2 +G2. (2.43)

This inequality refines (2.11) and it is the best inequality of the type

I2 <
α

α + 1
A2 +

1

α + 1
G2. (2.44)

Indeed, the function f :]0,∞[→ R defined by

f(α) =
α

α + 1
A2 +

1

α + 1
G2

is increasing because A > G. Taking into account (2.43) we get

I2 <
2

3
A2 +

1

3
G2 <

α

α + 1
A2 +

1

α + 1
G2 (2.45)

whenever α > 2. On the other hand, if 0 < α < 2, from (2.34) it follows

that (2.44) cannot be true for all positive numbers x 6= y.

The fact that (2.43) is the best inequality of the type (2.44) can be

proved also by elementary methods, without resorting to series expansion

(2.12). Indeed, letting t = (1/2)(x/y− 1), and assuming that x > y, it is

easily seen that (2.44) is equivalent to

0 < 2t− (1 + 2t) log(1 + 2t) + t log

(
1 + 2t+

α

α + 1
t2
)

(2.46)

whenever t > 0. Let gα :]0,∞[→ R be the function defined by

gα(t) = 2t− (1 + 2t) log(1 + 2t) + t log

(
1 + 2t+

α

α + 1
t2
)
. (2.47)

We set, for convenience, g2 := g. Easy computations give

g′(t) =
2t+ (4/3)t2

1 + 2t+ (2/3)t2
+log

(
1+2t+

2

3
t2
)
−2 log(1+2t),

g′′(t) =
8t3

9(1 + 2t)(1 + 2t+ (2/3)t2)2
.

(2.48)
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Since g′′(t) > 0 for all t > 0, g′ must be increasing. Therefore, g′(t) > 0

for t > 0, because g′(0) = 0. Consequently g is increasing, too. Hence

g(t) > 0 whenever t > 0, because g(0) = 0. This guarantees the validity

of (2.46) for α = 2. Thus (2.43) is proved.

On the other hand, since

log(1 + 2t) = 2t− 2t2 +
8t3

3
+ o(t3),

log

(
1+2t+

α

α + 1
t2
)

=2t+
α

α+ 1
t2− 1

2

(
2t+

α

α+1
t2
)

+o(t2),

(2.49)

it follows that

gα(t) =

(
α

α + 1
− 2

3

)
t3 + o(t3). (2.50)

Therefore (2.46) cannot be true for all positive real numbers t if 0<α<2.
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2.7 An application of Gauss’ quadrature

formula

1

The aim of this note is to point out a new proof of a result from

[6] on the theory of means, by application of Gauss’ quadrature formula

with two nodes. The fact that quadrature formulae are of interest in the

theory of means has been first shown by the author in [4], where

- Simpson’s quadrature formula:∫ b

a

f(x)dx =
b− a

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]

−(b− a)5

2880
· f (4)(ξ) (1)

with ξ ∈ [a, b], has been applied.

- The Newton quadrature formula:∫ b

a

f(x)dx =
b− a

8

[
f(a) + 3f

(
2a+ b

3

)
+ 3f

(
a+ 2b

3

)
+ f(b)

]

−(b− a)5

648
· f (4)(ξ) (2)

has been applied in [5]. Further, (1) has been applied, in [7], too. We now

offer an application to the

- Gauss quadrature formula, with two nodes (see e.g. [1], [2], [3])∫ b

a

f(x)dx =
b− a

2

[
f

(
a+ b

2
− b− a

6
·
√

3

)
+ f

(
a+ b

2
+
b− a

6
·
√

3

)]

+
1

4320
· f (4)(ξ). (3)

Here

x1 =
a+ b

2
+
b− a

6
·
√

3 =
a
(
3−
√

3
)

6
+
b
(
3 +
√

3
)

6
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and

x2 =
a+ b

2
− b− a

6
·
√

3 =
a
(
3 +
√

3
)

6
+
b
(
3−
√

3
)

6

are the roots of the corresponding Lagrange polynomial of order 2.

2

Let

I = I(a, b) :=
1

e
(bb/aa)1/(b−a) (a 6= b), I(a, b) = a

denote the identric mean of a, b > 0; and put, as usually,

A = A(a, b) =
a+ b

2
, G = G(a, b) =

√
ab

for the arithmetic, respectively geometric means of a and b. The following

result appears in [6].

Theorem. For a 6= b one has

3I2 < 2A2 +G2. (4)

We offer a new proof to (4). Put f(x) = − log x in (3). As

f (4)(ξ) > 0 and
1

b− a

∫ b

a

log xdx = log I(a, b),

we get

I2 <
1

6
a2 +

12 + 6
√

3

36
ab+

12− 6
√

3

36

√
ab+

1

6
b2 =

a2 + b2 + 4ab

6

=
(a+ b)2 + 2ab

6
=

4A2 + 2G2

6
=

2A2 +G2

3
,

i.e. relation (4).

Remark 1. Inequality (4) is the best possible relation of type

I2 <
α

α + 1
· A2 +

1

α + 1
·G2, (5)
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where α > 0, see [6].

Remark 2. An improvement of another type for (4) follows by the

series representation (see [6])

log

√
2A2 +G2

I
√

3
=
∞∑
k=2

1

2k

(
1

2k + 1
− 1

3k

)(
a− b
a+ b

)2k

(6)

Remark 3. In [4] it is shown also that

I >
2A+G

3
.

Together with (4) this implies

4A2 + 4AG+G2

9
< I2 <

2A2 +G2

3
. (7)

The two extrem sides of (7) give a best possible inequality, namely

(A−G)2 > 0.
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2.8 On certain subhomogeneous means

A mean M : R+×R+ → R+ is called subhomogeneous (of order one)

when

M(tx, ty) ≤ tM(x, y),

for all t ∈ (0, 1] and x, y > 0. Similarly, M is log-subhomogenous when

the property

M(xt, yt) ≤M t(x, y)

holds true for all t ∈ (0, 1] and x, y > 0. We say that M is additively

subhomogeneous if the inequality

M(x+ t, y + t) ≤ t+M(x, y),

is valid for all t ≥ 0 and x, y > 0. In this paper we shall study the subho-

mogeneity properties of certain special means, related to the logarithmic,

identric and exponential means.

1. Introduction

A mean of two positive real numbers is defined as a function

M : R+ × R+ → R+

(where R+ = (0,∞)) with the property:

min{x, y} ≤M(x, y) ≤ max{x, y}, for all x, y ∈ R+. (1)

Clearly, it follows that M(x, x) = x. The most common example of a

mean is the power mean Ap, defined by

Ap(x, y) =

(
xp + yp

2

) 1
p

, for p 6= 0;

A0(x, y) =
√
xy = G(x, y) (the geometric mean).
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We have:

A1(x, y) = A(x, y) (arithmetic mean),

A−1(x, y) = H(x, y) (harmonic mean),

and, as limit cases:

A−∞(x, y) = min{x, y}, A+∞(x, y) = max{x, y}.

The logarithmic mean is defined by

L(x, x) = x, L(x, y) =
x− y

log x− log y
, for x 6= y,

and the identric mean by

I(x, x) = x; I(x, y) =
1

e

(
yy

xx

) 1
y−x

, for x 6= y.

For early result, extensions, improvements and references, see [1], [2], [10],

[11]. In [22] and [13] the following exponential mean has been studied:

E(x, x) = x and E(x, y) =
xex − yey

ex − ey
− 1 for x 6= y.

Most of the used means are homogeneous (of order p), i.e.

M(tx, ty) = tpM(x, y) for t > 0.

For example A,H and I are homogeneous of order p = 1, while L is

homogeneous of order p = 0. There are also log-homogeneous means:

M(xt, yt) = M t(x, y), t > 0.

For example, the mean G is log-homogeneous. In [10] it is proved that

I(x2, y2) ≥ I2(x, y)

and in [13] that

E
(x

2
,
y

2

)
≤ 1

2
E(x, y).
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These relations suggest the study of a notion of subhomogeneity. In [13]

a mean M is called t-subhomogeneous when

M(tx, ty) ≤ tM(x, y), x, y > 0,

holds true, and it is shown that for M = E, this holds true for t =
2

log 8
.

2. Subhomogeneity and log-subhomogeneity

The mean Ap is clearly log-subhomogeneous, since it is well known

that Ap < Aq for p < q. We now prove the following result:

Theorem 1. The means L, I and
L2

I
are log-subhomogeneous.

Proof. First we note that the log-subhomogenity of L and I follows

from a monotonicity property of Leach and Sholander [7] on the general

class of means

Sa,b(x, y) =

(
xa − ya

a
· b

xb − yb

) 1
a−b

,

if a, b ∈ R, x, y > 0 and ab(a− b)(x− y) 6= 0. It is known that S can be

extended continuously to the domain {(a, b;x, y) : a, b ∈ R, x, y > 0}
and that

L(x, y) = S1,0, I(x, y) = S1,1(x, y).

Then the log-subhomogeneity of L and I is equivalent to

S1,0(x, y) ≤ St,0(x, y) and S1,1(x, y) ≤ St,t(x, y) for t ≥ 1.

However, this result cannot be applied to the mean
L2

I
. of L, for x 6= y

we have

L(xt, yt) =
xt − yt

t(log x− log y)
= L(x, y)

xt − yt

t(x− y)
.

Since in [10] (relation (13)) it is proved that

xt − yt

t(x− y)
> I t−1(x, y) for t > 1,
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by the above identity, we get

L(xt, yt) > L(x, y)I t−1(x, y) > Lt(x, y),

since

I > L (∗)

Thus, we have obtained (in a stronger form) the inequality

L(xt, yt) ≥ Lt(x, y) for t ≥ 1. (2)

Another proof of (2) is based on the formula

d

dt

(
logL(xt, yt)

t

)
=

1

t2
log

I(xt, yt)

L(xt, yt)
, x 6= y,

which can be deduced after certain elementary computations. Since I >

L, the function

t→ logL(xt, yt)

t
, t > 0,

is strictly increasing, implying

logL(xt, yt)

t
> logL(x, y) for t > 1,

giving relation (2). A similar simple formula can be deduce for the mean

I, too, namely

d

dt

(
log I(xt, yt)

t

)
=

1

t2

(
1− G2(xt, yt)

L2(xt, yt)

)
> 0 by L > G.

Thus

I(xt, yt) ≥ I t(x, y) for all t ≥ 1. (3)

we now study the mean
L2

I
. This is indeed a mean, since by L ≤ I, we

have
L2

I
≤ I. On the other hand, it is known that

L2

I
≥ G. Thus

min{a, b} ≤ G(a, b) ≤ L2(a, b)

I(a, b)
≤ I(a, b) ≤ max{a, b},
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giving (1).

Let us consider now the function

h(t) =

(
L2(xt, yt)

I(xt, yt)

) 1
t

, t ≥ 1,

which has a derivative

h′(t) =
h(t)

t2

(
log

I2

L2
− 1 +

G2

L2

)
,

where I = I(xt, yt), etc. (we omit the simple computations). Now, in [10]

(inequality (21)) the following has been proved:

L < Ie
G−L
L ,

or with equivalently

log
I

L
> 1− G

L
. (4)

By (4) we can write

log
I2

L2
> 2− 2G

L
> 1−

(
G

L

)2

,

by

(
G

L
− 1

)2

> 0. Thus h′(t) > 0, yielding h(t) > h(1) for t > 1.

Remark 1. A refinement of (3) can be obtained in the following

manner. Let

f(t) =
I(xt, yt)

L(xt, yt)
, t > 0, x 6= y.

Then

f ′(t) =
f(t)

t

[
1− G2(xt, yt)

L2(xt, yt)

]
> 0 by L > G.

So we can write:

I(xt, yt)

L(xt, yt)
>
I(x, y)

L(x, y)
, for t > 1,
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which according to (∗) gives

I(xt, yt) >
L(xt, yt)I(x, y)

L(x, y)
> I t(x, y), t > 1. (5)

Remark 2. By using the function

s(t) = (L(xt, yt))
1
t − (I(xt/2, yt/2))

1
t

and applying the same method (using inequality (4)), the following can

be obtained:
L(xt, yt)

I(xt/2, yt/2)
≤ Lt(x, y)

I t(x1/2, y1/2)
, (6)

for any t ∈ (0, 1].

Theorem 2. The mean E is subhomogeneous and additively homo-

geneous.

Proof. Let

g(t) =
E(tx, ty)

t
, t > 1.

Since

g′(t) =
(x− y)2

t2(etx − ety)2

[(
etx − ety

x− y

)2

− t2et(x+y)
]

(7)

(we omit the elementary computations), it is sufficient to prove g′(t) > 0

for t > 0. We then can derive

E(tx, ty) ≥ tE(x, y) for any t ≥ 1,

i.e. the mean E is subhomogeneous. Let et = A > 1. The classical

Hadamard inequality (see e.g. [10], [26])

1

x− y

∫ x

y

F (t)dt > F

(
x+ y

2

)
for a convex function F : [x, y] → R, applied to the function F (t) = At,

A > 1, gives
Ax − Ay

x− y
> (logA) · A

x+y
2 ,
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giving
etx − ety

x− y
> te

t(x+y)
2

thus g′(t) > 0, by (7). The additive homogeneity of E is a consequence

of the simple equality

E(x+ t, y + t) = t+ E(x, y).

Theorem 3. The means L, I, L2/I, 2I − A, 3I − 2A are additively

superhomogeneous, while the mean 2A−I is additively subhomogeneous.

Proof.
d

dt
[L(x+ t, y + t)− t] =

L2

G2
− 1,

d

dt
[I(x+ y, y + t)− t] =

I

L
− 1,

d

dt

[
L2(x+ y, y + t)

I(x+ y, y + t)
− t
]

=
L

I

(
2L2

G2
− 1

)
− 1,

d

dt
[2I(x+ y, y + t)− A(x+ y, y + t)− t] =

2I

L
− 2,

d

dt
[3I(x+ y, y + t)− 2A(x+ y, y + t)− t] =

3I

L
− 3,

d

dt
[2A(x+ y, y + t)− I(x+ y, y + t)− t] = 1− I

L
,

where in all cases I = I(x + y, y + t), etc. From the known inequalities

G < L < I, some of the stated properties are obvious. We note that

2I − A and 3I − 2A are means, since

L < 2I − A < A by I >
A+ L

2

(see [10]) and I < A. Similarly,

I >
2A+G

3

(see [11]), gives G < 3I − 2A < A. We have to prove only the inequality

I

L

(
2L2

G2
− 1

)
> 1
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(implying the additive superhomogeneity of
L2

I
). Since L2 > IG (see [2]),

we have
L

I
>
G

L
. Now

G

L

(
2L2

G2
− 1

)
=

2L

G
− G

L
> 1

since 1 +
G

L
< 2 < 2

L

G
by G < L.
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şoara (Romania), 3-4 th November 1989, 87-90.

13. J. Sándor, Gh. Toader, On some exponential means, Babeş-Bolyai
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27. J. Sándor, I. Raşa, Inequalities for certain means in two arguments,

Nieuw Arc. Wiskunde, 15(1997), 51-55.

28. J. Sándor, On refinements of certain inequalities for means, Arch.

Math. (Brno), 31(1995), no. 4, 279-282.

29. J. Sándor, Gh. Toader, I. Raşa, The construction of some new
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2.9 Monotonicity and convexity properties

of means

1

Let a, b > 0 be real numbers. The arithmetic and geometric means of

a and b are

A = A(a, b) =
a+ b

2
and G = G(a, b) =

√
ab.

The logarithmic mean L is defined by

L = L(a, b) =
b− a

log b− log a
, q 6= b; L(a, a) = a,

while the identric mean is

I = I(a, b) =
1

e
(bb/aa)1/(b−a), (a 6= b), I(a, a) = a.

For history, results and connection with other means, or applications,

see the papers given in the References of the survey paper [1]. The aim

of this paper is to study certain properties of a new type of the iden-

tric, logarithmic or related means. These properties give monotonicity or

convexity results for the above considered means.

2

Let 0 < a < b and fix the variable b. Then

d

da
L(a, b) =

(
b

a
− log

b

a
− 1

)
/
(

log
a

b

)2
. (1)

(We omit the simple computations), so by the known inequality

log x < x− 1 (x > 0, x 6= 1),

with x :=
b

a
we have proved that:
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Proposition 1. The mean L(a, b) is a strictly increasing function of

a, when b is fixed.

Consequence 1. The mean L of two variables is a strictly increasing

function with respect to each of variables.

3

An analogous simple computation gives

d

da
I(a, b) = I(a, b)

[
log a− log I(a, b)

a− b

]
. (2)

Since I is a mean, for 0 < a < b one has a < I(a, b) < b, so from (2) we

obtain:

Proposition 2. The mean I(a, b) is a strictly increasing function of

a, when b is fixed.

Consequence 2. The identric mean I of two variables is a strictly

increasing function with respect to each of its variables.

4

We now calculate
d2

da2
L(a, b) and

d2

da2
I(a, b). From (1), (2) after cer-

tain elementary computations one can obtain:

d2

da2
L(a, b) =

2

a2(log a− log b)2

[
a− b

log a− log b
− a+ b

2

]
(3)

d2

da2
I(a, b) = I(a, b)

(log a− log I(a, b)− 1)2 − b

a
(a− b)2

 . (4)

By L(a, b) <
a+ b

2
= A(a, b), clearly

d2

da2
L(a, b) > 0. By application of

log I(a, b) we get the numerator in (4) is

b2

L2
− b

a
=
b(ab− L2)

aL2
< 0 by G(a, b) =

√
ab < L(ab),

131



which is a known result. Thus, from the above remarks we can state:

Proposition 3. The means L and I are strictly concave functions

with respect to each variables.

5

As we have seen in paragraph 1 and 3, one can write the equalities:

I ′

I
=

log a− log I

a− b
(5)

and
L′

L
=

1

a− b
− 1

log a− log b
· 1

a
, (6)

where I ′ and L′ are derivatives with respect to the variable a (and fixed

b). Since

log a− log I = log a− b log b− a log a

b− a
+ 1,

we get the identity:

log a− log I = − b
L

+ 1 (7)

so that (5) and (6) can be rewritten as:

I ′

I
=

1

a− b

(
− b
L

+ 1

)
(8)

and
L′

L
=

1

a− b

(
1− L

a

)
. (9)

Here − b
L
> −L

a
(equivalent to G < L). Thus, via a− b < 0 we get

I ′

I
<
L′

L
for 0 < a < b.

Proposition 4. The function a → I(a, b)

L(a, b)
is a strictly decreasing

function for 0 < a < b.

Remark. From (8) and (9) we can immediately see that, for a > b

the above function is strictly increasing.
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6

From the definition of L and I we can deduce that (for 0 < a < b)

L(a, I) =
a− I

log a− log I
,

which by (5) yields

L(a, I) =
a− I
a− b

· I
′

I
(10)

where I ′ =
d

da
I(a, b) and I = I(a, b), etc. By 0 <

a− I
a− b

< 1 a corollary

of (10) is the interesting inequality

L(a, I) <
I ′

I
(11)

which holds true also for a > b. Similarly, from (9) and the analogous

identity of (7) we obtain:

log
I

b
> (a− b)L

′

L
. (12)

Thus, from the definition of the logarithmic mean,

L(b, I) <
I −B
a− b

· L
′

L
. (13)

Clearly 0 <
I − b
a− b

< 1, thus a consequence of (13) is the inequality

L(b, I) <
L′

L
(14)

similar to (11).

7

We now study the convexity of L and I, as functions of two arguments.

We consider the Hessian matrix:

∇2L(a, b) =


∂2L

∂a2
∂2L

∂a∂b

∂2L

∂b∂a

∂2L

∂b2

 ,
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where as we have seen (see (3))

∂2L

∂a2
=

−2

a2(log a− log b)

(
a+ b

2
− L(a, b)

)
∂L

∂a
=

(
log a− log b+

b

a
− 1

)
/(log a− log b)2

∂2L

∂b2
=

−2

b2(log a− log b)

(
a+ b

2
− L(a, b)

)
.

It is easy to deduce that

∂2L

∂b∂a
=
−a
b
· ∂

2L

∂a2
,

and since by Proposition 3 we have
∂2L

∂a2
< 0, and by a simple computa-

tion det∇2L(a, b) = 0, we can state that L is a concave function of two

arguments.

For the function I, by (2), (4) etc. we can see that det∇2L(a, b) = 0.

We have proved

Proposition 5. The functions L and I are concave functions, as

functions of two arguments.

Corollary. L

(
a+ c

2
,
b+ d

2

)
≥ L(a, b) + L(c, d)

2
,

I

(
a+ c

2
,
b+ d

2

)
≥ I(a, b) + I(c, d)

2

for all a, b, c, d > 0.

8

We now consider a function closely related to the means L and I. Put

f(a) =
a− b
I(a, b)

and g(a) = arctg

√
a

b
.
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It is easy to see that

g′(a) =
b

4AG
,

where A = A(a, b) etc. On the other hand, by (8) we get

f ′(a) =
b

IL
.

Thus, for the function h, h(a) = f(a)− 4g(a) we have

h′(a) = b

(
1

IL
− 1

AG

)
< 0

by Alzer’s result AG < IL. Thus:

Proposition 6. The function h defined above is strictly decreasing.

9

Monotonicity or convexity problems can be considered also for func-

tions obtained by replacing the variables a and b with xt and yt, where x

and y are fixed (positive) real numbers, while t is a real variable. In the

same way, we are able to study similar problems with a = x+t, b = y+t.

We introduce the functions

I(t) =
1

t
log I(xt, yt), t 6= 0; I(0) = G

and

L(t) =
1

t
logL(xt, yt), t 6= 0; L(0) = G.

By the definition of I and L, it is a simple matter of calculus to deduce

the following formulae:

d

dt
logL(xt, yt) =

m logm− n log n− (m− n)

t(m− n)
=

1

t
log I(m,n) (15)

d

dt
log I(xt, yt) =

(m− n)(m logm− n log n)−mn(logm− log n)2

t(m− n)2
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where m = xt, n = yt. By using these relations, we get

d

dt
L(t) =

1

t2
log

1

L
,

d

dt
I(t) =

1

t2

(
1− G2

L2

)
,

where G = G(xt, yt), etc. By I > L and G < L we get L′(t) > 0, I ′(t) > 0

for all t 6= 0.

By extending the definition of L and I at t = 0, we have obtained:

Proposition 7. The functions t → L(t) and t → I(t) are strictly

increasing functions on R.

10

Closely related to the means L and I is the mean S defined by

S = S(a, b) = (aabb)
1
a+b .

By the identity

S(a, b) =
I(a2, b2)

I(a, b)
,

we get

S(t) =
logS(xt, yt)

t
= 2I(2t)− I(t),

so from (15) we can deduce

S ′(t) =
G2

t2L2

(
1− G2

A2

)
(16)

where G = G(xt, yt), etc.

By extending the definition of S to the whole real line by S(0) = G,

we can state:

Proposition 8. The function t→ S(t) is strictly increasing function

on R.
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11

Let f(t) =
I(xt, yt)

L(xt, yt)
for t 6= 0, f(0) = 1.

By logarithming and using relations (15), the following can be proved:

f ′(t) =
f(t)

tL2
(L2 −G2), t 6= 0 (17)

where L = L(xt, yt).

Proposition 9. The function t → f(t) defined above is strictly in-

creasing for t > 0 and strictly decreasing for t < 0 (thus t = 0 is the

single minimum-point of this continuous function).

12

Let

s(t) =

(
L2(xt, yt)

I(xt, yt)

) 1
t

, t 6= 0; s(0) = eG.

By log s(t) = 2L(t)− I(t) and from (15) we easily get:

s′(t)

s(t)
=

1

t2

(
log

I2

L2
− 1 +

G2

L2

)
(18)

where L = L(xt, yt) for t 6= 0. By

log
I2

L2
− 1 +

G2

L2
> 0

(see [1]), with the assumption s(0) = eG, we obtain:

Proposition 10. The function t→ s(t) is strictly increasing on R.

Corollary.
L2(xt, yt)

I(xt, yt)
> etG(x,y) for t > 0.

13

In what follows we will consider the derivatives of forms

d

dt
M(a+ t, b+ t),
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which will be denoted simply by M ′ (where M is a mean). We then will

be able to obtain other monotonicity and convexity properties. It is a

simple exercise to see that

A′ = 1, G′ =
A

G
,

where G = G(a+ t, b+ t), etc. Indeed,

F ′ =
d

dt

√
(a+ t)(b+ t) =

1

2
· 1√

a+ t

√
b+ t+

1

2
√
b+ t

√
a+ t =

A

G
.

Similarly one can show that

L′ =
L2

G2
, I ′ =

I

L
.

For the mean S the following formula can be deduced:

S ′ = S

(
1

A
− k 1

A2L

)
,

where k =

(
a− b

2

)2

> 0. Thus

(A− I)′ = 1− I

L
< 0, (G− I)′ =

A

G
− I

L
> 0

(since A > I, L > G, so AL > GI);

(G2 − I2)′ = 2(AL− I2)
L

< 0

by the known inequality

I >
A+ L

2
>
√
AL.

From AGL < A2G < I3 (see [1]) and

(G3 − I3)′ = 3

(
AG− I3

L

)
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we can deduce (G3 − I3)′ < 0.

These remarks give:

Proposition 11. A − I, G2 − I2, G3 − I3 are strictly decreasing

functions, while G− I is strictly increasing on the real line.

(Here A = A(a+ t, b+ t) etc., t ∈ R).

For an example of convexity, remark that

I ′′ =

(
I

L

)′
=

I

L2

(
1− L2

G2

)
,

L′′ =

(
L2

G2

)
=

2L2

G4
(L− A)

(we omit the details), so we can state:

Proposition 12. The functions L and I are strictly concave on the

real line.

Corollaries. 1. For t ≥ 0 one has:

G(a+ t, b+ t)− I(a+ t, b+ t) ≥ G(a, b)− I(a, b)

G2(a+ t, b+ t)− I2(a+ t, b+ t) ≤ G2(a, b)− I2(a, b),

A(a+ t, b+ t)− I(a+ t, b+ t) ≤ A(a, b)− I(a, b).

2.
I(a+ t1, b+ t1) + I(a+ t2, b+ t2)

2
≤ I

(
a+

t1 + t2
2

, b+
t1 + t2

2

)
for all t1, t2 > 0, a, b > 0.

14

Let

P = P (a, b) =
a− b

4 arctan

(√
a

b

)
− π

for a 6= b, P (a, a) = a.

This mean has been introduced by Seiffert [2]. It is not difficult to

show that

P ′ =
P 2

AG
,

(
1

P

)′
=
−1

AG
.
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Since

(
1

I

)
=
−1

IL
, we get:

Proposition 13.
1

I
− 1

P
is a strictly increasing function of t, where

P = P (a+ t, b+ t), etc.

Indeed, this follows from the known inequality AG < LI.

Corollary.

1

I(a+ t, b+ t)
− 1

P (a+ t, b+ t)
>

1

I(a, b)
− 1

P (a, b)
for all t > 0, a 6= b.

Finally, we prove:

Proposition 14. The function
P

L
is strictly increasing on R.

Proof. We have (
P

I

)′
=
P

I

(
P

AG
− 1

L

)
.

Now, it is known that GA < LP ([3]) implying the desired result.
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1. J. Sándor, V.E.S. Szabó, On certain means, Octogon Math. Mag.,

7(1999), no. 1, 58-65.

2. H.-J. Seiffert, Problem 887, Nieuw Arch. Wiskunde 12 (Ser 4), 1994,

230-231.

3. H.-J. Seiffert, Letter to the author.

140



2.10 Logarithmic convexity of the means It

and Lt

In paper [3] we have studied the subhomogeneity or logsubhomogene-

ity (as well as their additive analogue) of certain means, including the

identric and logarithmic means. There appeared in a natural way the

following functions:

f(t) =
logL(xt, yt)

t
and g(t) =

log I(xt, yt)

t
,

where x, y > 0 while t 6= 0. The t-modification of a mean M is defined

by (see e.g. [4])

Mt(x, y) = (M(xt, yt))1/t.

Therefore,

f(t) = logLt(x, y) and g(t) = log It(x, y),

where L and I are well known logarithmic and identric means, defined

by

L(a, b) =
b− a

ln b− ln a
(b > a > 0), L(a, a) = a;

I(a, b) =
1

e
(bb/aa)1/(b−a) (b > a > 0), I(a, a) = a.

In paper [3] we have proved that

f ′(t) =
1

t2
g(t) (1)

and

g′(t) =
1

t2
h(t) (2)

where

h(t) = 1− G2

L2
and g(t) = log

I

L
,

where in what follows G = G(xt, yt), etc.
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Our aim is to prove the following result.

Theorem. Lt and It are log-concave for t > 0 and log-convex for

t < 0.

Proof 1. First observe that as G =
√
xtyt, one has

G′ =
1

2
√
xtyt

(xt lnx · yt + yt ln y · xt) =
G lnG

t
.

Similarly, since

L(xt, yt) = L(x, y)
xt − yt

t(x− y)
,

we easily get

L′ =
L log I

t

(where we have used the fact that log I(a, b) =
b ln b− a ln a

b− a
− 1). Now,

h′(t) =
2−G
L

(
G′L− L′G

L2

)
=

2G2

tL2
log

I

G
,

after using the above established formulae for G′ and L′. By calculating

g′′(t) =
th′(t)− 2h(t)

t3
,

after certain computations we get

g′′(t) =
1

t3

(
2G2

L2
log

I

G
+

2G2

L2
− 2)

)
.

Since log
I

G
=
A− L
L

(where A = A(a, b) =
a+ b

2
denotes the arithmetic

mean; for such identities see e.g. [2]), we arrive at

g′′(t) =
2

t3

(
G2A

L3
− 1

)
. (3)

Since by a result of Leach-Sholander [1], G2A < L3, by (3) we get that

g′′(t) < 0 for t > 0 and g′′(t) > 0 for t < 0.
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Proof 2. First we calculate I ′. Let a = xt, b = yt. By

log I(a, b) =
b ln b− a ln a

b− a
− 1

one has

I ′(a, b) = I(a, b)

(
b ln b− a ln a

b− a

)′
.

Here (
b ln b− a ln a

b− a

)′
=

1

t

[
b ln b− a ln a

b− a
− ab

(
ln b− ln a

b− a

)2
]
,

after some elementary (but tedious) calculations, which we omit here.

Therefore

I ′ =
1

t
I

(
log I + 1− G2

L2

)
.

Now

f ′′(t) =

(
g(t)

t2

)′
=

1

t3
(g′(t)t− 2g(t)),

where

g′(t) =
L

I

(
I

L

)′
=
L

I

(
I ′L− L′I

L2

)
=

1

t

(
1− G2

L2

)
(after replacing L′ and I ′ and some computations). Therefore

g′(t)t− 2g(t) = 1− G2

L2
− log

I2

L2
.

In our paper [3] it is proved that

log
I2

L2
> 1− G2

L2

(and this implies the logsubhomogenity of the mean
L2

I
). Thus f ′′(t) < 0

for t > 0 and f ′′(t) > 0 for t < 0. This completes the proof of the

theorem.
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2.11 On certain logarithmic inequalities

1. Introduction

In the very interesting problem book by K. Hardy and K.S. Williams

[1] (see 3., page 1) one can find the following logarithmic inequality:

lnx

x3 − 1
<

1

3
· x+ 1

x3 + x
, (1)

where x > 0, x 6= 1.

The proof of this surprisingly strong inequality is obtained in [1] by

using a quite complicated study of auxiliary functions.

We wish to note in what follows, how inequality (1) is related to the

famous logarithmic mean L, defined by

L(a, b) =
a− b

ln a− ln b
(a 6= b);L(a, a) = a, (2)

where a and b are positive real numbers. We will show that, in terms of

logarithmic mean, (1) is due in fact to J. Karamata [2]. For a survey of

results on L and connected means, see e.g. [4], [5], [6].

Let A(a, b) =
a+ b

2
, G(a, b) =

√
ab denote the classical arithmetic,

resp. geometric mean of a and b. It is well known that, the logarithmic

mean separates the geometric and arithmetic mean:

G < L < A, (3)

where G = G(a, b), etc. and a 6= b. For the history of this inequality and

new proofs, see [5], [15], [17], [18], [19].

As inequality (3) is important in many fields of mathematics, (see e.g.

[9], [12], [15]), the following famous refinement of left side of (3), due to

Leach and Sholander [3] should be mentioned

3
√
G2 · A < L (4)
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Now, let us introduce the following mean K by

K(a, b) =
a 3
√
b+ b 3

√
a

3
√
b+ 3
√
a

(5)

Letting x = 3

√
a

b
(a 6= b), inequality (1) can be written, by using (2)

and (5):

L(a, b) > K(a, b) (6)

This inequality is due to Karamata [2].

We will show that inequality (6) refines (4). Also, we will give new

proof and refinements to this inequality.

2. Main results

The first result shows that (6) is indeed a refinement of (4):

Theorem 1. One has

L > K >
3
√
G2A (7)

Proof. We have to prove the second inequality of (7); i.e.

a 3
√
b+ b 3

√
a

3
√
b+ 3
√
a

> 3

√
ab ·

(
a+ b

2

)
(8)

Putting a = u3, b = v3, this inequality becomes

u3v + v3u

u+ v
> uv · 3

√
u3 + v3

2
,

or after elementary transformations:

2(u2 + v2)3 > (u+ v)3 · (u3 + v3) (9)

This inequality, which is interesting in itself, can be proved by alge-

braic computations; here we present an analytic approach, used also in

our paper [11]. By logarithmation, the inequality becomes

ln 2 + 3 ln(u2 + v2)− 3 ln(u+ v)− ln(u3 + v3) = f(u) > 0 (10)
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Suppose u > v. Also, for simplicity one could take v = 1 (since (9) is

homogeneous). Then one has

f ′(u) =
6u

u2 + 1
− 3

u+ 1
− 3u2

u3 + 1
=

(u− 1)3

(u2 + 1)(u3 + 1)
> 0,

after elementary computations, which we omit here. Thus

f(u) > f(1) = 0,

and the result follows.

Remark 1. Inequality K >
3
√
G2A has been discovered by the author

in 2003 [10]. For the extensions of (9), see [10] and [[16].

Theorem 2. Inequality L > K is equivalent to inequality

L >
3AG

2A+G
(11)

Proof. By letting a = u3, b = v3 the inequality L(a, b) > K(a, b)

becomes the equivalent inequality

L(u3, v3) > K(u3, v3).

Now, remark that

L(u3, v3) = L(u, v) · u
2 + uv + v2

3
and K(u3, v3) =

uv(u2 + v2)

u+ v
,

so we get the relation

L(u, v) >
3uv(u2 + v2)

(u+ v)(u2 + uv + v2)
(12)

Let now u =
√
p, v =

√
q in (12), with p 6= q positive real numbers.

Remarking that

L(
√
p,
√
q) =

2√
u+
√
v
· L(p, q),

147



after certain computations, (12) becomes

L(p, q) >
3
√
pq(p+ q)

p+ q +
√
pq

(13)

As
√
pq = G(p, q), p+ q = 2A(p, q),

inequality (13) may be written as

L >
3AG

2A+G
, (14)

where L = L(p, q) etc. Clearly, this inequality is independents of the

variables p and q, and could take L = L(a, b), A = A(a, b), G = G(a, b)

in inequality (14). This proves Theorem 2.

Remark 2. For inequalities related to (11), see also [11].

Now, the surprise is, that, though (6) is stronger than (4), inequality

(4) implies inequality (6)!: One has

Theorem 3.

L >
3
√
G2A >

3AG

2A+G
(15)

Proof. The first inequality of (15) is the Leach-Sholander inequality

(4).

Now, remark that
3
√
G2A = geometric mean of G and

A =
3
√
G ·G · A,

which is greater than the harmonic mean of these three numbers:

3
1
G

+ 1
G

+ 1
A

=
3

2
G

+ 1
A

=
3AG

2A+G
.

Therefore, inequality (15) follows.

Theorem 4. One has

L >
3

√(
A+G

2

)2

·G >
3G(A+G)

A+ 5G
>

3AG

2A+G
(16)
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Proof. The first inequality of (16) is a refinement of (4), and is due

to the author [7]. See also [13].

The second inequality of (16) follows by the same argument as the

proof of Theorem 3: the geometric mean of the numbers
A+G

2
,
A+G

2
, G

is greater than their harmonic mean, which is

3
2

A+G
+ 2

A+G
+ 1

G

=
3G(A+G)

5G+ A
.

Finally, the last inequality is equivalent, after some computations with

A2 − 2AG+G2 > 0, or (A−G)2 > 0.

Remark 3. Connections of L with other means are studied in papers

[6], [8], [14].
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2.12 A note on the logarithmic mean

1. Introduction

The logarithmic mean L(a, b) of two positive real numbers a and b is

defined by

L = L(a, b) =
b− a

ln b− ln a
for a 6= b, L(a, a) = a. (1)

Let A := A(a, b) =
a+ b

2
and G := G(a, b) =

√
ab denote the arith-

metic, resp. geometric means of a and b.

One of the basic inequalities connecting the above means is the fol-

lowing:

G < L < A, for a 6= b. (2)

Among the first discoveries of this inequality, we quote B. Ostle and

H.L. Terwilliger [2] (right side of (2)) and B.C. Carlson [1] (left side of

(2)). See also [4], [5] for other references.

Inequality (2) has been rediscovered and reproved many time (see e.g.

[3], [4], [5], [6]).

The aim of this note is to offer a new proof of this inequality. The

method is based on two simple algebraic inequalities and Riemann inte-

gration.

2. The proof

Lemma. For all t > 1 one has

4

(t+ 1)2
<

1

t
<

1

2
√
t

+
1

2t
√
t
. (3)

Proof. The left side of (3) holds true, being equivalent to (t−1)2 > 0,

while the right side, after reducing with
√
t to

1

2
√
t
<

1

2
, or t > 1.
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Now, let b > a > 0, and integrate both sides of inequalities (3) on

[1, b/a]. As∫ b/a

1

2

(t+ 1)2
dt =

b− a
b+ a

and

∫ b/a

1

1

2
√
t
dt =

√
b

a
− 1,

∫ b/a

1

1

2t
√
t
dt = −

√
a

b
+ 1,

we get:

2

(
b− a
b+ a

)
< ln b− ln a <

√
b

a
−
√
a

b
=
b− a√
ab
. (4)

Relation (4) implies immediately (2) for b > a. Since L(a, b) = L(b, a),

(2) follows for all a 6= b.
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2.13 A basic logarithmic inequality, and

the logarithmic mean

1. Introduction

Let a, b > 0. The logarithmic mean L = L(a, b) of a and b is defined

by

L = L(a, b) =
b− a

ln b− ln a
for a 6= b and L(a, a) = a. (1)

Let G = G(a, b) =
√
ab and A = A(a, b) =

a+ b

2
denote the classical

geometric, resp. logarithmic means of a and b.

One of the most important inequalities for the logarithmic mean (be-

sides e.g. a < L(a, b) < b for a < b) is the following:

G < L < A for a 6= b (2)

The left side of (2) was discovered by B.C. Carlson in 1966 ([1]) while

the right side in 1957 by B. Ostle and H.L. Terwilliger [2].

We note that relation (2) has applications in many subject of pure or

applied mathematics and physics including e.g. electrostatics, probability

and statistics, etc. (see e.g. [3], [4]).

The following basic logarithmic inequality is well-known:

Theorem 1.

lnx ≤ x− 1 for all x > 0. (3)

There is equality only for x = 1.

(3) may be proved e.g. by considering the auxiliary function

f(x) = x− lnx− 1,

and it is easy to show that x = 1 is a global minimum to f , so

f(x) ≥ f(1) = 0.
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Another proof is based on the Taylor expansion of the exponential

function, yielding et = 1 + t+
t2

2
· eθ, where θ ∈ (0, t). Put t = x− 1, and

(3) follows.

The continuous arithmetic, geometric and harmonic means of posi-

tive, integrable function f : [a, b]→ R are defined by

Af =
1

b− a

∫ b

a

f(x)dx, Gf = e
1
b−a

∫ b
a ln f(x)dx

and

Hf =
b− a∫ b

a

dx/f(x)

,

where a < b are real numbers.

By using (3) we will prove the following classical fact:

Theorem 2.

Hf ≤ Gf ≤ Af (4)

Then, by applying (4) for certain particular functions, we will deduce

(2). In fact, (2) will be obtained in a stronger form. The main idea of

this note is the use of very simple inequality (3) in the theory of means.

2. The proofs

Proof of Theorem 2. Put

x =
(b− a)f(t)∫ b

a

f(t)dt

in (3), and integrate on t ∈ [a, b] the obtained inequality. One gets

∫ b

a

ln f(t)dt−
((

1

b− a

∫ b

a

f(t)dt

))
(b−a)≤

(b− a)

∫ b

a

f(t)dt∫ b

a

f(t)dt

−(b−a)= 0.
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This gives the right side of (4).

Apply now this inequality to
1

f
in place of f . As

ln
1

f(t)
= − ln f(t),

we immediately obtain the left side of (4).

Corollary 1. If f is as above, then(∫ b

a

f(t)dt

)(∫ b

a

1

f(t)
dt

)
≥ (b− a)2. (5)

This follows by Hf ≤ Af in (4).

Remark 1. Let f be continuous in [a, b]. The above proof shows that

there is equality e.g. in right side of (4) if

f(t) =
1

b− a

∫ b

a

f(t)dt. (6)

By the first mean value theorem of integrals, there exists c ∈ [a, b]

such that
1

b− a

∫ b

a

f(t)dt = f(c).

Since by (6) one has f(t) = f(c) for all t ∈ [a, b], f is a constant

function.

When f is integrable, as

∫ b

a

ln

(b− a)
f(t)∫ b

a

f(t)dt

 dt = 0,

as for g(t) = ln
(b− a)f(t)∫ b

a

f(t)dt

> 0 one has

∫ b

a

g(t)dt = 0,
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it follows by a known result that g(t) = 0 almost everywhere (a.e.).

Therefore

f(t) =
1

b− a

∫ b

a

f(t)dt

a.e., thus f is a constant a.e.

Remark 2. If f is continuous, it follows in the same manner, that in

the left side of (4) there is equality only for f = constant. The same is

true for inequality (5).

Proof of (2). Apply Gf ≤ Af to f(x) =
1

x
. Remark that

1

b− a

∫ b

a

lnxdx = ln I(a, b),

where a < I(a, b) < b.

This mean is known in the literature as ”identric mean” (see e.g. [3]).

As f(x) =
1

x
is not constant, we get by

Af =
1

L(a, b)
, Gf =

1

I(a, b)
,

that

L < I (7)

Applying the same inequality Gf ≤ Af to f(x) = x one obtains

I < A (8)

Remark 3. (7) and (8) can be deduced at once by applying all rela-

tions of (4) to f(x) = x. Apply now (5) to f(t) = et. After elementary

computations, we get
eb − ea

b− a
> e

a+b
2 (9)

As f(t) > 0 for any t ∈ R, inequality (9) holds true for any a, b ∈ R,

b > a. Replace now b := ln b, a := ln a, where now the new values of a

and b are > 0. One gets from (9):

L > G (10)
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By taking into account of (7)-(10), we can write:

G < L < I < A, (11)

i.e. (2) is proved (in improved form on the right side).

Remark 4. Inequality (4) (thus, relation (10)) follows also by Gf ≤
Af applied to f(t) = et.

Remark 5. The right side of (2) follows also from (5) by the appli-

cation f(t) = t. As∫ b

a

tdt =
b2 − a2

2
and

∫ b

a

1

t
dt = (ln b− ln a),

the relation follows.

Remark 6. Clearly, in the same manner as (4), the discrete inequality

of means can be proved, by letting x =
nxi

x1 + . . .+ xn
(x1, . . . , xn > 0).
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2.14 On certain inequalities for means in

two variables

1. Introduction

The logarithmic and identric means of two positive real numbers a

and b with a 6= b are defined by

L = L(a, b) =
b− a

log b− a log a
and I = I(a, b) =

1

e

(
aa

bb

)1/(a−b)

,

respectively. These means have been the subject of many intensive re-

search, partly because they are related to many other important means

and because these means have applications in physics, economics, meteo-

rology, statistics, etc. For a survey of results, with an extended literature,

see [3], [6]. For identities involving these, and other means, see e.g. [8],

[10]. Particularly, the identity

I(a2, b2)/I(a, b) = (aa · bb)1/(a+b) = S = S(a, b)

leads to the weighted geometric mean of a and b, denoted by S(a, b) in

[6], [8], [9].

In paper [12] there are proved the following two inequalities

G(a, b) exp

(
1

3

(
b− a
b+ a

)2
)
< I(a, b) < A(a, b) exp

(
−1

6

(
b− a
b+ a

)2
)
,

(1)

where a 6= b, a, b > 0.

In paper [3] by H. Alzer and S.-L. Qiu appears among many other

relations, the following one:

G(a, b) exp

(
1

6

(
b− a
b+ a

)2
)
< L(a, b) < A(a, b) exp

(
−1

3

(
b− a
b+ a

)2
)
,

(2)
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a 6= b, a, b > 0.

We note that, the right hand side inequality of (1) was first proved

by the author in 1989 [5]. In that paper it was shown also the following

inequality:

A2(a, b)

I(a2, b2)
< exp

(
−1

3

(
b− a
b+ a

)2
)
. (3)

The aim of this note is to prove that the above inequalities are con-

nected to each other by a chain of relations, and that, in fact, all are

consequences of (3).

2. Main results

First write in another form all the inequalities. The left and right

sides of (1) many be written respectively as

exp

(
1

3

(
b− a
b+ a

)2
)
<
I(a, b)

G(a, b)
; (4)

exp

(
1

3

(
b− a
b+ a

)2
)
<
A2(a, b)

I2(a, b)
(5)

while the inequalities of (2) as

exp

(
1

3

(
b− a
b+ a

)2
)
<
L2(a, b)

G2(a, b)
; (6)

exp

(
1

3

(
b− a
b+ a

)2
)
<
A(a, b)

L(a, b)
. (7)

Finally note that, (3) may be written as

exp

(
1

3

(
b− a
b+ a

)2
)
<
I(a2, b2)

A2(a, b)
=
I(a, b)S(a, b)

A2(a, b)
. (8)

Theorem 1. The following chain of implications holds true:

(8)⇒ (5)⇒ (7)⇒ (4)⇒ (6).
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Proof. (8)⇒ (5) means that
I · S
A2

<
A2

I2
, or S <

A4

I3
. This inequality

is proved in [9] (see Theorem 1 there).

(5) ⇒ (7) by
A2

I2
<

A

L
, i.e. I2 > A · L. For this inequality, see [7]

(Relation (9)).

(7)⇒ (4) by
A

L
<
I

G
, i.e. A ·G < L · I, see [1].

(4)⇒ (6) by
I

G
<
L2

G2
, i.e.

√
GI < L, see [2].

Therefore all implications are valid.

We note that inequality (8) was a consequence of an integral inequal-

ity due to the author [4], (discovered in 1982), to the effect that:

Theorem 2. Let f : [a, b] → R be a 2k-times (k ≥ 1) differentiable

function such that f (2k)(x) > 0. Then

∫ b

a

f(x)dx >
k−1∑
j=0

(b− a)2j+1

22j(2j + 1)!
f (2j)

(
a+ b

2

)
. (9)

For k = 2 we get that if f is 4-times differentiable, then

1

b− a

∫ b

a

f(x)dx > f

(
a+ b

2

)
+

(b− a)2

24
f ′′
(
a+ b

2

)
. (10)

Clearly, (9) and (10) are extensions of the classical Hadamard in-

equality, which says that, if f is convex on [a, b] then

1

b− a

∫ b

a

f(x)dx > f

(
a+ b

2

)
. (11)

Applying (10) for f(x) = x log x, and using the identity∫ b

a

x log xdx =
1

4
(b2 − a2) log I(a2, b2) (12)

(see [6]), we get (8). Applying (10) to f(x) = − log x, we get (5), i.e. the

right side of (1) (see [5]). For another proof, see [11].
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2.15 On a logarithmic inequality

1. Introduction

In the recent paper [1], the following logarithmic inequality has been

proved (see Lemma 2.7 of [1]):

Theorem 1. For any k ≥ 1 and t ∈ [t0, 1), where t0 =
e− 1

e+ 1
one

has:

log

(
1 + t1/k

1− t1/k

)
≤ k log

(
1 + t

1− t

)
. (1)

The proof of (1) given in [1] is very complicated, based on more sub-

sequent Lemmas on various hyperbolic functions. We note that (1) has

important applications in the study of quasiconformal mappings and re-

lated vector function inequalities [1].

The aim of this note is to offer a very simple proof of (1), and in fact

to obtain a more general result.

2. The proof

Our method will be based on the study of monotonicity of a certain

function, combined with a well-known result related to the logarithmic

mean

L = L(x, y) =
x− y

log x− log y
(x 6= y), L(x, x) = x.

The following result is well-known (see e.g. [2]):

Lemma. One has L > G for any x, y > 0, x 6= y, where

G = G(x, y) =
√
xy

denotes the geometric mean of x and y.

Put now t =
1

p
, where 1 < p ≤ e+ 1

e− 1
and

1

k
= x in (1). Then the

inequality becomes

f(x) = x log

(
px + 1

px − 1

)
≤ f(1), where 0 < x ≤ 1,
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and f(1) = log

(
p+ 1

p− 1

)
≥ 1.

Now the following result will be proved:

Theorem 2. Assuming the above conditions, the function f(x) is

strictly increasing on (0, 1].

Particularly, one has f(x) ≤ f(1) for 0 < x ≤ 1.

Proof. An easy computation gives

f ′(x) = log

(
px + 1

px − 1

)
− 2xpx log p

p2x − 1
= log

(
a+ 1

a− 1

)
− 2a log a

a2 − 1
= g(a),

where a = px. Since 0 < x ≤ 1, a ≤ p and as p ≤ e+ 1

e− 1
, one has

a ≤ e+ 1

e− 1
, i.e. log

(
a+ 1

a− 1

)
≥ 1. This implies

g(a) ≥ 1− 2a log a

a2 − 1
= 1− a log a2

a2 − 1
> 0,

as this is equivalent with L(a2, 1) < G(a2, 1) of the Lemma.

Since f ′(x) > 0, the function f is strictly increasing, and the proof of

Theorem 2 is finished.

Remarks. 1) Particularly, by letting p0 =
e+ 1

e− 1
we get f(1) = 1,

and the inequality

log

(
px0 + 1

px0 − 1

)
≤ 1

x
(2)

follows. For x =
1

k
and p0 =

1

t0
, with the use of (2) an easier proof of

Lemma 2.9 of [1] can be deduced.

2) Let 0 < x ≤ y ≤ 1. Then

x log

(
px + 1

px − 1

)
≤ y log

(
py + 1

py − 1

)
≤ log

(
p+ 1

p− 1

)
. (3)

This offers an extension of inequality (1) for x =
1

k
and p =

1

t
.

164



Bibliography
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2.16 Series expansions related to

the logarithmic mean

1. Introduction

In what follows, we let x ∈ (−1, 1). The well-known series expansion

for the logarithmic function

log(1 + x) = x− x2

2
+
x3

3
− x4

4
+ · · · (2.1)

(discovered for the first time by N. Mercator (1668), see e.g. [3]) applied

to “−x” in place of x gives

log(1− x) = −x− x2

2
− x3

3
− x4

4
− · · · (2.2)

By subtracting equations (1) and (2) we get the Gregory series (J.

Gregory (1668), see [3])

log
1 + x

1− x
= 2 ·

(
x+

x3

3
+
x5

5
+
x7

7
+ · · ·

)
(2.3)

The Newton’s binomial expansion (stated for the first time by I. New-

ton (1665), and considered later also by L. Euler (1748) states that for

any rational α one has

(1 + x)α = 1 +

(
α

1

)
x+

(
α

2

)
x2 +

(
α

3

)
x3 + · · · , (2.4)

where (
α

k

)
=
α(α− 1) · · · (α− k + 1)

k!

denotes a generalized binomial coefficient.

Particularly, for α = −1

2
we get(

−1/2

k

)
= (−1)k · 1 · 3 · . . . · (2k − 1)

2k · k!
,
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and for “−x2” in place of x in (4), we get the expansion

(1−x2)−1/2 = 1 +
1

2
x2 +

3

8
x4 + · · ·+ 1 · 3 · . . . · (2k − 1)

2k · k!
x2k + · · · , (2.5)

which we will need later.

The logarithmic mean of two positive real numbers a and b is defined

by

L(a, b) =
b− a

log b− log a
(b 6= a);L(a, a) = a (2.6)

This mean has many connections and applications in various domains

of Mathematics (see e.g. [1]; [4]-[16]). Particularly, the following classical

relations are true for a 6= b :

G < L < A; (2.7)

L < A1/3, (2.8)

where

Ar = Ar(a, b) =

(
ar + br

2

)1/r

;

A = A1(a, b) =
a+ b

2
,

G = A0(a, b) = lim
r→0

Ar(a, b) =
√
ab

are the classical power mean, resp. arithmetic and geometric means of a

and b. Many applications to (7) and (8), as well as new proofs are known

in the literature. New proofs to (7) and (8), based on integral inequalities

have been obtained by the author in [6], [10]. For recent new proofs of

(7), see [14], [15]. For the history of (7), see [2], [7], [13].

In what follows, we will show that the Gregory series (3) and Newton’s

series expansion (5) offer new proofs to (7), as well as to (8). Such a

method with series, for the arithmetic-geometric mean of Gauss, appears

in [9].
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2. The proofs

Since the means L and Ar are homogeneous, it is easy to see that (7),

resp. (8) are equivalent to

√
t <

t− 1

log t
<
t+ 1

2
(7’)

resp.

t− 1

log t
<

(
3
√
t+ 1

2

)3

, (8’)

where t =
b

a
> 1 (say)

Now, to prove the right side of (7’) remark that for x =
t− 1

t+ 1
∈ (0, 1)

in (3) we have, by t =
1 + x

1− x
that

log t = log
1 + x

1− x
> 2x = 2 · t− 1

t+ 1
.

This gives immediately the right side of (7’) for t > 1.

For the proof of (8’) apply the same idea, by remarking that

log t > 2 ·
(
x+

x3

3

)
= 2 · t− 1

t+ 1
· t

2 + t+ 1

(t+ 1)2
· 4

3

As (t− 1)(t2 + t+ 1) = t3 − 1, we get the inequality

t3 − 1

3 log t
<

(
t+ 1

2

)3

(8”)

Now, to get (8’) from (8”), it is enough to replace t with 3
√
t, and the

result follows.

For the proof of left side of (7’) we will remark first that for the kth

terms in the right side of (3) and (5) one has

x2k

2k + 1
<

1 · 3 · . . . · (2k − 1)

2k · k!
· x2k (2.9)
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Since 0 < x, it is sufficient to prove the inequality

1 · 3 · . . . · (2k − 1)(2k + 1) > 2k · k! (2.10)

This follows immediately e.g. by mathematical induction. For k = 1, 2

it is true; and assuming it for k, we get

1 · 3 · . . . · (2k + 1)(2k + 3) > 2k · k!(2k + 3) > 2k+1(k + 1)!,

where the last inequality holds by 2k + 3 > 2k + 2.

Therefore, we get the inequality

x+
x3

3
+
x5

5
+ · · · < x

(
1 +

1

2
x2 +

3

8
x4 + · · ·

)
, (2.11)

and by letting
1 + x

1− x
= t > 1 we obtain

log t < 2 ·
(
t− 1

t+ 1

)
· t+ 1

2
√
t
,

so the left side of (7’) follows, too.
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2.17 On some inequalities for the identric,

logarithmic and related means

1. Introduction

Since last few decades, the inequalities involving the classical means

such as arithmetic mean A, geometric mean G, identric mean I and

logarithmic mean L and weighted geometric mean S have been studied

extensively by numerous authors, e.g. see [1], [2], [4], [7], [8], [15], [16],

[17].

For two positive real numbers a and b, we define

A = A(a, b) =
a+ b

2
, G = G(a, b) =

√
ab,

L = L(a, b) =
a− b

log(a)− log(y)
, a 6= b,

I = I(a, b) =
1

e

(
aa

bb

)1/(a−b)

, a 6= b,

S = S(a, b) = (aabb)1/(a+b).

For the historical background of these means we refer the reader to [2],

[4], [5], [12], [15], [16], [17]. Generalizations, or related means are stud-

ied in [3], [8], [7], [10], [12], [14], [18]. Connections of these means with

trigonometric or hyperbolic inequalities are pointed out in [3], [13], [6],

[14], [17].

Our main result reads as follows:

Theorem 1.1. For all distinct positive real numbers a and b, we have

1 <
I√

I(A2, G2)
<

2√
e
. (1.1)

Both bounds are sharp.

Theorem 1.2. For all distinct positive real numbers a and b, we have

1 <
2I2

A2 +G2
< c (1.2)
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where c = 1.14 . . .. The bounds are best possible.

Remark 1.3. A. The left side of (1.2) may be rewritten also as

I > Q(A,G), (1.3)

where Q(x, y) =
√

(x2 + y2)/2 denotes the root square mean of x and y.

In 1995, Seiffert [25] proved the first inequality in (1.1) by using series

representations, which is rather strong. Now we prove that, (1.3) is a

refinement of the first inequality in (1.1). Indeed, by the known relation

I(x, y) < A(x, y) = (x+ y)/2, we can write

I(A2, G2) < (A2 +G2)/2 = Q(A,G)2,

so one has:

I > Q(A,G) >
√
I(A2, G2). (1.4)

As we have I(x2, y2) > I(x, y)2 (see Sándor [15]), hence (1.4) offers also

a refinement of

I > I(A,G). (1.5)

Other refinements of (1.5) have been provided in a paper by Neuman and

Sándor [10]. Similar inequalities involving the logarithmic mean, as well

as Sándor’s means X and Y , we quote [3], [13], [14]. In the second part

of paper, similar results will be proved.

B. In 1991, Sándor [16] proved the inequality

I > (2A+G)/3. (1.6)

It is easy to see that, the left side of (1.2) and (1.6) cannot be compared.

In 2001 Sándor and Trif [21] have proved the following inequality:

I2 < (2A2 +G2)/3. (1.7)

The left side of (1.2) offers a good companion to (1.7). We note that the

inequality (1.7) and the right side of (1.2) cannot be compared.
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In [25], Seiffert proved the following relation:

L(A2, G2) > L2, (1.8)

which was refined by Neuman and Sándor [10] (for another proof, see [8])

as follows:

L(A,G) > L. (1.9)

We will prove with a new method the following refinement of (1.8) and

a counterpart of (1.9):

Theorem 1.4. We have

L(A2, G2) =
(A+G)

2
L(A,G) >

(A+G)

2
L > L2, (1.10)

L(I,G) < L, (1.11)

L < L(I, L) < L · (I − L)/(L−G). (1.12)

Corollary 1.5. One has

G · I/L <
√
I ·G < L(I,G) < L, (1.13)

(L(I,G))2 < L · L(I,G) < L(I2, G2) < L · (I +G)/2. (1.14)

Remark 1.6. A. Relation (1.13) improves the inequality

G · I/L < L(I,G),

due to Neuman and Sándor [10]. Other refinements of the inequality

L < (I +G)/2 (1.15)

are provided in [19].

B. Relation (1.12) is indeed a refinement of (1.15), as the weaker inequal-

ity can be written as (I − L)/(L−G) > 1, which is in fact (1.15).

The mean S is strongly related to other classical means. For example,

in 1993 Sándor [17] discovered the identity

S(a, b) = I(a2, b2)/I(a, b), (1.16)
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where I is the identric mean. Inequalities for the mean S may be found

in [15], [17], [20].

The following result shows that I and S(A,G) cannot be compared,

but this is not true in case of I and S(Q,G). Even a stronger result holds

true.

Theorem 1.7. None of the inequalities I > S(A,G) or I < S(A,G)

holds true. On the other hand, one has

S(Q,G) > A > I, (1.17)

I(Q,G) < A. (1.18)

Remark 1.8. By (1.17) and (1.18), one could ask if I and I(Q,G)

may be compared to each other. It is not difficult to see that, this becomes

equivalent to one of the inequalities

y log y

y − 1
< (or >)

x

tanh(x)
, x > 0, (1.19)

where y =
√

cosh(2x). By using the Mathematica Software [11], we can

show that (1.19) with “< ” is not true for x = 3/2, while (1.19) with

“>” is not true for x = 2.

2. Lemmas and proofs of the main results

The following lemma will be utilized in our proofs.

Lemma 2.1. For b > a > 0 there exists an x > 0 such that

A

G
= cosh(x),

I

G
= ex/ tanh(x)−1. (2.1)

Proof. For any a > b > 0, one can find an x > 0 such that a = ex ·G
and b = e−x ·G. Indeed, it is immediate that such an x is (by considering

a/b = e2x),

x = (1/2) log(a/b) > 0.
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Now, as

A = G · (ex + e−x)/2 = G cosh(x),

we get

A/G = cosh(x).

Similarly, we get

I = G · (1/e) exp(x(ex + e−x)/(ex − e−x)),

which gives I/G = ex/ tanh(x)−1.

Proof of Theorem 1.1. For x > 0, we have

I/G = ex/ tanh(x)−1 and A/G = cosh(x)

by Lemma 2.1. Since

log(I(a, b)) =
a log a− b log b

a− b
− 1,

we get

log(
√
I((A/G)2, 1)) =

cosh(x)2 log(cosh(x))

cosh(x)2 − 1
− 1

2
.

By using this identity, and taking the logarithms in the second identity

of (2.1), the inequality

0 < log(I/G)− log(
√
I(A/G)2, 1) < log 2− 1/2

becomes
1

2
< f(x) < log 2, (2.)

where

f(x) =
x

tanh(x)
− log(cosh(x))

tanh(x)2
.

A simple computation (which we omit here) for the derivative of f(x)

gives:

sinh(x)3f ′(x) = 2 cosh(x) log(cosh(x))− x sinh(x). (2.3)
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The following inequality appears in [6]:

log(cosh(x)) >
x

2
tanh(x), x > 0, (2.4)

which gives f ′(x) > 0, so f(x) is strictly increasing in (0,∞). As

lim
x→0

f(x) = 1/2 and lim
x→∞

f(x) = log 2,

the double inequality (2.2) follows. So we have obtained a new proof of

(1.1). �

We note that Seiffert’s proof is based on certain infinite series repre-

sentations. Also, our proof shows that the constants 1 and 2/
√
e in (1.1)

are optimal.

Lemma 2.2. Let

f(x) =
2x

tanh(x)
− log

(
cosh(x)2 + 1

2

)
, x > 0.

Then

2 < f(x) < f(1.606 . . .) = 2.1312 . . . . (2.5)

Proof. One has (cosh(x)2 + 1)/2f ′(x) = g(x), where

g(x) = sinh(x) cosh(x)3x cosh(x)2 + sinh(x) cosh(x)− x

− cosh(x) sinh(x)32 sinh(x) cosh(x)− x cosh(x)2x,

by remarking that

sinh(x) cosh(x)3 − cosh(x) sinh(x)3 = sinh(x) cosh(x).

Now, a simple computation gives

g′(x) = sinh(x) · (3 sinh(x)− 2x cosh(x)) = 3 sinh(x) cosh(x) · k(x),

where k(x) = tanh(x) − 2x/3. As it is well known that the function

tanh(x)/x is strictly decreasing, the equation tanh(x)/x = 2/3 can have
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at most a single solution. As tanh(1) = 0.7615 . . . > 2/3 and tanh(3/2) =

0.9051 . . . < 1 = (2/3) · (3/2), we find that the equation k(x) = 0 has

a single solution x0 in (1, 3/2), and also that k(x) > 0 for x in (0, x0)

and k(x) < 0 in (x0, 3/2). This means that the function g(x) is strictly

increasing in the interval (0, x0) and strictly decreasing in (x0,∞). As

g(1) = 0.24 > 0, clearly g(x0) > 0, while g(2) = −3.01.. < 0 implies that

there exists a single zero x1 of g(x) in (x0, 2). In fact, as g(3/2) = 0.21 >

0, we get that x1 is in (3/2, 2).

From the above consideration we conclude that g(x) > 0 for x ∈
(0, x1) and g(x) < 0 for x ∈ (x1,∞). Therefore, the point x1 is a max-

imum point to the function f(x). It is immediate that lim
x→0

f(x) = 2.

On the other hand, we shall compute the limit of f(x) at ∞. Clearly

t = cosh(x) tends to ∞ as x tends to ∞. Since

log(t2 + 1)− log(t2) = log((t2 + 1)/t2)

tends to log 1 = 0, we have to compute the limit of

l(x) = 2x cosh(x)/ sinh(x)− 2 log(cosh(x)) + log 2.

Here

2x
cosh(x)

sinh(x)
− 2 log(cosh(x)) = 2 log

(
exp(x cosh(x)/ sinh(x))

coshx

)
.

Now remark that

(x cosh(x)− x sinh(x))/ sinh(x)

tends to zero, as

x cosh(x)− x sinh(x) = x exp(−x).

As exp(x)/ coshx tends to 2, by the above remarks we get that the the

limit of l(x) is 2 log 2 + log 2 = 3 log 2 > 2. Therefore, the left side of
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inequality (2.5) is proved. The right side follows by the fact that f(x) <

f(x1). By Mathematica SoftwareR© [11], we can find x1 = 1.606 . . . and

f(x1) = 2.1312 . . ..

Proof of Theorem 1.2. By Lemma 2.1, one has

(I/G)2 = exp(2(x/ tanh(x)− 1)),

while (A/G)2 = cosh(x)2, x > 0. It is immediate that, the left side of

(2.5) implies the left side of (1.2). Now, by the right side of (2.5) one has

I2 < exp(c1)(A
2 +G2)/2,

where c1 = f(x1)− 2 = 0.13 · · · . Since exp(0.13 · · · ) = 1.14, we get also

the right side of (1.2). �

Proof of Theorem 1.4. The first relation of (1.10) follows from the

identity

L(x2, y2) = ((x+ y)/2) · L(x, y),

which is a consequence of the definition of logarithmic mean, by letting

x = A, y = G. The second inequality of (1.10) follows by (1.9), while the

third one is a consequence of the known inequality

L < (A+G)/2. (2.6)

A simple proof of (2.6) can be found in [12]. For (1.11), by the definition

of logarithmic mean, one has

L(I,G) = (I −G)/ log(I/G),

and on base of the known identity

log(I/G) = A/L− 1

(see [15], [22]), we get

L(I,G) = ((I −G)/(A− L))L < L,
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since the inequality (I −G)/(A− L) < 1 can be rewritten as

I + L < A+G

due to Alzer (see [15]).

The first inequality of (1.12) follows by the fact that L is a mean

(i.e. if x < y then x < L(x, y) < y), and the well known relation L < I

(see [15]). For the proof of last relation of (1.12) we will use a known

inequality of Sándor ([15]), namely:

log(I/L) > 1−G/L. (2.7)

Write now that L(I, L) = (I − L)/ log(I/L), and apply (2.7). Therefore,

the proof of (1.12) is finished. �

Proof of Corollary 1.5. The first inequality of (1.13) follows by

the well known relation L >
√
GI (see [2]), while the second relation is

a consequence of the classical relation L(x, y) > G(x, y) (see e.g. [15])

applied to x = I, y = G. The last relation is inequality (1.10).

The first inequality of (1.14) follows by (1.10), while the second one

by

L(I2, G2) = L(I,G) · (I +G)/2

and inequality L < (I + G)/2. The last inequality follows in the same

manner. �

Proof of Theorem 1.7. Since the mean S is homogeneous, the

relation I > S(A,G) may be rewritten as I/G > S(A/G, 1), so by using

logarithm and applying Lemma 2.1, this inequality may be rewritten as

x

tanh(x)
− 1 >

cosh(x) log(cosh(x))

1 + cosh(x)
, x > 0. (2.8)

By using Mathematica SoftwareR© [11], one can see that inequality (2.8)

is not true for x > 2.284. Similarly, the reverse inequality of (2.8) is

not true, e.g. for x < 2.2. These show that, I and S(A,G) cannot be
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compared to each other. In order to prove inequality (1.17), we will use

the following result proved in [20]: The inequality

S > Q (2.9)

holds true. By writing (2.9) as S(a, b) > Q(a, b) for a = Q, b = G, and

remarking that Q(a, b) =
√

(a2 + b2)/2 and that (Q2 + G2)/2 = A2, we

get the first inequality of (1.17). The second inequality is well known (see

[15] for history and references).

By using I(a, b) < A(a, b) = (a+ b)/2 for a = Q and b = G we get

I(Q,G) < (Q+G)/2.

On the other hand by inequality

(a+ b)/2 <
√

(a2 + b2)/2 and (Q2 +G2)/2 = A2,

inequality (1.18) follows as well. This completes the proof. �
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2.18 New refinements of two inequalities

for means

1. Introduction

The logarithmic and identric means of two positive numbers a and b

are defined by

L = L(a, b) :=
b− a

ln b− ln a
(a 6= b); L(a, a) = a

and

I = I(a, b) :=
1

e
(bb/aa)1/(b−a) (a 6= b); I(a, a) = a,

respectively.

Let A = A(a, b) :=
a+ b

2
and G = G(a, b) :=

√
ab denote the arith-

metic and geometric means of a and b, respectively. For these means

many interesting inequalities have been proved. For a survey of results,

see [1], [3], [7], [11], [12]. It may be surprising that the means of two

arguments have applications in physics, economics, statistics, or even in

meteorology. See e.g. [3], [6] and the references therein. For connections

of such means with Ky Fan, or Huygens type inequalities; or with Seiffert

and Gini type means,we quote papers [13] and [14]; as well as [5], [8], or

[12].

In what follows we shall assume that a 6= b. In paper [2] H. Alzer

proved that
√
GI < L <

G+ I

2
(1)

and in [1] he proved that

AG < LI and L+ I < A+G. (2)

In paper [8] the author proved that the first inequality of (2) is weaker

than the left side of (1), while the second inequality of (2) is stronger than
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the right side of (1). In fact, these statements are consequences of

I >
3
√
A2G (3)

and

I >
2A+G

3
. (4)

Clearly, by the weighted arithmetic-geometric mean inequality, (4)

implies (3), but one can obtain different methods of proof for these results

(see [8]). In [7] J. Sándor has proved that

ln
I

L
> 1− G

L
(5)

and this was used in [9] to obtain the following refinement of right side

of (1):

L <
I + aG

1 + a
<
I +G

2
, (6)

where a =
√
I/
√
L > 1.

In paper [11] the following refinements of left side of (1) has been also

proved:
√
IG <

I −G
A− L

· L < L. (7)

The aim of this paper is to offer certain new refinements of other type

for inequalities (1).

2. Main results

The main result of this paper is contained in the following:

Theorem. One has

L <

√
(A+G)(L+G)

4
<
A+ L+ 2G

4
<
I +G

2
(8)

and

L >
3

√
G

(
A+G

2

)2

>
√
GI. (9)
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Proof. First we note that the second inequality of (8) follows by
√
xy <

x+ y

2
, applied to

x :=
A+G

2
and y =

L+G

2
,

while the last inequality can be written as

I >
A+ L

2
. (10)

This appears in [7], but we note that follows also by (4) and

2A+G

3
>
A+ L

2
, (11)

which can be written equivalently as

L <
2G+ A

3
, (12)

due to B.C. Carlson [4] and G. Pólya and G. Szegö [6].

Thus we have to prove only the first inequality of (8).

For this purpose, we shall use inequality (5) combined with the iden-

tity

ln
I

G
=
A− L
L

, (13)

due to H.J. Seiffert [15]. See also [9] for this and related identities.

Since lnx >
2(x− 1)

x+ 1
for x > 1 (equivalent in fact with the classical

inequality L(x, 1) < A(x, 1)), by letting x =
L

G
, and by

ln
I

L
= ln

I

G
− ln

L

G
, ln

L

G
> 2 · L−G

L+G

and (13) combined with (5) gives the following inequality:

2 · L−G
L+G

<
A+G

L
− 2, (14)
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which after some elementary computations gives the first inequality

of (8).

Remark. The first and third term of (8) is exactly inequality (12).

Therefore, the first two inequalities provide also a refinement of (12).

Now, for the proof of relation (9) remark first that the first inequality

has been proved by the author in paper [10]. The second inequality will

be reduced to an inequality involving hyperbolic functions. Put a = exG,

b = e−xG, where x > 0 (for this method see e.g. [1]). Then the inequality

to be proved becomes equivalent to

ln

(
coshx+ 1

2

)
>

3

4

(
x coshx− sinhx

sinhx

)
. (15)

Let us introduce the function

f(x) = 4 ln

(
coshx+ 1

2

)
− 3x cothx+ 3, x > 0.

An immediate computation gives

(coshx+ 1) sinh2 x · f ′(x)

= sinh3 x− 3 sinhx+ 3x coshx+ 3x− 3 sinhx coshx = g(x).

One has

g′(x) = 3 sinhx(sinhx coshx+ x− 2 sinhx).

Now, as it is well known that sinhx < x coshx, we can remark that

sinhx <
√
x sinhx coshx ≤ x+ sinhx coshx

2
by
√
uv ≤ u+ v

2
.

This in turn implies g′(x) > 0, and as g(x) can be defined for x ≥ 0

and g(0) = 0, we get g(x) ≥ 0, and g(x) > 0 for x > 0. Thus f ′(x) > 0

for x > 0, so f is strictly increasing and as lim
x→0

f(x) = 0, inequality (15)

follows.

This finishes the proof of the Theorem.
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2.19 On certain entropy inequalities

1. Introduction

1. Let p, q be a positive real numbers such that p+q = 1. The entropy

of the probability vector (p, q) introduced in [7] is

H(p, q) = −p ln p− q ln q.

In the note [1] a new proof of the following double inequality (see [7])

has been provided:

Theorem 1.1. One has

ln p · ln q ≤ H(p, q) ≤ (ln p · ln q)
ln 2

. (1.1)

Our aim in what follows is twofold. First, by remaking a connection

with the logarithmic mean, we will obtain improvements of (1.1), in fact,

a new proof. Secondly, the connection of H with a mean S introduced

and studied, for example in [2], [4], [6], will give new relations for the

entropy H(p, q).

2. Main results

2. Let p, q be as above. First, we will prove the following relation:

Theorem 2.1.

ln p · ln q ≤ (
√
p+
√
q) ln p · ln q

≤ H(p, q)

≤ A(p, q) ln p · ln q

≤ (ln p · ln q)
ln 2

, (2.1)

where

A(p, q) =
2

q − p

∫ q

p

s− 1

ln s
ds.
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Proof. We note that, since q−1 = −p and p−1 = −q, one can write

H(p, q) = (q − 1) ln p+ (p− 1) ln q = (ln p)(ln q)

[
q − 1

ln q
+
p− 1

ln p

]
.

Now,
q − 1

ln q
is equal to L(q, 1), where L(x, y) is the logarithmic mean of

x and y (x 6= y) defined by

L(x, y) =
x− y

lnx− ln y
.

For the mean L there exists an extensive amount of literature. We shall

use only the following relations

G < L < A, (2.2)

where

G = G(x, y) =
√
xy and A = A(x, y) =

x+ y

2

respectively denote the geometric and arithmetic means of x, y (see e.g.

[2], [5]). By the left hand side of (2.2) one has

L(p, 1) + L(q, 1) >
√
p+
√
q.

Here
√
p+
√
q > 1 since this is equivalent to

(
√
p+
√
q)2 > 1, i.e. p+ q + 2

√
pq = 1 + 2

√
pq > 1,

which is trivial.

Therefore, the left sides of (2.1) are proved. For the right side, let us

introduce the following function:

f(p) =
p− 1

ln p
, p ∈ (0, 1).

An easy computation shows that

f ′(p) =
p ln p− p+ 1

p ln2 p
, f ′′(p) =

2(p− 1)− (p+ 1) ln p

p2 ln3 p
.
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By the right side of (2.2), one has

L(p, 1) <
p+ 1

2
, i.e. 2(p− 1) > (p+ 1) ln p.

Since ln3 p < 0, we get that f ′′(p) < 0. Therefore, f is a concave function

on (0, 1). Now, by the Jensen-Hadamard inequality, one has

f(p) + f(q)

2
≤ 1

q − p

∫ q

p

f(s)ds ≤ f

(
p+ q

2

)
,

so

L(p, 1) + L(q, 1) ≤ A(p, q) ≤ 2L

(
1

2
, 1

)
=

1

ln 2
,

completing the proof of the right side inequality in (2.1). �

3. We now obtain an interesting connection of the entropy H(p, q)

with a mean S, defined by (see [2], [6])

S = S(a, b) = (aa · bb)
1
a+b , a, b > 0. (2.3)

Let p, q be as in the introduction. Then (2.3) implies the interesting

relation

H(p, q) = ln
1

S(p, q)
. (2.4)

Since there exist many known results for the mean S, by equality (2.4),

these give some information on the entropy H. For example, in [6], the

following are proved: √
a2 + b2

2
≤ S(a, b) ≤ A2

G
, (2.5)

A2 −G2

A2
≤ ln

S

G
≤ A2 −G2

GA
, (2.6)

S ≤ a
√

2−G√
2− 1

, (2.7)

where S = S(a, b), etc. By (2.4)-(2.7) the following results are immediate:
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Theorem 2.2.

2 ln 2 +
1

2
ln(pq) ≤ H(p, q) ≤ 1

2
ln 2− 1

2
ln(1− 2pq), (2.8)

4pq − 1

2
√
pq
− 1

2
ln(pq) ≤ H(p, q) ≤ 4pq − 1− 1

2
ln(pq), (2.9)

H(p, q) ≥ ln

(
2−
√

2

1−
√

2pq

)
. (2.10)

Proof. Apply (2.5)-(2.7) and remark that

A =
p+ q

2
=

1

2
, G =

√
pq. �

The following result shows a connection with the so-called identric

mean I, defined by

I = I(a, b) =
1

e

(
bb

aa

) 1
b−a

, a 6= b.

In the paper [3], the following identity appears:

S(a, b) =
I(a2, b2)

I(a, b)
. (2.11)

By (2.3), the entropy H is connected to the mean I by

H(p, q) = ln I(p, q)− ln I(p2, q2). (2.12)

Since
4A2 −G2

3I
≤ I ≤ A4

I3

(see [6]), the following holds.

Theorem 2.3.

4 ln 2 + 3 ln I(p, q) ≤ H(p, q) ≤ ln 3 + ln I(p, q)− ln(1− pq). (2.13)
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4. Finally, we shall deduce two series representations for H. In [6],

the following representations are proved

ln
S

A
=
∞∑
k=1

1

2k(2k − 1)
· z2k, (2.14)

ln
S

G
=
∞∑
k=1

1

2k − 1
· z2k, (2.15)

where z =
b− a
b+ a

. Now, let a = p, b = q with p + q = 1. Then, by (2.3),

one can deduce:

Theorem 2.4.

H(p, q) = ln 2−
∞∑
k=1

(p− q)2k

2k(2k − 1)
(2.16)

and

H(p, q) =
1

2
ln(pq)−

∞∑
k=1

(p− q)2k

2k − 1
. (2.17)
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Chapter 3

Integral inequalities and

means

“Mathematics is not a dead letter which can be stored in

libraries, it is a living thinking.”

(J. Leray)

“I love inequalities. So, if somebody shows me a new

inequality, I say, “Oh, that’s beautiful, let me think about

it”, and I may have some ideas connected with it.”

(L. Nirenberg)

3.1 Some integral inequalities

The aim of this note is to prove some integral inequalities and to find

interesting applications for the logarithmic and exponential functions.

These relations have some known corollaries ([3], [4], [5], [8]).

Theorem 1. Let f : [a, b] → R (a < b) be a differentiable function

with increasing (strictly increasing) derivative on [a, b]. Then one has the
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following inequalities:∫ b

a

f(t)dt ≥
(>)

(b− a)f

(
a+ b

2

)
(1)

2

∫ b

a

f(t)dt ≤
(<)

(b− a)f
(√

ab
)

+
(√

b−
√
a
)(√

bf(b) +
√
af(a)

)
(2)

(Here 0 ≤ a < b).

Proof. The Lagrange mean-value theorem implies:

f(y)− f(x) ≥
(>)

(y − x)f ′(x) for all x, y ∈ [a, b].

Take x = (a+ b)/2 and integrate the obtained inequality:∫ b

a

f(y)dy − (b− a)f

(
a+ b

2

)
≥
(>)

f ′
(
a+ b

2

)∫ b

a

(
y − a+ b

2

)
dy = 0,

i.e. relation (1).

In order to prove (2) consider as above the inequality

f(y)− f(x) ≤
(<)

(y − x)f ′(y)

with x =
√
ab. Integrating by parts on [a, b] we get∫ b

a

f(y)dy − (b− a)f
(√

ab
)
≤
(<)

(
y −
√
ab
)
f(y)

∣∣∣b
a
−
∫ b

a

f(y)dy

which easily implies (2).

Remark. Inequality (1) is called sometimes ”Hadamard’s inequality”

and it is valid for convex functions f as well with the same proof, but

using f ′+

(
a+ b

2

)
instead of f ′

(
a+ b

2

)
(see also [1]).

In applications is useful the following generalization of (1) (see [9]).

Theorem 2. Let f : [a, b]→ R be a 2k-times differentiable function,

having continuous 2k-th derivative on [a, b] and satisfying

f (2k)(t) ≥
(>)

0 for t ∈ (a, b).
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Then one has the inequality:∫ b

a

f(t)dt ≥
(>)

k∑
p=1

(b− a)2p−1

22p−2(2p− 1)!
f (2p−2)

(
a+ b

2

)
. (3)

Proof. Apply Taylor’s formula (with Lagrange remainder term) for

f around

(
a+ b

2

)
and integrate term by term this relation. Remarking

that ∫ b

a

(
x− a+ b

2

)2m−1

dx = 0, m = 1, 2, 3, . . .

we obtain∫ b

a

f(x)dx = (b− a)f

(
a+ b

2

)
+

(b− a)

22 · 3!
f ′′
(
a+ b

2

)
+ . . .+

(b− a)2k−1

22k−2(2k − 1)!
f (2k−2)

(
a+ b

2

)
+

∫ b

a

(x− (a+ b)/2)2k

(2k)!
f (2k)(ξ)dx.

Taking into account f (2k)(ξ) ≥
(>)

0, we get the desired inequality (3).

Applications. 1) Let a > 0, b = a + 1, f1(t) =
1

t
and f2(t) = − ln t

in (1). We can easily deduce the following double inequality:

2a+ 2

2a+ 1
<

e(
1 +

1

a

)a <√1 +
1

a
(4)

containing inequalities studied by E.R. Love [4] and G. Pólya- G. Szegö

[7]. Using Bernoulli’s inequality we have(
1 +

1

2a+ 1

)5/2

> 1 +
5

4a+ 2
≥ 1 +

1

a
, for a ≥ 2.

Hence we have:(
1 +

1

a

)a+2/5

< e <

(
1 +

1

a

)a+1/2

, a ≥ 2. (5)
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2) By repeating the same argument in (3) for k = 2, b = a+1, (a > 0),

f1(t) =
1

t
, f2(t) = − ln t,

we obtain

2a+ 2

2a+ 1
e

1
6(2a+1)2 <

e(
1 +

1

a

)a <√1 +
1

a
· e

1
3(2a+1)2 . (6)

This inequality implies for a > 0 e.g. that

e
1
2a(1−

1
a) <

e(
1 +

1

a

)a < e
1
2a(1−

1
2a) (7)

and so

An =

(
1

2
− n ln e/

(
1 +

1

n

)n)
= 0(1/n)

which can be compared with the more familiar lim
n→∞

An = 0.

3) Apply (1), (2) for f(t) =
1

t
to deduce

√
ab < L(a, b) <

a+ b

2
, (8)

where

L(a, b) =
b− a

ln b− ln a

denotes the logarithmic means (see [2], [3]). The right-hand side of this

inequality is due to B. Ostle and H.L. Terwilliger [6]. The left-hand in-

equality was stated by B.C. Carlson [2]. (8) was rediscovered also by A.

Lupaş [5].

4) Select f(t) = − ln t in (2). This application yields the following

improvement of the right-hand side of (8):

L(a, b) <

(
a+ b

2
+
√
ab

)
/2. (9)
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5) An interesting remark is that one can use (8) (and also (9)) to

obtain refinements of this inequality. Indeed, let us consider a =
√
x,

b =
√
y in (8). It follows that

√
xy < 4

√
xy

(√
x+
√
y

2

)
< L(x, y) <

(√
x+
√
y

2

)2

<
x+ y

2
. (10)

With the same argument we can derive (on base of (9)):

L(x, y) <
1

2

(√
x+
√
y

2

)2

+
1

4

(√
z +
√
y
)

4
√
xy. (11)

6) In order to arrive to a better refinement, we can consider the rela-

tion (3) for f(t) = 1/t, k = 2 (0 < a < b). It results

L(a, b) <
3

8
· (a+ b)3

a2 + ab+ b2
.

Letting a = 3
√
x, b = 3

√
y, this is just one of the Lin [3] and Rüthing [8]

inequalities:

L(x, y) <

(
3
√
x+ 3
√
y

2

)3

. (12)
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3.2 Some simple integral inequalities

1. Introduction

Integral inequalities have a long history. For many remarkable results

see e.g. the monographs [4], [1], [6], [7], etc. For more recent inequalities

of the author, with applications, see [10], [11], [12], [13].

We will consider here some simple inequalities for monotonous func-

tions. An application f : I → R is called monotonous increasing on

interval I, if x < y ⇒ f(x) ≤ f(y) for all x, y ∈ I. Clearly, this condition

may be written also as

(x− y)(f(x)− f(y)) ≥ 0 for all x, y ∈ I. (1)

The function f is strictly increasing, if (1) holds with strict inequality

for x 6= y. If the inequality, or strict inequality of (1) is reversed, then we

speak of decreasing, or strictly decreasing functions on I.

Let p : I → R be a given function. We will say that the function

f : I → R is p-increasing, if the relation

(p(x)− p(y))(f(x)− f(y)) ≥ 0, ∀ x, y ∈ I (2)

holds true. The other similar notions can be introduced for the corre-

sponding signs of inequalities of (2).

Clearly, when p(x) = x, we reobtain the classical notions of mono-

tonicity. However, it should be noted that e.g. a p-increasing function f

is not necessarily increasing in the usual sense. Take e.g. I =

(
π

2
,
3π

2

)
,

p(x) = sinx, f(x) = cosx. Then the function f is strictly p-increasing

on I, but clearly it is strictly decreasing.

If the function f satisfies (1), then it is Riemann integrable, a well-

known fact of real analysis (see e.g. [9]). This is not true for functions

satisfying (2), as it is shown by the example

f(x) =

{
p(x), if x ∈ Q
0, if x 6∈ Q

where p(t) = 0 for t 6∈ Q.
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If x, y ∈ Q, then (2) becomes (p(x)− p(y))2 ≥ 0; while x ∈ Q, y 6∈ Q,

then

p(x)p(x) ≥ 0, x 6∈ Q, y ∈ Q⇒ (−p(y))(−p(y)) ≥ 0.

For example, when p(x) = 1 for x ∈ Q, we obtain the well-known

Dirichlet function, which is not integrable.

Therefore, when dealing with integral inequalities for p-increasing

functions, we must suppose that p and f are integrable on I.

2. Main results

Theorem 1. Let f : [a, b] → R be an increasing function. Then for

any positive integer n ≥ 1, one has∫ b

a

(
x− a+ b

2

)2n−1

f(x)dx ≥ 0. (3)

Particularly, for n = 1 we get∫ b

a

xf(x)dx ≥ a+ b

2

∫ b

a

f(x)dx. (4)

When f is strictly decreasing, all inequalities are strict. The inequali-

ties are reversed, when f is decreasing, resp. strictly decreasing functions.

Proof. We shall apply the following remark:

Lemma. When ϕ : [a, b]→ R is an integrable, odd function, then∫ b

a

ϕ

(
x− a+ b

2

)
dx = 0. (5)

Proof. Put x− a+ b

2
= y. Then

∫ b

a

ϕ

(
x− a+ b

2

)
=

∫ b−a
2

a−b
2

ϕ(y)dy =

∫ u

−u
ϕ(y)dy,
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where u =
b− a

2
. Now, letting y = −z, and using ϕ(−z) = −ϕ(z), one

has

I =

∫ u

−u
ϕ(y)dy = −

∫ −u
u

ϕ(−z)dz = −
∫ u

−u
ϕ(z)dz;

so 2I = 0, giving I = 0.

Particularly, when ϕ(x) = x2n−1, by (5) we get∫ b

a

(
x− a+ b

2

)2n−1

dx = 0. (6)

Since f is increasing, by letting y =
a+ b

2
in (1) we have(

x− a+ b

2

)(
f(x)− f

(
a+ b

2

))
≥ 0,

which multiplied with

(
x− a+ b

2

)2n−2

≥ 0 gives

(
x− a+ b

2

)2n−1(
f(x)− f

(
a+ b

2

))
≥ 0 (7)

Relation (7) implies(
x− a+ b

2

)2n−1

f(x) ≥ f

(
a+ b

2

)(
x− a+ b

2

)2n−1

,

which by integration, and taking into account of (6) implies relation (3).

When n = 1, (3) implies immediately (4).

When f is strictly increasing, for x 6= a+ b

2
one has strict inequality

in (7), so by integration we get strict inequality.

Remark. The proof shows that in fact the following general result is

true:

Theorem 2. Let ϕ : [a, b] → R be an integrable, odd function such

that ϕ(t) > 0 for t > 0. Then∫ b

a

ϕ

(
x− a+ b

2

)
f(x)dx ≥ 0 (8)
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for any increasing function f . The inequality is strict, when f is strictly

increasing, etc.

Proof. Write

ϕ

(
x− a+ b

2

)(
f(x)− f

(
a+ b

2

))
as

ϕ

(
x− a+ b

2

)
x− a+ b

2

(
x− a+ b

2

)(
f(x)− f

(
a+ b

2

))
for x 6= a+ b

2
.

We first prove that
ϕ(t)

t
> 0 for any t 6= 0.

When t > 0, this is true by assumption, while when t < 0, put t = −p,
p > 0. Then

ϕ(−p)
−p

=
−ϕ(p)

−p
=
ϕ(p)

p
> 0,

as required.

This means, that for all x in [a, b] one has

ϕ

(
x− a+ b

2

)(
f(x)− f

(
a+ b

2

))
≥ 0 (9)

and the procedure may be repeated.

Theorem 3. Let p, f : [a, b]→ R be integrable functions, and suppose

that f is p-increasing. Then∫ b

a

[
p(x)− p

(
a+ b

2

)]
f(x)dx ≥ f

(
a+ b

2

)∫ b

a

[
p(x)− p

(
a+ b

2

)]
dx

(10)

When f is strictly p-increasing, there is strict inequality in (10); etc.

Proof. Write[
p(x)− p

(
a+ b

2

)][
f(x)− f

(
a+ b

2

)]
≥ 0, (11)
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and integrate after multiplication. When f is strictly p-increasing, (11)

holds with strict inequality for all x 6= a+ b

2
; thus the integral of left side

of (11) will be > 0.

Remarks. 1) It is well-known from textbooks of real analysis that

(see e.g. [9]) if F : [a, b]→ R is integrable and nonnegative, then∫ b

a

F (x)dx ≥ 0 and

∫ b

a

F (x)dx = 0

holds true if and only if F (x) = 0 a.e. in x ∈ [a, b].

Thus we have also strict inequalities in (4), (8), (10), if instead of strict

monotonicity we suppose that e.g. f is increasing and f(x) 6= f

(
a+ b

2

)
for almost every x ∈ [a, b].

2) When p(x) = x, (10) coincides with (4). When f(x) = cosx,

p(x) = sinx, [a, b] ⊂
(
π

2
,
3π

2

)
, however; we obtain a new type of result.

3. A refinement

Suppose now that f is an increasing (decreasing) continuous function

on [a, b]. In this case we are able to prove the following result connected

to (4):

Theorem 4. If a < b < c, and if f is continuous and increasing

(decreasing) on [a, c], then∫ c

a

xf(x)dx ≥
(≤)

(
a+ c

2

)∫ c

a

f(x)dx+

∫ b

a

xf(x)dx−
(
a+ b

2

)∫ b

a

f(x)dx

≥
(≤)

a+ c

2

∫ c

a

f(x)dx. (12)

When f is strictly increasing, all inequalities are strict.

Remark. Inequality (12) refines (4) on the interval [a, c].

Proof. Put

F (t) =

∫ t

a

xf(x)dx−
(
a+ t

2

)∫ t

a

f(x)dx.
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Then (12) may be rewritten as F (c) ≥ F (b) ≥ 0. While the last

of these inequalities is in fact (4), the first one requires that F is an

increasing function (as c > b).

Since f is continuous, the integrals are differentiable, so we may use

derivatives. One has

F ′(t) = tf(t)− 1

2

∫ b

a

f(x)dx− a+ t

2
f(t) =

[
f(t)(t− a)−

∫ t

a

f(x)dx

]
/2.

Since f is increasing, we have∫ t

a

f(x)dx ≤
∫ t

a

f(t)dx = f(t)(t− a),

so we get F ′(t) ≥ 0, and the result follows. When f is strictly increasing,

clearly ∫ t

a

f(x)dx <

∫ t

a

f(t)dx,

so F ′(t) > 0. This finishes the proof of Theorem 4.

Remark. As

∫ c

a

=

∫ b

a

+

∫ c

b

, the first inequalities of (12) can be

written also as∫ c

b

(
x− a+ c

2

)
f(x)dx ≥ c− b

2

∫ b

a

f(x)dx,

i.e.
2

c− b

∫ c

b

(
x− a+ c

2

)
f(x)dx ≥

∫ b

a

f(x)dx (13)

When f is decreasing, (13) holds with reversed sign of inequality.

4. Applications

1) The simplest inequalities of all paper are clearly contained in The-

orem 1. We will show that this elementary inequality has surprizing ap-

plications.
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a) Put f(x) =
1

x
, (0 < a < b), which is strictly decreasing. As

∫ b

a

f(x)dx = log b− log a,

we get with reversed sign in (4) that

L =
b− a

log b− log a
<
a+ b

2
(a, b > 0, a 6= b) (14)

Here

L = L(a, b) =
b− a

log b− log a
and A = A(a, b) =

a+ b

2

represent the famous logarithmic, resp. arithmetic means of a and b.

b) Letting f(x) =
1

x2
, we get

b− a
log b− log a

>
2ab

a+ b
(15)

Put now
√
b and

√
a in place of a, b in (15). Since

(
√
b−
√
a)(
√
b+
√
a) = b− a,

we get

L >
√
ab, (16)

which is another important inequality, with
√
ab = G(a, b) = G denoting

the geometric mean. The inequalities G < L < A are frequently used

in many fields of science (even applied ones, as electrostatics [8], heat

conductors and chemistry [15], statistics and probability [5], etc.).

c) Another noteworthy mean, related to the above means is the so-

called identric mean I = I(a, b) defined by

I(a, b) =
1

e
(bb/aa)1/(b−a) for a 6= b.
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It is easy to see that

1

b− a

∫ b

a

log xdx = log I(a, b) (17)

and
1

b− a

∫ b

a

x log xdx =
b+ a

4
log I(a2, b2) (18)

(see [11], [12] for details). Since f(x) = log x is strictly increasing, we get

from (4) the inequality

I(a2, b2) > (I(a, b))2, (19)

first discovered by the author in [11]. See also [12].

d) Let f(x) = ex in (4). Put

E = E(a, b) =
beb − aea

eb − ea
− 1

an exponential mean introduced in [16]. From (4) we get (Toader’s in-

equality):

E > A (20)

Applying (4) with reversed sign to f(x) = e−x, we get

E < A (21)

where

E = E(a, b) =
aeb − bea

eb − ea
+ 1,

is a ”complementary” exponential mean to E (see [14]).

e) Let f(x) = xk, where k > 0. Since f is strictly increasing, we get

from (4):
bk+2 − ak+2

bk+1 − ak+1
>
a+ b

2
· k + 2

k + 1
(22)

For k = 1 this implies(
a+ b

2

)2

<
a2 + ab+ b2

3
, (23)
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while for k = 2 that
a2 + ab+ b2

3
<
a2 + b2

2
(24)

Note that (23) and (24) give a refinement of the frequently used ele-

mentary relation

(
a+ b

2

)2

<
a2 + b2

2
:

(
a+ b

2

)2

<
a2 + ab+ b2

3
<
a2 + b2

2
(25)

2) f) Apply now the first part of (12) to f(x) =
1

x
.

For a < b < c one gets

2(c− b) < b2 − a2

L(a, b)
− c2 − a2

L(c, a)
(26)

g) For f(x) = log x, by taking into account of (17)-(18) we can deduce

from (12) that:

1 <

(√
I(a2, c2)

I(a, c)

)c2−a2

<

(√
I(a2, b2)

I(a, b)

)b2−a2

for a < b < c, (27)

which is a refinement of inequality (19).

By using the mean S(a, b) =
I(a2, b2)

I(a, b)
, i.e. S(a, b) = (aa · bb)1/(a+b)

(see e.g. [11], [12], [14]) we get from (27)

1 >
I(a, b)

S(a, b)
>

(
I(a, c)

S(a, c)

) c2−a2
b2−a2

>
I(a, c)

S(a, c)
, as

c2 − a2

b2 − a2
> 1. (28)
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Bolyai, Math., 38(1993), no. 4, 7-14.

13. J. Sándor, On means generated by derivatives of functions, Int. J.

Math. Educ. Sci. Technol., 28(1997), no. 1, 146-148.

14. J. Sándor, Gh. Toader, On some exponential means, II, Int. J.

Math. Math. Sci., volume 2006, Article ID 1937, pp. 1-9.
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3.3 Generalization of the Hadamard

integral inequalities

The famous Hadamard (or Hermite, or Hermite-Hadamard, or

Jensen-Hermite-Hadamard) inequalities for integrals states that if f :

[a, b]→ R is convex and continuous, then for all x, y ∈ [a, b] one has

f

(
x+ y

2

)
≤ 1

y − x

∫ y

x

f(t)dt ≤ f(x) + f(y)

2
, x 6= y (1)

Let a1 < a2 < . . . < an be elements of I = [a, b]. Applying (1) to x = ai,

y = ai+1 one gets

f

(
ai + ai+1

2

)
≤ 1

ai+1 − ai

∫ ai+1

ai

f(t)dt ≤ f(ai) + f(ai+1)

2
(2)

Applying (2) for i = 1, 2, . . . , n, after term-by-term additions we get that

f

(
a1 + a2

2

)
+ f

(
a2 + a3

2

)
+ . . .+ f

(
an + an+1

2

)

≤
n∑
k=1

1

ak+1 − ak

∫ ak+1

ak

f(t)dt

≤ f(a1)

2
+ f(a2) + . . .+ f(an) +

f(an+1)

2
(3)

But f being convex,

f

(
a1 + a2

2

)
+ . . .+f

(
an + an+1

2

)
≥ nf

 a1 + a2
2

+ . . .+
an + an+1

2
n


= nf

(
a1
2n

+
a2 + . . .+ an

n
+
an+1

2n

)
.

So by (3) one gets:
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Theorem 1. For f and (ai) satisfying the stated conditions, one has:

f

(
a1
2n

+
a2 + . . .+ an

n
+
an+1

2n

)
≤ 1

n

n∑
k=1

1

ak+1 − ak

∫ ak+1

ak

f(t)dt

≤ 1

n

[
f(a1)

2
+ f(a2) + . . .+ f(an) +

f(an+1)

2

]
. (4)

Clearly, inequality (4) is a generalization of the Hadamard inequali-

ties, as for n = 1 we get (1) for x = a1, y = a2. Apply now inequalities

(2) for i = 1, 3, . . . , 2n−1. By the same procedure, as above one obtains:

Theorem 2. If f and (ai) satisfy the stated conditions, then

f

(
1

2n
(a1 + a2 + . . .+ an)

)
≤ 1

n

n∑
k=1

1

a2k − a2k−1

∫ a2k

a2k−1

f(t)dt

≤ 1

2n
[f(a1) + . . .+ f(a2n)]. (5)

Inequality (5) has been first discovered by I.B. Lacković ([1]).

Let now i = 2, 4, . . . , 2n in relation (2). After applying the same

procedure, we can state the following:

Theorem 3. If f and (ai) are satisfying the stated conditions, then

f

(
a2 + a3 + . . .+ a2n+1

2n

)
≤ 1

n

n∑
k=1

1

a2k+1 − a2k

∫ a2k+1

a2k

f(t)dt

≤ f(a2) + f(a3) + . . .+ f(a2n+1)

2n
(6)

Clearly, inequalities (4), (5), (6) can be applied to many particular f

and (ai). We invite the interested reader to perform such applications.
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3.4 Applications of the Cauchy-

Bouniakowsky inequality in

the theory of means

1. Introduction

Let f, g : [a, b] → R be two integrable functions. The classical in-

equality of Cauchy-Bouniakowsky states that(∫ b

a

f(x)g(x)dx

)2

≤
(∫ b

a

f 2(x)dx

)(∫ b

a

g2(x)dx

)
. (1)

One has equality in (1) iff there exists a real constant k ∈ R such

that f(x) = kg(x) almost everywhere in x ∈ [a, b]. When f and g are

continuous, equality occurs when the above equality holds true for all

x ∈ [a, b] (see e.g. [2]).

Let x, y > 0 be positive real numbers. Let us denote by

A := A(x, y) =
x+ y

2
and G := G(x, y) =

√
xy

the classical arithmetic resp. geometric means of x and y.

The logarithmic and identric means L and I are defined by

L := L(x, y) =
x− y

lnx− ln y
(x 6= y), L(x, x) = x (2)

and

I := I(x, y) =
1

e
(yy/xx)1/(y−x) (x 6= y), I(x, x) = x, (3)

respectively (see e.g. [4], [5], [11]).

One of the most important inequalities satisfied by the mean L is:

G < L < A for x 6= y (4)

Though the left side inequality of (4) is attributed to B.C. Carlson,

while the right side to B. Ostle and H.L. Terwilliger (see [5] for refer-

ences), the author has discovered recently ([13]) that (4) was proved in
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fact by Bouniakowsky in his paper [1] from 1859. In the proof, inequality

(1) was used for certain particular continuous functions. The author has

obtained more direct and simplified proofs of (4).

The aim of this paper is to obtain other applications of inequality (1)

in the theory of means. Other means, besides L and I will be defined,

when necessary.

Though there exist many integral inequalities with applications in

the theory of means (some of them may be found e.g. in [5]) we will

restrict here our interest only to the inequality (1) (in honour of V.

Bouniakowsky).

2. Applications

1) Let g(x) = 1, x ∈ [a, b] in (1). Then one obtains(∫ b

a

f(x)dx

)2

≤ (b− a)

∫ b

a

f 2(x)dx, with a < b, (5)

where equality occurs in case of continuous f , when f is constant.

a) For a new proof of (4), apply (5) for f(x) =
1

x
. One obtains

(ln b− ln a)2 < (b− a)

(
1

a
− 1

b

)
=

(b− a)2

ab
,

where the inequality is strict, as the function is not constant. The left

side of (4) follows:

G(a, b) < L(a, b).

b) Apply now (1) for f(x) = ex, implying:

(eb − ea)2 < b− a
2

(eb − ea)(eb + ea),

so
eb − ea

b− a
<
ea + eb

2
. (6)
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Replace a = lnx, b = ln y in (6), obtaining

L(x, y) < A(x, y),

i.e. the right side of (4).

c) Apply now (5) for f(x) =
1√
x

. One obtains

4(
√
b−
√
a)2 < (b− a)(ln b− ln a),

or

b− a
ln b− ln a

<

[
b− a

2(
√
b−
√
a)

]2
=

(√
a+
√
b

2

)2

= A1/2,

where Ar =

(
ar + br

2

)1/r

is the Hölder mean of a and b.

As Ar is a strictly increasing function of r, we have obtained the

following refinement of right side of (4):

L < A1/2 < A (7)

In fact A1/2 =
A+G

2
, and inequality (7), with another method, has been

deduced in [4], too.

d) Let now f(x) = xr, where r 6= −1 and −1/2 (these cases have

been applied in a), resp. c)). Then one obtains the inequality:[
br+1 − ar+1

(b− a)(r + 1)

]2
<

b2r+1 − a2r+1

(b− a)(2r + 1)
(8)

By denoting by Lr = Lr(a, b) the usual r-th logarithmic mean

Lr(a, b) =

[
br+1 − ar+1

(r + 1)(b− a)

]1/r
for r 6= −1, r 6= 0

(and L−1 = lim
r→−1

Lr(a, b) = L, L0 = lim
r→0

Lr(a, b) = I), relation (8) can be

rewritten as L2r
r < L2r

2r, or

Lrr < Lr2r (9)
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When r > 0, particularly (9) contains the inequality Lr < L2r.

e) Let f(x) = lnx in (5). It is well-known that (see e.g. [5])

1

b− a

∫ b

a

lnxdx = ln I(a, b) (10)

On the other hand, by partial integration we can deduce

1

b− a

∫ b

a

ln2 xdx =
b ln2 b− a ln2 a

b− a
− 2 ln I(a, b), (11)

where we have used (10). Therefore, by (5) we get:

ln2 I <
b ln2 b− a ln2 a

b− a
− 2 ln I, (12)

which seems to be new. Remark that (12) may be rewritten as

(ln I + 1)2 <
b ln2 b− a ln2 a

b− a
+ 1 (13)

Now we shall prove that the expression K(a, b) given by

lnK(a, b) + 1 =

√
b ln2 b− a ln2 a

b− a
+ 1 (14)

defines a mean. Indeed, by the mean value theorem of Lagrange one has

for the function g(x) = x ln2 x:

g(b)− g(a)

b− a
= ln2 ξ + 2 ln ξ, with ξ ∈ (a, b).

Therefore, √
g(b)− g(a)

b− a
+ 1 = ln ξ + 1

which lies between ln a+ 1 and ln b+ 1.

Thus ln a+ 1 < lnK + 1 < ln b+ 1, implying

a < K < b for a < b. (15)
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Since K(a, a) = a, this means that K is indeed a mean. By (13) and (14)

we get the inequality

I < K, (16)

where

K := K(a, b) =
1

e
· exp

√b ln2 b− a ln2 a

b− a
+ 1

 .

f) Let f(x) =
1√

x(a+ b− x)
in (5). Then we get

[
1

b− a

∫ b

a

1√
x(a+ b− x)

dx

]2
<

1

b− a

∫ b

a

(
1

x
+

1

a+ b− x

)
1

a+ b
dx,

(17)

where we have used the remark that

1

x(a+ b− x)
=

(
1

x
+

1

a+ b− x

)
1

a+ b
.

Remark also that

1

b− a

∫ b

a

1

x
dx =

1

b− a

∫ b

a

1

a+ b− x
dx =

1

L(a, b)
. (18)

On the other hand one has

1

b− a

∫ b

a

1√
x(a+ b− x)

=
1

P (a, b)
, (19)

where P = P (a, b) is the Seiffert mean, defined by (see e.g. [10], [14], [15],

[16])

P (a, b) =
a− b

2 arcsin
a− b
a+ b

for a 6= b, P (a, a) = a (20)

For the integral representation (19) of the mean P defined by (20),

see e.g. [14]. Now, by (17), (18) and (19) we get the inequality

P 2 > L · A, (21)
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discovered by more complicated arguments in [3].

Particularly, by the right side of (4), from (21) we get

P > L (22)

Clearly, by
√
a(a+ b− x) <

x+ (a+ b− x
2

= A from (19) we get

A > P, (23)

therefore (22) and (23) improve the right side of (4).

Remark 1. For improvements of (21) with stronger arguments, see

[12].

As (21) is equivalent, with the following inequality (see [3]):

L2 > P ·G (21′)

inequality (21′) here follows by the proved inequality (21).

By (21) and (21′) one can deduce also

P 2 · L2 > (LA) · (PG),

which implies the inequality

P · L > A ·G, (21′′)

one of the main results in [16] (and proved by more difficult means).

2) Applying (1) for f(x) =
1√
x

and g(x) =
1√

a+ b− x
, and using

(19) we can deduce again relation (22). We note that by the left side of

(4) and (22) we get

P > G, (24)

but this follows also from the observation that for any t ∈ [a, b] one has

t(a+ b− t) ≥ ab, or equivalently (t− a)(b− t) ≥ 0. Now, using this fact,

and the integral representation (19), we get (24).
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b) Let f(x) =

√
lnx

x
, g(x) =

√
x lnx in (1), where x > 1. As

1

b− a

∫ b

a

lnxdx = ln I(a, b),
1

b− a

∫ b

a

lnx

x
dx =

1

2(b− a)
(ln2 b− ln2 a)

and
1

b− a

∫ b

a

x lnx =
A

2
ln I(a2, b2)

(see e.g. [7]), we get:

ln2 I <
ln b− lna
b− a

· lnG · A
2
· lnI(a2, b2) =

A

2L
· lnG · ln I(a2, b2).

Let S = S(a, b) be the mean defined by

S = (aa · bb)1/(a+b) (25)

Then it is known (see [5], [7]) that

S(a, b) =
I(a2, b2)

I(a, b)
(26)

By using (26), from the above relations we get the inequality

ln2 I <
A

2L
· lnG · ln(S · I), (27)

which seems to be new.

Remark 2. As in the definitions of f and g we must suppose x > 1,

clearly (27) holds true for b > a > 1, where I = I(a, b), etc.

c) An exponential mean E = E(a, b) is defined and studied e.g. in [6],

[9] by

E = E(a, b) =
beb − aea

eb − ea
− 1 (28)

Apply now inequality (1) for f(x) =
√
ex and g(x) = x

√
ex.

Remark that ∫ b

a

xexdx = beb − aea − (eb − ea),
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∫ b

a

x2exdx = b2eb − a2ea − 2

∫ b

a

xexdx

and that these imply∫ b

a

xexdx = (eb − ea)E,
∫ b

a

x2exdx = b2eb − a2ea − 2(eb − ea)E,

so we get:

(eb − ea)2E2 < (eb − ea)[b2eb − a2ea − 2(eb − ea)E] (29)

or

(eb − ea)(E2 + 2E) < b2eb − a2ea,

so

(E + 1)2 <
b2eb − a2ea

eb − ea
+ 1 (30)

Define a new exponential mean F by

F = F (a, b) =

√
b2eb − a2ea

eb − ea
+ 1− 1 (31)

By (30) we get

E < F (32)

d) Let f(x) =
1√
x lnx

and g(x) =

√
lnx

x
in (1). As

∫ b

a

1

x lnx
dx = ln(ln b)− ln(ln a)

and ∫ b

a

lnx

x
dx =

1

2
(ln2 b− ln2 a),

we get

(ln b− ln a)2 < [ln(ln b)− ln(ln a)] · 1

2
(ln2 b− ln2 a),
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or

ln b− ln a < [ln(ln b)− ln(ln a)] · 1

2
(ln b+ ln a).

By letting ln b = y, ln a = x, this gives a new proof of right side of (4).

Applying (1) for f(x) =
1√

x · lnx
, g(x) =

1√
x

, as

∫ b

a

1

x ln2 x
dx =

1

lnx
− 1

ln b
,

we get

[ln(ln b)− ln(ln a)]2 < (ln b− ln a) · ln b− ln a

ln b · ln a
,

which by notation ln b = y, ln a = x, gives a new proof of left side of (4).

e) Let f(x) =
√
x, g(x) =

√
x · lnx in (1). As∫

x ln2 xdx =
x2 ln2 x

2
−
∫
x lnxdx,

by the formula used in b) we get:

(b−a)2·A
2

4
·ln2(S·I)<

b2 − a2

2

[
b2 ln2 b− a2 ln2 a

2
− (b− a) · A

2
· ln(I · S)

]
(33)

As ln I =
b ln b− a ln a

b− a
− 1 and lnS = a ln a+ b ln b2A, after certain

transformations, we get from (33):

ln2(S · I) + 2 ln(S · I) < 4(1 + ln I) · lnS (34)

Put u = ln I, v = lnS in (34). It is easy to see that

v = lnS > ln I = u (35)

becomes equivalent, after elementary transformations to

ab(ln b2 − ln a2) < b2 − a2, or L(a2, b2) > G(a2, b2),

which is the left side of (4).
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Now, (34) can be written as

(v + u)2 + 2(v + u) < 4v(1 + u), or v2 + u2 + 2u < 2v + 2vu,

or

(v − u)2 < 2(v − u) (36)

as, by (35), v − u > 0, we get from (36) that v − u < 2, i.e.

S < e2 · I (37)

Therefore, inequality (37) is a consequence of the Cauchy-Bouniakowsky

inequality.

3) We have shown by more applications of the inequality (1) that

holds true relation (4). Now, this implies the logarithmic inequality

lnx ≤ x− 1, (38)

with equality only for x = 1. Indeed, let x > 1. Then by L(x, 1) > G(x, 1)

one has
x− 1

lnx
>
√
x, so lnx <

x− 1√
x

< x − 1. If 0 < x < 1, then apply

L(1, x) < A(1, x), i.e.
1− x
− lnx

<
x+ 1

2
, where

x+ 1

2
< 1. Thus

1− x
− lnx

< 1,

so 1−x < − lnx or lnx < x−1. There is equality in (38) only for x = 1.

Let Ap(x) = p1x1 + . . .+ prxr, Gp(x) = xp11 . . . xprr and

Hp(x) =
1

p1
x1

+ . . .+
pr
xr

denote the weighted arithmetic, geometric resp. harmonic means of the

positive real numbers x1, . . . , xr > 0, where the positive weights pi (i =

1, 2, . . . , r) satisfy p1 + . . .+ pr = 1.

Apply now inequality (38) for x =
xi

Ap(x)
, and multiply both sides

with pi:

pi ln
xi

Ap(x)
≤ pixi
Ap(x)

− pi (39)
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After summation in (39) we get

ln
xp11 . . . xprr

Ap(x)p1+...+pr
≤ p1x1 + . . .+ prxr

Ap(x)
− (p1 + . . .+ pr).

As p1 + . . .+pr = 1, we get the weighted arithmetic-geometric inequality.

This in turn gives also the weighted harmonic-geometric inequality:

Hp(x) ≤ Gp(x) ≤ Ap(x) (40)

The left side of (40) follows by applying

Gp

(
1

x

)
≤ Ap

(
1

x

)
,

where
1

x
=

(
1

x1
, . . . ,

1

xr

)
.

There is equality in both sides only if
xi

Ap(x)
= 1 for all i = 1, . . . , r,

which means that x1 = . . . = xr.

The continuous analogue of inequality (40) can be proved in the same

manner. Let f, p : [a, b] → R be two positive Riemann-integrable func-

tions.

Suppose that

∫ b

a

p(x)dx = 1 and define

Ap,f =

∫ b

a

p(x)f(x)dx, Gp,f = e
∫ b
a p(x) ln f(x)dx, Hp,f =

1∫ b

a

p(x)

f(x)
dx

(41)

Then one has

Hp,f ≤ Gp,f ≤ Ap,f . (42)

Particularly, when p(x) =
1

b− a
, we get

Af =
1

b− a

∫ b

a

f(x)dx, Gf = e
1
b−a

∫ b
a ln f(x), Hf =

b− a∫ b

a

dx/f(x)

(43)
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so

Hf ≤ Gf ≤ Af (44)

There is equality in both sides of (41) (or (44)) only if f is a constant

almost everywhere. If f is continuous, the equality occurs only when f

is a constant function.

For the proof of (42) apply the same method, as in the proof of (40),

but in place of summation, use integration.

Therefore, let x =
xi
Ap,f

in (38), and multiply both sides with p(x) > 0:

ln
f(x)p(x)

A
p(x)
p,f

≤ p(x)f(x)

Ap,f
− p(x). (45)

By integration in (45) we get the left side of (42). Then apply this in-

equality to
1

f
in place of f in order to deduce the left side of (42).

There are many applications to the discrete form (40), or continuous

form (42) of the arithmetic-geometric-harmonic inequalities.

We will be mainly interest in the means studied before.

a) For the means A,G,L, I and S, the following identities are easy to

prove (see also [7], [8]):

ln
I

G
=
A

L
− 1 (46)

ln
S

I
= 1− G2

AL
(47)

As

A · L = A(a, b) · L(a, b) = L(a2, b2) and G2(a, b) = G(a2, b2),

by replacing a with
√
a and b with

√
b in (47), one obtains

ln
S

I
(
√
a,
√
b) = 1− G

L
(47′)

In base of identities (46) and (47′) one can state the following:

L < A⇔ I > G (48)
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G < L⇔ S > I (49)

Therefore, inequalities (4) are equivalent to the following:

G < I < S (4′)

Applying (44) to f(x) = x we get

L < I < A (50)

On the other hand, applying the left side of (40) for r = 2 and

p1 =
a

a+ b
, p2 =

b

a+ b
, x1 = a, x2 = b,

one has
1

a

a+ b
· 1

a
+

b

a+ b
· 1

b

< aa/(a+b) · bb/(a+b),

which gives

A < S, (51)

see e.g. [8].

In fact, relations (4), (4′), (50) and (51) may be rewritten as

G < L < I < A < S (52)

b) By (22) and (23) P lies between L and A, but we can strengthen

this fact by applying the right side of (44) to

f(x) =
1√

x(a+ b− x)
.

As

∫ b

a

ln(a+ b− x)dx =

∫ b

a

lnxdx = ln I, by (19) we get

P < I (53)

Therefore, (52) may by completed as

G < L < P < I < A < S (54)
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Remark. Inequalities L < P < I have been obtained for the first

time by H.-J. Seiffert [15], by using more complicated arguments.

Let us apply now the left side of (44) to the same function f as above.

Let us introduce the new mean

J = J(a, b) =
1

b− a

∫ b

a

√
x(a+ b− x)dx (55)

As G <
√
x(a+ b− x) < A (see 1f) and 2a)), we get also

G < J < A (56)

By the left side of (44) however, the left side of (56) may be improved to

I < J (57)

Therefore the chain (54) may by rewritten as

G < L < P < I < J < A < S (54′)

Remark 3. By inequalities (21) and (21′) one can strengthen the

first two inequalities:

G <
√
P ·G < L <

√
L · A < P

c) Let us introduce another new mean R by

R = R(a, b) = 1/

(
1

b− a
·
∫ b

a

1
4
√
x(a+ b− x)

dx

)2

(58)

As
√
G < 4

√
x(a+ b− x) <

√
A, clearly

G < R < A, (59)

too. By inequality (5) applied to f(x) =
1

4
√
x(a+ b− x)

we get, using

(19), that

P < R (60)
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Applying, as in b) the right side of (44) to this function, we get

R < I (61)

Therefore, a completion of (54′) is valid:

G < L < P < R < I < J < A < S (54′′)

with two new means J , resp. R defined by (55), resp. (58).

d) Apply now (41) for p(x) =
2x

b2 − a2
and f(x) =

1

x
. As

Ap,f =

∫ b

a

p(x)f(x)dx =
2

b2 − a2
(b− a) =

1

A
,

Gp,f = e
∫ b
a p(x) ln f(x)dx = e−

2
b2a2

∫ b
a x lnxdx =

1√
I · S

,

as ∫ b

a

x lnxdx = (b− a) · A
2

ln(I · S).

On the other hand,

Hp,f =
1∫ b

a

p(x)

f(x)
dx

=
b2 − a2

2
· 3

b2 + ab+ a2
=

A

He(a2, b2)
,

where

He(x, y) =
x+
√
xy + y

3
denotes the Heronian mean of x and y. One obtains the double in-

equality:

A2 < I · S <
(
He(a2, b2)

A

)2

(59)

The left side of (59) has been proved also in [8], while the right side seems

to be new.

For an extension of (59) repeat all above computations with

p(x) =
xn−1n

bn − an
.
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Since by partial integration we get∫ b

a

xn−1 lnxdx =
(bn − an) ln I(an, bn)

n2
(60)

from (42) we get

bn − an

n(bn−1 − an−1)
< n
√
I(an, bn) <

n

n+ 1
· b

n+1 − an+1

bn − an
(61)

This new inequality extends (59), as for n = 2, by I(a2, b2) = I · S, one

reobtains (59). Here n is a positive integer, but as the proof shows, it

holds true by replacing n with any r > 1, i.e.

br − ar

r(br−1 − ar−1)
< (I(ar, br))1/r <

r

r + 1
· b

r+1 − ar+1

br − ar
, r > 1. (62)

By putting an = x, bn = y in (61), this inequality appears as

y − x
n[y(n−1)/n − x(n−1)/n]

< n
√
I(x, y) <

n

n+ 1
· y

(n+1)/n − x(n+1)/n

y − x
. (61′)
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3.5 On some exponential means

1. Introduction

A mean of two positive real numbers is defined in [3] as a function

M : R2
+ → R+ with the property:

min{x, y} ≤M(x, y) ≤ max{x, y}, ∀ x, y ∈ R+.

Of course, it follows that M(x, x) = x.

Two means M and M ′ are sometimes comparable. We write M < M ′ if

M(x, y) < M ′(x, y) for x 6= y.

The most common example of mean is the power mean Ap defined by:

Ap(x, y) = ((xp + yp)/2)1/p, for p 6= 0

A0(x, y) = G(x, y) = (xy)1/2 (the geometric mean).

We have:

A1(x, y) = A(x, y) (the arithmetic mean)

A−1 = H(x, y) (the harmonic mean)

and, as limit cases:

A−∞(x, y) = min{x, y}
A+∞(x, y) = max{x, y}.

It is proved in [3] that:

Ap < Aq for p < q (1)

so that for a given mean M one looks for his place between two power

means:

Ap < M < Aq
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but p or q (or both) can be infinite.

As it is shown in [7], a general method of construction of means is

offered by the mean-value theorem for integrals. If f is a monotone and

continuous function on R+ and g is a positive continuous function on R+

which is not identical zero on any interval, then for any x, y ∈ R+ there

is an unique z ∈ R+ such that:

f(z)

∫ y

x

g(t)dt =

∫ y

x

f(t)g(t)dt.

So, one can define a mean Vf,g by:

Vf,g(x, y) = f−1


∫ y

x

f(t)g(t)dt∫ y

x

g(t)dt

 .

For example, taking f(t) = t and g(t) = et we get the mean:

E(x, y) =
xex − yey

ex − ey
− 1

which was studied in [8]. As it was proved there:

A1 = A < E < A∞ (2)

but, while the upper bound is strong (Ap is not comparable with E for

p > 5/3), it is conjectured that the lower bound can be lifted up to A5/3.

In this paper we want to indicate some relations of the mean E with

other means.

2. The identric and the logarithmic mean

For x 6= y, the identric mean I is defined by:

I(x, y) = e−1(yy/xx)1/(y−x)

232



and the logarithmic mean L by:

L(x, y) =
x− y

log x− log y
.

Improving some other results, T.P. Lin has proved in [4] that:

A0 = G < L < A1/3

and the indices 0 and 1/3 are sharp, that is L and Ap are not comparable

for 0 < p < 1/3. Also, in [5] A.O. Pittenger proved that:

A2/3 < I < Alog 2 (3)

and again the indices are sharp. Of course, it follows that:

L < I. (4)

We remind also two results of H. Alzer:

A ·G < L · I (5)

proved in [1] and:

G · I < L2 (6)

proved in [2].

In what follows we shall use also a result of J. Sándor from [6]:

I2(x, y) < A2(x, y) < I(x2, y2) for x 6= y. (7)

Finally we remind that compounding a mean M with a bijection f we

can construct a new mean M ′:

M ′(x, y) = f−1(M(f(x), f(y))).

We shall use two means obtained on this way:

F (x, y) = log(L(ex, ey))

and

Bp(x, y) = log(Ap(e
x, ey)).

We denote also B1 = B.
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3. Main results

We start with the remark that:

log(I(x, y)) =
y log y − x log x

y − x
− 1

hence:

E(x, y) = log(I(ex, ey)).

Using this relation, (4) becomes:

E > F. (8)

The inequality (8) improves the first part of the inequality (2) because

G < L implies, by logarithmation A < F . That is

E > F > A.

Also putting in (3) x = eu, y = ev and logarithming, we get

B2/3 < E < Blog 2. (9)

From (5) we have

E > A+B − F (10)

which is another refinement of the first inequality from (2), because, by

Hadamard’s inequality for the convex function f(t) = et, we get (see [6]):

A < F < B.

On the same way, (6) gives:

E < 2 · F − A. (11)

Hence, from (10) and (11) we have:

A+B − F < E < 2 · F − A.
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Another relation for E we can obtain from (7). Putting x = eu, y = ev

and logarithming, we get

E(u, v) < B(u, v) <
E(2u, 2v)

2

that is

E(a/2, b/2) <
E(a, b)

2
. (12)

4. Homogeneity properties

This last relation suggest the study of a property of subhomogeneity.

Most of the used means are homogeneous (of order one):

M(tx, ty) = t ·M(x, y), t > 0.

There are also some log-homogeneous (logarithmic-homogeneous) means:

M(xt, yt) = M t(x, y), t > 0.

For example G. But I and E haven’t these properties.

The relation (12) suggest the following definitions: for a given t > 0,

the mean M is called t−subhomogeneous (t− log−subhomogeneous) if:

M(tx, ty) ≤ tM(x, y) (respectively M(xt, yt) ≤M t(x, y)).

If the inequalities are reversed, the mean is called t−superhomogeneous

respectively t − log−superhomogenous. Of course, if M is t−subhomo-

geneous then it is 1/t−superhomogeneous.

From (1) we deduce that Ap is t − log−subhomogeneous for t < 1

and Bp is t−subhomogeneous for t < 1.

Applying the first inequality of (9) to x = 3u/2, y = 3v/2, we get:

B(u, v) < (2/3) · E(3u/2, 3v/2).

From the second inequality of (9) with x = u/ log 2, y = v/ log 2 follows:

(log 2) · E(u/ log 2, v/ log 2) < B(u, v)
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thus:

(log 2) · E(u/ log 2, v/ log 2) < (2/3) · E(3u/2, 3v/2)

hence E is t−subhomogeneous for t = 2/ log 8. In fact is valid the follow-

ing property.

4.1. Theorem. The mean E is t−subhomogeneous and the mean I

is t− log−subhomogeneous for t ≥ 2/ log 8 = 0.961 . . .
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3.6 A property of an exponential mean

Let x, y > 0. The following exponential mean E = E(x, y), has been

introduced by the second author in [2]. Their properties and/or connec-

tions to other means are studied in the papers [3] and [1].

E(x, y) =
xex − yey

ex − ey
− 1 (x 6= y), E(x, x) = x. (1)

Theorem. For all 0 < a < b, 0 < x < y one has

min{x− a, y − b} ≤ E(x, y)− E(a, b) ≤ max{x− a, y − b}. (2)

Proof. Put

g(x) =
x

ex − 1
, h(x) =

x

1− ex
, f(x, y) =

xe−x − ye−y

e−x − e−y
.

Then it is immediate that

f(x, y) = x− g(y − x) = y − h(y − x),

and

f(x, y)−f(a, b) = x−a+g(b−a)−g(y−x) = y−b+h(b−a)−h(y−x).

It can be seen immediately that h is increasing and g is decreasing on

(0,+∞). This implies by the above identity, that for 0 < a < b and

0 < x < y we have

min{x− a, y − b} ≤ f(x, y)− f(a, b) ≤ max{x− a, y − b}. (3)

Now, it is easy to see that

f(x, y) = E − 1, (4)

where E is the complementary mean to E (see [3]), i.e.

E(x, y) = 2A(x, y)− E(x, y), where A(x, y) =
x+ y

2
.

Since min{u, v}−(u+v) = −max{u, v}, from (3) and (4), we can deduce

(2), i.e. the Theorem is proved.
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3.7 Some new inequalities for means and

convex functions

1

In what follows, for a, b > 0 let us denote

A = A(a, b) =
a+ b

2
, G = G(a, b) =

√
ab,

W = W (a, b) =
a2 + b2

a+ b
, H = H(a, b) =

2
1

a
+

1

b

.

If f : [a, b] → R is increasing (decreasing) function, then the following

property is immediate:

Proposition 1.

af(b) + bf(a)

a+ b
≤ f(a) + f(b)

2
≤ af(a) + bf(b)

a+ b
(1)

All inequalities in (1) are reversed, when f is decreasing.

Proof. After simple computations, each parts of (1) become equiva-

lent to

(f(b)− f(a))(b− a) ≥ 0 (or (f(b)− f(a))(b− a) ≤ 0).

For f(x) = x, relations (1) imply the classical inequality

H ≤ A ≤ W.

A more interesting example arises, when f(x) = ln x. Then we get

(abba)1/(a+b) ≤ G ≤ (aabb)1/(a+b). (2)

For the involved means in the extremal sides of (2), see e.g. [1]-[3].

If f is convex, the following can be proved:
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Proposition 2. Let f be convex on [a, b]. Then

f(W ) ≤ af(a) + f(b)

a+ b
(3)

f(H) ≤ af(b) + bf(a)

a+ b
(4)

af(b) + bf(a)

a+ b
+ f(W ) ≤ f(a) + f(b). (5)

Proof.

f(W ) = f

(
a2 + b2

a+ b

)
= f

(
a · a

a+ b
+ b · b

a+ b

)
≤ a

a+ b
· f(a) +

b

a+ b
· f(b) =

af(a) + bf(b)

a+ b
,

by the convexity of f (i.e. f(aλ + bµ) ≤ λf(a) + µf(b) for λ, µ > 0,

λ+ µ = 1). This proved (3).

Now,

f(H) = f

(
2ab

a+ b

)
= f

(
a

a+ b
· b+

b

a+ b
· a
)

≤ a

a+ b
· f(b) +

b

a+ b
· f(a) =

af(b) + bf(a)

a+ b
,

yielding (4).

Relation (5) follows by (3), since

af(b) + bf(a)

a+ b
+
af(a) + bf(b)

a+ b
= f(a) + f(b).

2

By taking into account Propositions 1 and 2, one can ask the question

of validity of relations of type

af(b) + bf(a)

a+ b
≤ f(W ) ≤ af(a) + bf(b)

a+ b
,
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or

f(H) ≤ af(b) + bf(a)

a+ b
≤ f(A), etc.

We will prove the following results:

Theorem 1. ([4]) Let f : [a, b] → R be a differentiable, convex and

increasing function. Suppose that the function

g(x) =
f ′(x)

x
, x ∈ [a, b]

is decreasing. Then one has

f(H) ≤ af(b) + bf(a)

a+ b
≤ f(A). (6)

Proof. The left side of (6) is exactly relation (4). Let us write the

right-hand side of (6) in the form

a[f(b)− f(A)] ≤ b[f(A)− f(a)]. (∗)

By

b− A =
b− a

2
= A− a,

and by the Lagrange mean value theorem one has

f(b)− f(A) =
b− a

2
f ′(ξ2), f(A)− f(a) =

b− a
2

f ′(ξ1),

where ξ1 ∈ (a,A), ξ2 ∈ (A, b). Thus a < ξ1 < ξ2 < b. By f ′(x) ≥ 0 and

f ′ being increasing we get by the monotonicity of g:

f ′(b)

b
≤ f ′(a)

a
,

so

af ′(ξ2) ≤ af ′(b) ≤ bf ′(a) ≤ bf ′(ξ1).

This implies relation (∗), i.e. the proof of Theorem 1 is completed.

The following theorem has a similar proof.
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Theorem 2. Let f : [a, b] → R be a differentiable, convex and in-

creasing function. Suppose that the function

h(x) =
f ′(x)√
x

is decreasing on [a, b]. Then

f(H) ≤ af(b) + bf(a)

a+ b
≤ f(G). (7)

For f(x) = x, (7) gives the classical inequality H ≤ G.

Theorem 3. Let f : [a, b] → R be a differentiable, convex and in-

creasing function. Suppose that the function

g(x) =
f ′(x)

x

is decreasing on [a, b]. Then

f(A) ≤ f(W ) ≤ f(a) + f(b)

2
. (8)

Proof. The left side of (8) is trivial by A ≤ W and the monotonicity

of f . The proof of right side is very similar to the proof of right side of

(6). Indeed,

W − a =
b(b− a)

a+ b
, b−W =

a(b− a)

a+ b
.

By Lagrange’s mean value theorem one has

f(W )− f(a) =
b(b− a)

a+ b
f ′(η1), f(b)− f(W ) =

a(b− a)

a+ b
f ′(η2),

where η1 ∈ (a,W ), η2 ∈ (W, b). Now, we can write that

af ′(η1) ≤ af ′(b) ≤ bf ′(a) ≤ bf ′(η2),

so f(W )− f(a) ≤ f(b)− f(W ), and (8) follows.
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3

Finally, we shall prove an integral inequality, which improves on cer-

tain known results.

Theorem 4. ([4]) If f : [a, b]→ R is convex and differentiable, then

1

b− a

∫ b

a

f(x)dx ≤ 1

2

[
af(b) + bf(a)

a+ b
+ f(W )

]
≤ f(a) + f(b)

2
. (9)

Proof. Since f is convex and differentiable, we can write that

f(x)− f(y) ≤ (x− y)f ′(x) for all x, y ∈ [a, b]. (∗∗)

Apply now (∗∗) for y = W and integrate the relation on x ∈ [a, b]:∫ b

a

f(x)dx ≤ (b− a)f(W ) +

∫ b

a

(x−W )f ′(x)dx.

Here ∫ b

a

(x−W )f ′(x)dx =

∫ b

a

xf ′(x)dx−W [f(b)− f(a)]

= bf(b)− af(a)−
∫ b

a

f(x)dx−W [f(b)− f(a)],

by partial integration. Thus

2

∫ b

a

f(x)dx ≤ (b− a)

[
af(b) + bf(a)

a+ b

]
+ (b− a)f(W ),

and the left side of (9) follows. The right hand side inequality of (9) is a

consequence of relation (5).

Remarks. 1) Relation (9) improves the Hadamard inequality

1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
.

2) If the conditions of Theorem 1 are satisfied, the following chain of

inequalities holds true:

f(H) ≤ af(b) + bf(a)

a+ b
≤ f(A) ≤ 1

b− a

∫ b

a

f(x)dx

≤ 1

2

[
af(b) + bf(a)

a+ b
+ f(W )

]
≤ f(a) + f(b)

2
. (10)
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3) The methods of this paper show that the more general means

Wk =
ak + bk

ak−1 + bk−1

may be introduced.
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3.8 Inequalities for general integral means

1. Introduction

A mean (of two positive real numbers on the interval J) is defined as

a function M : J2 → J , which has the property

min(a, b) ≤M(a, b) ≤ max(a, b), ∀ a, b ∈ J.

Of course, each mean M is reflexive, i.e.

M(a, a) = a, ∀ a ∈ J

which will be used also as the definition of M(a, a) if it is necessary.

The mean is said to be symmetric if

M(a, b) = M(b, a), ∀ a, b ∈ J.

Given two means M and N , we write M < N (on J) if

M(a, b) < N(a, b), ∀ a, b ∈ J, a 6= b.

Among the most known examples of means are the arithmetic mean A,

the geometric mean G, the harmonic mean H, and the logarithmic mean

L, defined respectively by

A(a, b) =
a+ b

2
, G(a, b) =

√
a · b,

H(a, b) =
2ab

a+ b
, L(a, b) =

b− a
ln b− ln a

, a, b > 0,

and satisfying the relation H < G < L < A.

We deal with the following weighted integral mean. Let f : J → R
be a strictly monotone function and p : J → R+ be a positive function.

Then M(f, p) defined by

M(f, p)(a, b) = f−1


∫ b

a

f(x) · p(x)dx∫ b

a

p(x)dx

 , a, b ∈ J
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gives a mean on J . This mean was considered in [3] for arbitrary weight

function p and f = en where en is defined by

en(x) =

 xn, if n 6= 0

lnx, if n = 0.

More means of type M(f, p) are given in [2], but only for special cases

of functions f .

A general example of mean which can be defined in this way is the

extended mean considered in [4]:

Er,s(a, b) =

(
r

s
· b

s − as

br − ar

) 1
s−r

, s 6= 0, r 6= s.

We have Er,s = M(es−r, er−1).

The following is proved in [6].

Lemma 1.1. If the function f : R+ → R+ is strictly monotone, the

function g : R+ → R+ is strictly increasing, and the composed function

g ◦ f−1 is convex, then the inequality

M(f, p) < M(g, p)

holds for every positive function p.

The means A, G and L can be obtained as means M(en, 1) for n = 1,

n = −2 and n = −1 respectively. So the relations between them follow

from the above result. However, H = M(e1, e−3), thus the inequality

H < G cannot be proved on this way.

A special case of integral mean was defined in [5]. Let p be a strictly

increasing real function having an increasing derivative p′ on J . Then M ′
p

given by

M ′
p(a, b) =

∫ b

a

x · p′(x)dx

p(b)− p(a)
, a, b ∈ J

defines a mean. In fact we have M ′
p = M(e1, p

′).
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In this paper we use the result of the above lemma to modify the

definition of the mean M(f, p). Moreover, we find that an analogous

property also holds for the weight function. We apply these properties

for proving relations between some means.

2. The new integral mean

We define another integral mean using two functions as above, but

only one integral. Let f and p be two strictly monotone functions on J .

Then N(f, p) defined by

N(f, p)(a, b) = f−1
(∫ 1

0

(f ◦ p−1)[t · p(a) + (1− t) · p(b)]dt
)

is a symmetric mean on J . Making the change of the variable

t =
[p(b)− s]

[p(b)− p(a)]

we obtain the simpler representation

N(f, p)(a, b) = f−1

(∫ p(b)

p(a)

(f ◦ p−1)(s)ds
p(b)− p(a)

)
.

Denoting f ◦ p−1 = g, the mean N(f, p) becomes

N ′(g, p)(a, b) = p−1 ◦ g−1
(∫ p(b)

p(a)

g(x)dx

p(b)− p(a)

)
.

Using it we can obtain again the extended mean Er,s as N ′(es/r−1, er).

Also, if the function p has an increasing derivative, by the change of

the variable

s = p(x)

the mean N(f, p) reduces at M(f, p′). For such a function p we have

N(e1, p) = M ′
p. Thus M ′

p p can also be generalized for non differentiable

functions p at

Mp(a, b) =

∫ 1

0

p−1[t · p(a) + (1− t) · p(b)]dt, ∀ a, b ∈ J
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or

Mp(a, b) =

∫ p(b)

p(a)

p−1(s)ds

p(b)− p(a)
, ∀ a, b ∈ J,

which is simpler for computations.

Example 2.1. For n 6= −1, 0, we get

Men(a, b) =
n

n+ 1
· b

n+1 − an+1

bn − an
, for a, b > 0,

which is a special case of the extended mean. We obtain the arithmetic

mean A for n = 1, the logarithmic mean L for n = 0, the geometric mean

G for n = −1/2, the inverse of the logarithmic mean G2/L for n = −1,

and the harmonic mean H for n = −2.

Example 2.2. Analogously we have

Mexp(a, b) =
b · eb − a · ea

eb − ea
− 1 = E(a, b), a, b ≥ 0

which is an exponential mean introduced by the authors in [7]. We can

also give a new exponential mean

M1/ exp(a, b) =
a · eb − b · ea

eb − ea
+ 1 = (2A− E)(a, b), a, b ≥ 0.

Example 2.3. Some trigonometric means such as

Msin(a, b) =
b · sin b− a · sin a

sin b− sin a
− tan

a+ b

2
, a, b ∈ [0, π/2],

Marcsin(a, b) =

√
1− b2 −

√
1− a2

arcsin a− arcsin b
, a, b ∈ [0, 1],

Mtan(a, b) =
b · tan b− a · tan a+ ln(cos b/ cos a)

tan b− tan a
, a, b ∈ [0, π/2)

and

Marctan(a, b) =
ln
√

1 + b2 − ln
√

1 + a2

arctan b− arctan a
, a, b ≥ 0,

can be also obtained.
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3. Main results

In [5] it was shown that the inequality M ′
p > A holds for each function

p (assumed to be strictly increasing and with strictly increasing deriva-

tive). We can prove more general properties. First of all, the result from

Lemma 1.1 holds also in this case with the same proof.

Theorem 3.1. If the function f : R+ → R+ is strictly monotone, the

function g : R+ → R+ is strictly increasing, and the composed function

g ◦ f−1 is convex, then the inequality

N(f, p) < N(g, p)

holds for every monotone function p.

Proof. Using a simplified variant of Jensen’s integral inequality for

the convex function g ◦ f−1 (see [1]), we have

(g ◦ f−1)
(∫ 1

0

(f ◦ p−1)[t · p(a) + (1− t) · p(b)]dt
)

≤
∫ 1

0

(g ◦ f−1) ◦ (f ◦ p−1)[t · p(a) + (1− t) · p(b)]dt.

Applying the increasing function g−1 we get the desired inequality. �

We can now also prove a similar result with respect to the function p.

Theorem 3.2. If p is a strictly monotone real function on J and q

is a strictly increasing real function on J , such that q ◦ p−1 is strictly

convex, then

N(f, p) < N(f, q) on J,

for each strictly monotone function f .

Proof. Let a, b ∈ J and denote p(a) = c, p(b) = d. As q ◦ p−1 is

strictly convex, we have

(q ◦ p−1)[tc+ (1− t)d] < t(q ◦ p−1)(c) + (1− t)(q ◦ p−1)(d), ∀ t ∈ (0, 1).

As q is strictly increasing, this implies

p−1[t · p(a) + (1− t) · p(b)] < q−1[t · q(a) + (1− t) · q(b)], ∀ t ∈ (0, 1).
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If the function f is increasing, the inequality is preserved by the com-

position with it. Integrating on [0, 1] and then composing with f−1, we

obtain the desired result. If the function f is decreasing, so also is f−1

and the result is the same. �

Corollary 3.3. If the function q is strictly convex and strictly in-

creasing then

Mq > A.

Proof. We apply the second theorem for p = f = e1, taking into

account that Me1 = A. �

Remark 3.4. If we replace the convexity by the concavity and/or

the increase by the decrease, we get in the above theorems the same/the

opposite inequalities.

Example 3.1. Taking log, sin respectively arctan as function q, we

get the inequalities

L, Msin, Marctan < A.

Example 3.2. However, if we take exp, arcsin respectively tan as

function q, we have

E, Marcsin, Mtan > A.

Example 3.3. Taking p = en, q = em and f = e1, from Theorem 3.2

we deduce that for m · n > 0 we have

Men < Mem , if n < m.

As special cases we have

Men > A, for n > 1,

L < Men < A, for 0 < n < 1,

G < Men < L, for − 1/2 < n < 0,

H < Men < G, for − 2 < n < −1/2,
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and

Men < H, for n < −2.

Applying the above theorems we can also study the monotonicity of the

extended means.
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3.9 On upper Hermite-Hadamard

inequalities for geometric-convex

and log-convex functions

1. Introduction

Let I ⊂ R be a nonvoid interval. A function f : I → (0,+∞) is

called log-convex (or logarithmically convex), if the function g : I → R,

defined by g(x) = ln f(x), x ∈ I is convex; i.e. satisfies

g(λx+ (1− λ)y) ≤ λg(x) + (1− λ)g(y) (1.1)

for all x, y ∈ I, λ ∈ [0, 1].

Inequality (1.1) may be rewritten for the function f , as

f(λx+ (1− λ)y) ≤ (f(x))λ(f(y))1−λ, (1.2)

for x, y ∈ I, λ ∈ [0, 1].

If one replaces the weighted arithmetic mean λx+(1−λ)y of x and y

with the weighted geometric mean, i.e. xλy1−λ, then we get the concept

of geometric-convex function f : I ⊂ (0,+∞)→ (0,+∞)

f(xλy1−λ) ≤ (f(x))λ(f(y))1−λ, (1.3)

for x, y ∈ I, λ ∈ [0, 1].

These definitions are well-known in the literature, we quote e.g. [7]

for an older and [4] for a recent monograph on this subject.

Also, the well-known Hermite-Hadamard inequalities state that for a

convex function g of (1.1) one has

g

(
a+ b

2

)
≤ 1

b− a

∫ b

a

g(x)dx ≤ g(a) + g(b)

2
, (1.4)

for any a, b ∈ I.
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We will call the right side of (1.4) as the upper Hermite-Hadamard

inequality.

By applying the weighted geometric mean-arithmetic mean inequality

aλb1−λ ≤ λa+ (1− λ)b, (1.5)

the following properties easily follow:

Lemma 1. (i) If f : I → (0,∞) is log-convex, then it is convex;

(ii) If f : I ⊂ (0,∞) → (0,∞) is increasing and log-convex, then it

is geometric convex.

Proof. We offer for sake of completeness, the simple proof of this

lemma.

(i) One has by (1.2) and (1.5):

f(λx+ (1− λ)y) ≤ (f(x))λ(f(y))1−λ ≤ λf(x) + (1− λ)f(y)

for all x, y ∈ I, λ ∈ [0, 1].

(ii) f(xλy1−λ) ≤ f(λx + (1 − λ)y) by (1.5) and the monotonicity of

f . Now, by (1.2) we get (1.3).

Let L(a, b) denote the logarithmic mean of two positive real numbers

and b, i.e.

L(a, b) =
b− a

ln b− ln a
for a 6= b; L(a, a) = a. (1.6)

In 1997, Gill, Pearce and Pečarić [1] have proved the following upper

Hermite-Hadamard type inequality:

Theorem 1.1. If f : [a, b]→ (0,+∞) is log-convex, then

1

b− a

∫ b

a

f(x)dx ≤ L(f(a), f(b)), (1.7)

where L is defined by (1.6).

Recently, Xi and Qi [6] proved the following result:

Theorem 1.2. Let a, b > 0 and f : [a, b] → (0,+∞) be increasing

and log-convex. Then

1

ln b− ln a

∫ b

a

f(x)dx ≤ L(af(a), bf(b)). (1.8)
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Prior to [6], Iscan [2] published the following result:

Theorem 1.3. Let a, b > 0 and f : [a, b] → (0,∞) be integrable and

geometric-convex function. Then

1

ln b− ln a

∫ b

a

f(x)

x
dx ≤ L(f(a), f(b)). (1.9)

In case of f increasing and log-convex, (1.9) is stated in [6], too.

However, by Lemma 1(ii), clearly Theorem 1.3 is a stronger version.

In what follows, we shall offer refinements of (1.8) and (1.9). In fact,

in almost all cases, inequality (1.7) is the strongest from the above.

2. Main results

First we prove that the result of Theorem 1.2 holds true in fact for

geometric-convex functions:

Theorem 2.1. Relation (1.8) holds true when f is integrable geomet-

ric convex function.

Proof. First remark that when f is geometric-convex, the same is

true for the function g(x) = xf(x), x ∈ I. Indeed, one has

g(xλy1−λ) = xλy1−λf(xλy1−λ) ≤ xλy1−λ(f(x))λ(f(y))1−λ

= (xf(x))λ(yf(y))1−λ = (g(x))λ(g(y))1−λ,

for all x, y ∈ I, λ ∈ [0, 1]. Therefore, by (1.3), g is geometric convex.

Apply now inequality (1.9) for xf(x) in place of f(x). Relation (1.8)

follows.

In what follows, we shall need the following auxiliary result:

Lemma 2.1. Suppose that b > a > 0 and q ≥ p > 0. Then one has

L(pa, qb) ≥ L(p, q)L(a, b), (2.1)

where L denotes the logarithmic mean, defined by (1.6).
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Proof. Two proofs of this result may be found in [5]. Relation (2.1)

holds true in a general setting of the Stolarksy means, see [3] (Theorem

3.8).

We offer here a proof of (2.1) for the sake of completeness. As

L(a, b) =

∫ 1

0

bua1−udu, (2.2)

applying the Chebysheff integral inequality

1

y − x

∫ y

x

f(t)dt · 1

y − x

∫ y

x

g(t)dt <
1

y − x

∫ y

x

g(t)f(t)dt, (2.3)

where x < y and f, g : [x, y]→ R are strictly monotonic functions of the

same type; to the particular case

[x, y] = [0, 1]; f(t) = bta1−t = a

(
b

a

)t
and

g(t) = qtp1−t = p

(
q

p

)t
for b > a and q > p; by (2.2), relation (2.1) follows. For p = q one has

equality in (2.1).

One of the main results of this paper is stated as follows:

Theorem 2.2. Let b > a > 0 and suppose that f : [a, b] → R is

log-convex. Suppose that f(b) ≥ f(a). Then one has

1

b− a

∫ b

a

f(x)dx ≤ L(f(a), f(b)) ≤ ln b− ln a

b− a
· L(af(a), bf(b)). (2.4)

Proof. The first inequality of (2.4) holds true by Theorem 1.1.

Applying now Lemma 2.1, by q = f(b) ≥ f(a) = p and b > a, one has

L(f(a), f(b))L(a, b) ≤ L(af(a), bf(b)).

As this is exactly the second inequality of (2.4), the proof of Theorem

2.2 is finished.
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Remark 2.1. The weaker inequality of (2.4) is the result of Theorem

1.2, in an improved form (in place of increasing f , it is supposed only

f(b) ≥ f(a)).

When f(b) > f(a), there is strict inequality in the right side of (2.4).

Theorem 2.3. Let b > a > 0 and f : [a, b]→ R log-convex function.

Suppose that
f(b)

b
≥ f(a)

a
. Then one has

1

b− a

∫ b

a

f(x)

x
dx ≤ L

(
f(a)

a
,
f(b)

b

)
≤ ln b− ln a

b− a
· L(f(a), f(b)). (2.5)

Proof. First remark that
f(x)

x
is log-convex function, too, being the

product of the log-convex functions
1

x
and f(x). Thus, applying Theorem

1.1 for
f(x)

x
in place of f(x), we get the first inequality of (2.5).

The second inequality of (2.5) may be rewritten as

L

(
f(a)

a
,
f(b)

b

)
L(a, b) ≤ L(f(a), f(b)),

and this is a consequence of Lemma 2.1 applied to p =
f(a)

a
, q =

f(b)

b
.

Remark 2.2. Inequality (2.5) offers a refinement of (1.9) whenever

f(b)

b
≥ f(a)

a
.

When here is strict inequality, the last inequality of (2.5) will be strict,

too.

Lemma 2.2. Suppose that b > a > 0 and f : [a, b] → R is a real

function such that g(x) =
f(x)

x
is increasing in [a, b]. Then

∫ b

a

f(x)

x
dx ≤ 1

A

∫ b

a

f(x)dx, (2.6)

where A = A(a, b) =
a+ b

2
denotes the arithmetic mean of a and b.
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Proof. Using Chebysheff’s inequality (2.3) on [x, y] = [a, b],

f(t) :=
f(t)

t
; g(t) := t,

which have the same type of monotonicity. Since

1

b− a

∫ b

a

tdt =
a+ b

2
= A,

relation (2.6) follows.

The following theorem gives another refinement of (1.9):

Theorem 2.4. Let b > a > 0 and f : [a, b]→ R log-convex, such that

the function x 7→ f(x)

x
is increasing on [a, b]. Then

1

ln b− ln a

∫ b

a

f(x)

x
dx ≤ L

A
· L(f(a), f(b)) < L(f(a), f(b)), (2.7)

where L = L(a, b) denotes the logarithmic mean of a and b.

Proof. By (2.6) we can write

1

ln b− ln a

∫ b

a

f(x)

x
dx ≤

(
b− a

ln b− ln a

)
· 1

A
·
(

1

b− a

∫ b

a

f(x)dx

)
.

As
b− a

ln b− ln a
= L and

1

b− a

∫ b

a

f(x)dx ≤ L(f(a), f(b)),

by (1.7), the first inequality of (2.7) follows. The last inequality of (2.7)

follows by the classical relation (see e.g. [3])

L < A. (2.8)

Remark 2.2. As inequality (1.7) holds true with reversed sign of

inequality, whenever f is log-concave (see [1]), (2.8) may be proved by

an application for the log-concave function f(x) = x.

A counterpart to Lemma 2.1 is provided by:
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Lemma 2.3. If
q

p
≥ b

a
≥ 1, then

L(pa, qb) ≤ L(p, q)A(a, b). (2.9)

Proof. By letting
q

p
= u,

b

a
= v, inequality (2.9) may be rewritten as

uv − 1

ln(uv)
≤ u+ 1

2
· v − 1

ln v
, u ≥ v ≥ 1. (2.10)

If v = 1, then (2.9) is trivially satisfied, so suppose v > 1.

Consider the application

k(u) = (v − 1)(u+ 1) ln(uv)− 2(uv − 1) ln v, u ≥ v.

One has

k(v) = 0 and k′(u) = (v − 1)

(
lnu+ 1 +

1

u

)
− (v + 1) ln v.

Here h(u) = lnu+ 1 +
1

u
has a derivative

h′(u) =
u− 1

u2
> 0,

so h is strictly increasing, implying h(u) ≥ h(v), One gets

k′(u) ≥ (v − 1)

(
ln v + 1 +

1

v

)
− (v + 1) ln v =

v2 − 1− ln(v2)

v
> 0,

on base of the classical inequality

ln t ≤ t− 1, (2.11)

where equality occurs only when t = 1.

The function k being strictly increasing, we get k(u) ≥ k(v) = 0, so

inequality (2.9) follows.

Now, we will obtain a refinement of (1.9) for geometric convex func-

tions:
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Theorem 2.5. Let f : [a, b] ⊂ (0,∞)→ (0,∞) be a geometric convex

function such that the application x 7→ f(x)

x
is increasing. Then one has

the inequalities

1

ln b− ln a

∫ b

a

f(x)

x
dx ≤ 1

A(a, b)
· L(af(a), bf(b)) ≤ L(f(a), f(b)).

(2.12)

Proof. By Lemma 2.2 and Theorem 2.1, we can write

1

ln b− ln a

∫ b

a

f(x)

x
dx ≤ 1

A(a, b)

(
1

ln b− ln a

∫ b

a

f(x)dx

)
≤ L(af(a), bf(b))

A(a, b)
. (2.13)

Now, applying Lemma 2.3 for q = f(b), p = f(a), by (2.9) we get

L(af(a), bf(b)) ≤ L(f(a), f(b))A(a, b), (2.14)

so the second inequality of (2.12) follows by the second inequality of

(2.13).
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3.10 On certain identities for means, III

1. Introduction

Let a, b > 0 be positive real numbers. The power mean of order

k ∈ R \ {0} of a and b is defined by

Ak = Ak(a, b) =

(
ak + bk

2

)1/k

.

Denote

A = A1(a, b) =
a+ b

2
,

G = G(a, b) = A0(a, b) = lim
k→∞

Ak(a, b) =
√
ab

the arithmetic, resp. geometric means of a and b.

The identric, resp. logarithmic means of a and b are defined by

I = I(a, b) =
1

e

(
bb/aa

)1/(b−a)
for a 6= b; I(a, a) = a;

and

L = L(a, b) =
b− a

log b− log a
for a 6= b; L(a, a) = a.

Consider also the weighted geometric mean S of a and b, the weights

being a/(a+ b) and b/(a+ b) :

S = S(a, b) = aa/(a+b) · bb/(a+b). (1)

We note that some authors use the notation Z in place of S, (see [20],

[5]) studied for the first time in 1990 by the first author [7], and then in

1993 [9], 1997 [10], and most recently in [4]. As one has the identity

S(a, b) =
I(a2, b2)

I(a, b)
,

discovered by the first author in [9], the mean S is connected to the

identric mean I.
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Though here we are concerned with means of two arguments, we note

that, the extension of S to n arguments is introduced in the first author’s

paper [14], where it is proved also the double-inequality from Theorem 3

of paper [5].

Other means of a, b > 0 which occur in this paper are

H = H(a, b) = A−1(a, b) =
2

1

a
+

1

b

,

Q = Q(a, b) = A2(a, b) =

√
a2 + b2

2
,

as well as ”Seiffert’s mean” (see [16], [13])

P = P (a, b) =
(a− b)

2 arcsin

(
a− b
a+ b

) for a 6= b, P (a, a) = a;

or an ”exponential mean” (see [19], [8], [15])

E = E(a, b) =
(
aea − beb

)
/
(
ea − eb

)
− 1 for a 6= b; E(a, a) = a.

As one has the identity (see [8])

E(a, b) = log I(ea, eb), (2)

the mean E is also strongly related to the identric mean I.

This paper is a continuation of the former works [9], [12] where the

importance of certain identities has been emphasized. For example, the

identity

log
I

G
=
A− L
L

(3)

due to H.-J. Seiffert (see [17], [9]), where I = I(a, b) for a 6= b, etc. In

view of (2), relation (3) gives the identity (see [9])

E − A =
A(ea, eb)

L(ea, eb)
− 1. (4)
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As A(x, y) > L(x, y) for any x 6= y; a corollary of (4) is Toader’s inequal-

ity (see [10])

E > A (5)

For this method, and many related inequalities, see the papers [8], [15].

Another method for the comparison of means is based on certain

series representations. For example, one has (see [9])

log
A(a, b)

G(a, b)
=
∞∑
k=1

1

2k

(
b− a
b+ a

)2k

, (6)

log
I(a, b)

G(a, b)
=
∞∑
k=1

1

2k + 1

(
b− a
b+ a

)2k

, (7)

or (see [10])

log
S(a, b)

G(a, b)
=
∞∑
k=1

1

2k − 1

(
b− a
b+ a

)2k

, (8)

log
S(a, b)

A(a, b)
=
∞∑
k=1

1

2k(k − 1)

(
b− a
b+ a

)2k

. (9)

The representation

log

√
2A2 +G2

I
√

3
=
∞∑
k=1

1

2k

(
1

2k + 1
− 1

3k

)(
b− a
b+ a

)2k

, (10)

with A = A(a, b) etc., appears in [11], while

L(a, b)

G(a, b)
=
∞∑
k=0

1

(2k + 1)!

(
log a− log b

2

)2k

(11)

is proved in paper [2].

In [16] it is proved that

A(a, b)

G(a, b)
=
∞∑
k=0

1

4k

(
2k

k

)(
b− a
b+ a

)2k

, (12)
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A(a, b)

P (a, b)
=
∞∑
k=0

1

4k(2k + 1)

(
2k

k

)(
b− a
b+ a

)2k

, (13)

where

(
2k

k

)
denotes a binomial coefficient.

In what follows, we shall deduce common proofs of these and similar

identities. Some corollaries related to certain inequalities will be pointed

out, too.

2. Series representations of integral means

The first main result is the following

Theorem A. Let us suppose that, f is a continuous function on

[a, b] and assume that all derivatives f (l)

(
a+ b

2

)
(l = 1, 2, 3, . . .) exist

at
a+ b

2
. Then

1

b− a

∫ b

a

f(t)dt = f

(
a+ b

2

)
+
∞∑
k=1

1

(2k + 1)!

(
b− a

2

)2k

f (2k)

(
a+ b

2

)
(14)

and

1

b− a

∫ b

a

f(t)dt =
f(a) + f(b)

2
−
∞∑
k=1

2k

(2k + 1)!

(
b− a

2

)2k

f (2k)

(
a+ b

2

)
.

(15)

One has also

f(a) + f(b)

2
= f

(
a+ b

2

)
+
∞∑
k=1

1

(2k)!

(
b− a

2

)2k

f (2k)

(
a+ b

2

)
(16)

Proof. Writing Taylor’s expansion for the function f about the point

t = m, we get

f(t) = f(m) +
∞∑
r=1

(t−m)r

r!
f (r)(m) (17)
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if one assumes that f (l)(m) exist for any l = 1, 2, . . . By integrating (17)

on t ∈ [a, b] we get

1

b− a

∫ b

a

f(t)dt = f(m) +
1

b− a

∫ b

a

f (r)(m)

(r + 1)!

[
(b−m)r+1 − (a−m)r+1

]
(18)

Let now m =
a+ b

2
in (18). Since

(b−m)r+1 − (a−m)r+1 =

(
b− a

2

)r+1

· [1 + (−1)r],

which is clearly zero for odd r; while for even r = 2k it is

(
b− a

2

)2k

, we

get identity (14).

Now, letting again m =
a+ b

2
in (4) and t = a, t = b, respectively, we

have

f(a) = f

(
a+ b

2

)
+
∞∑
r=1

(
b− a

2

)r
· 1

r!
(−1)r · f (r)

(
a+ b

2

)
;

f(b) = f

(
a+ b

2

)
+
∞∑
r=1

(
b− a

2

)r
· 1

r!
· f (r)

(
a+ b

2

)
,

so after addition of these two equalities we get relation (16), by remarking

that, as above 1 + (−1)r = 0 for r =odd; and = 2 for r = 2k = even.

Identity (15) is a consequence of relations (14) and (16), by eliminat-

ing f

(
a+ b

2

)
. �

Remark 1. Identity (14) appears also in [2], where it is applied for

the proof of relation (11). Here we will deduce this relation by another

method.

Theorem B. If f is continuous on [a, b], and all derivatives f (l)(a)

and f (l)(b) exist (l = 1, 2, . . .), then

1

b− a

∫ b

a

f(t)dt =
f(a) + f(b)

2
+

1

2

∞∑
k=1

(b− a)k

(k + 1)!

[
f (k)(a) + (−1)kf (k)(a)

]
(19)
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Proof. Applying relation (18) to m = a and m = b, after addition

we easily get relation (19). We omit the details. �

3. Applications

Theorem 1. Relations (6) and (7) are true, and one has also

log
A(a, b)

I(a, b)
=
∞∑
k=1

1

2k(2k + 1)

(
b− a
b+ a

)2k

; (20)

A(a, b)

L(a, b)
=
∞∑
k=0

1

2k + 1

(
b− a
b+ a

)2k

. (21)

Proof. Let f(x) = log x in relation (16). It is immediate that

f (k)(x) = (−1)k−1(k − 1)!/xk,

so applying (16) to this function we get relation (6). Since

1

b− a

∫ b

a

log xdx = log I(a, b),

the application of (15) gives identity (7). By a simple substraction, from

(6) and (7) we get (20) by remarking that

1

2k
− 1

2k + 1
=

1

2k(2k + 1)
.

Relation (21) is a consequence of (14), for the function

f(x) =
1

x
.

Indeed, as f (k)(x) = (−1)kk!/xk, and remarking that

1

b− a

∫ b

a

1

x
dx =

1

L(a, b)
,

we obtain
1

L
=

1

A
+

1

A

∞∑
k=1

1

2k + 1

(
b− a
b+ a

)2k

,
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with L = L(a, b) etc. �

Remark 2. By (21) and (7) follows at once identity (3).

Theorem 2. One has

A(a, b)

H(a, b)
=
∞∑
k=0

(
b− a
b+ a

)2k

; (22)

A

(
1

H
− 1

L

)
=
∞∑
k=1

2k

2k + 1

(
b− a
b+ a

)2k

. (23)

A

2

(
1

H
+

1

L

)
=
∞∑
k=0

k + 1

2k + 1

(
b− a
b+ a

)2k

. (24)

Proof. Let f(x) =
1

x
in (14). We get

1

H
− 1

A
=

1

A

∞∑
k=1

(
b− a
b+ a

)2k

,

so (22) follows. Relation (23) follows from (15) for the same function

f(x) =
1

x
. We note that, (23) follows also from (22) and (21) by sub-

straction and remarking that

1− 1

2k + 1
=

2k

2k + 1
.

Identity (24) follows by addition of (22) and (21). �

Corollary 1. Let a′ = 1 − a, b′ = 1 − b, where 0 < a, b ≤ 1

2
; a 6= b.

Put A′ = A′(a, b) = A(a′, b′);G′ = G′(a, b) = G(a′, b′), etc. Then one has

the following Ky Fan type inequalities:

A′
(

1

H ′
− 1

L′

)
< A

(
1

H
− 1

L

)
, (25)

A′
(

1

H ′
+

1

L′

)
< A

(
1

H
+

1

L

)
. (26)
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Proof. Put u =
a− b
a+ b

, v =
a′ − b′

a′ + b′
. Then the given conditions imply

|v| ≤ |u|, so inequalities (25) and (26) are consequences of the represen-

tations (23), resp. (24). �

Remark 3. Inequality (25) appears also in [3]. Since A′ > A, as

A′ = 1−A and A <
1

2
, (25) is not a consequence of the known inequality

1

H ′
− 1

L′
<

1

H
− 1

L
.

Theorem 3. One has

log
Q(a, b)

G(a, b)
=
∞∑
k=1

1

2k − 1

(
b− a
b+ a

)4k−2

, (27)

and relations (8) and (9) are also true.

Proof. Applying (16) for f(x) = x log x, after some computations we

get identity (9). Now, by taking into account (6), from (9) we can deduce

relation (8).

However, we shall use here method of proof for (8) and (9), which

incorporates also the proof of (27).

Applying the identity (21) for a = 1− z, b = 1 + z, where |z| < 1, we

get, as A(1− z, 1 + z) = 1 and L(1− z, 1 + z) =
2z

log(1 + z)− log(1− z)
:

1

2z
log

1 + z

1− z
= 1 +

∞∑
k=1

1

2k + 1
z2k, i.e.

1

2
log

1 + z

1− z
=
∞∑
k=1

1

2k − 1
z2k−1. (28)

Putting z =

(
x− y
x+ y

)2

, and remarking that
1 + z

1− z
=
x2 + y2

2xy
, we get

identity (27) for Q(x, y) in place of Q(a, b) etc.

Applying (28) for z =
x− y
x+ y

, we get

1

2
log

x

y
=
∞∑
k=1

1

2k − 1

(
x− y
x+ y

)2k−1

. (29)
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We note that (29) follows also from identity (21) by writing

1 +
∞∑
k=1

1

2k + 1

(
y − x
y + x

)2k

=
∞∑
k=1

1

2k − 1

(
y − x
y + x

)2k−2

.

As
S(x, y)

G(x, y)
=

(xxyy)1/(x+y)

x1/2y1/2
=

(
x

y

)(x−y)/2(x+y)

,

by multiplication of (29) with
x− y
x+ y

, we get identity (8). Subtracting

identities (6) and (8), we get (9). �

Corollary 2. As (
b− a
b+ a

)4k−2

≤
(
b− a
b+ a

)2k

,

with equality only for k = 1, we get from (27) and (8) that

Q < S (30)

This is better then the left side of Theorem 2 of [5]. In a recent paper

[4] it is shown also that

S < sqrt(2)Q (31)

where the constants 1 and sqrt(2) in (28) and (29) are best possible. For

another method of proof of (30), see [10]

Remark 4. In paper [7] the first author proved identity (1) and the

following identity:

log
I2(
√
a,
√
a)

I(a, b)
=
G− L
L

, (32)

where G = G(a, b), etc. Letting a → a2, b → b2 in (32) and remarking

that

L(a2, b2) = L(a, b) · A(a, b),

we obtain the identity

log
S

I
= 1− G2

A · L
= 1− H

L
. (33)
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Theorem 4. One has

A(a, b)

G(a, b)
=
∞∑
k=0

1

(2k)!

(
log a− log b

2

)2k

(34)

and identity (11) holds also true.

Proof. Apply (16) to f(x) = ex. One gets the identity

ea + eb

2e(a+b)/2
=
∞∑
k=0

1

(2k)!

(
b− a

2

)2k

. (35)

As here a, b are arbitrary real numbers (not necessarily positive), we

may let a = log x, b = log y; with x, y > 0. We get from (35) identity (34)

for A(x, y) in place of A(a, b), etc.

Applying (14) for the same function ex, we get

eb − ea

(b− a)eA
=
∞∑
k=0

1

(2k + 1)!

(
b− a

2

)2k

, (36)

where a 6= b are real numbers. Selecting a = log x, b = log y, identity (11)

follows. �

Corollary 3. One has

3L− (2G+ A)

3G
= −

∞∑
k=1

1

(2k)!

(
1

3
− 1

2k + 1

)(
log a− log b

2

)2k

. (37)

Proof. This follows at once from the representations (11) and (34),

by remarking that the left side of (37) may be written as

L

G
− 1

3
· A
G
− 2

3
. �

Remark 5. As
1

3
− 1

2k + 1
≥ 0 for k ≥ 1, relation (37) implies the

famous inequality of Pólya-Szegö ([18]) and Carlson ([1]):

L <
2G+ A

3
(38)
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In fact, identity (37) shows the true meaning of inequality (38).

Corollary 4. If c ≥ d and ad− bc > 0, then

L(a, b)

L(c, d)
>
G(a, b)

G(c, d)
. (39)

Proof. First remark that for c = d, inequality (39) becomes

L(a, b) > G(a, b),

which is well-known. Assume now that c > d and ad > bc. Then, as

log a− log b = log
a

b
, log c− log d = log

c

d
,

and

log
a

b
> log

c

d

by
a

b
>
c

d
> 1, by the identity (11) follows inequality (39). �

Remark 6. Inequality (39) is proved in [6] under the assumption

a ≥ b ≥ c ≥ d > 0 and ad− bc > 0 (∗)

Clearly, if a = b > 0, then d > c, contradicting c ≥ d. Thus in (∗) one

must have a > b. If c = d, then L(c, d) = G(c, d) so (39) becomes trivially

L(a, b) > G(a, b). Also, inequality b ≥ c is not necessary. For example,
a

b
>
c

d
> 1 holds with b < c in

7

2
>

3

1
> 1.

Theorem 5. One has

log

√
2A2 +G2

G
√

3
=
∞∑
k=1

1

2k

(
1− 1

3k

)(
b− a
b+ a

)2k

, (40)

and identity (10) also holds true.

Proof. Putting

(
b− a
b+ a

)2

= u in relation (6), by 1− u =
G2

A2
we get

log(1− u) = −
∞∑
k=1

uk

k
, (41)
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where 0 < u < 1. This is in fact known series expansion of log(1− u). In

order to prove (40), remark that

log

[
2

3

(
A

G

)2

+
1

3

]
= log

(
2

3
· 1

1− z2
+

1

3

)
,

where z =
b− a
b+ a

.

Now,

log

(
2

3
· 1

1− z2
+

1

3

)
= log(3− z2)− log(1− z2)− log 3

= log

(
1−

(
z√
3

))
− log(1− z2)

=
∞∑
k=1

z2k

k
−
∞∑
k=1

1

k

(
z√
3

)2k

=
∞∑
k=1

z2k

k

(
1− 1

3k

)
,

where we have applied two times relation (41). This proves identity

(40). �

Relation (10) follows as a combination of (40) and (7).

Corollary 5.

log

√
2A2 +G2

I
√

3
>

1

45

(
b− a
b+ a

)4

> 0. (42)

Remark 7. The weaker inequality of (42) implies a result of [11],

namely:

3I2 < 2A2 +G2. (43)

Theorem 6. Relations (12) and (13) hold true.

Proof. Let f(t) =

(
1

t(a+ b− t)

)1/2

in (14). After certain elementary

integration we get that
1

b− a

∫ b

a

f(t)dt = P (a, b) for a 6= b.
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As

2f ′(t) = f(t)

(
1

2A− t
− 1

t

)
,

where A =
a+ b

2
, by induction it can be proved that

f (2k)(A) =

(
2k

k

)
(2k)!

4k
· 1

A2k+1
.

Thus from identity (14) we can deduce relation (13). Relation (12)

follows by (16) applied for the same function f(t). �

Corollary 6.
1

P
<

1

3G
+

2

3A
(44)

Proof. By (12) and (13) we get

A

P
< 1 +

1

3

(
A

G
− 1

)
,

as for k ≥ 1 one has 2k+ 1 ≥ 3 and for k = 0 the respective terms of the

sums are 1. Thus (44) follows. �

Remark 8. By using other methods, many similar inequalities are

proved in [13].

Theorem 7. One has

log
2A+G

G
=
∞∑
k=0

2

2k + 1

(
1

1 +
√

1− z2

)2k+1

, (45)

log
2A+G

3G
=
∞∑
k=0

2

2k + 1

(
1−
√

1− z2

1 + 2
√

1− z2

)2k+1

, (46)

log
2G+ A

3G
=
∞∑
k=0

2

2k + 1

(
1−
√

1− z2

1 + 5
√

1− z2

)2k+1

, (47)

where z =
b− a
b+ a

and A = A(a, b), etc.
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Proof. Since

(
A

G

)2

=
(a+ b)2

4ab
=

1

1− z2
, we get

A

G
=

1√
1− z2

.

Thus,

2A+G

G
= 2 · A

G
+ 1 = 2 · 1√

1− z2
+ 1 =

2 +
√

1− z2√
1− z2

.

Now,

log

(
2A+G

G

)
= log

(
2 +
√

1− z2
)
− log

(√
1− z2

)
.

Applying identity (21), i.e.

a+ b

2
· log b− log a

b− a
= 1 +

∞∑
k=1

1

2k + 1

(
b− a
b+ a

)2k

(∗)

to b = 2 +
√

1− z2, a =
√

1− z2, we get:

1 +
√

1− z2
2

[
log(2 +

√
1− z2)− log

√
1− z2

]

= 1 +
∞∑
k=1

1

2k + 1

(
1

1 +
√

1− z2

)2k

,

so

1 +
√

1− z2
2

log
2A+G

G
= 1 +

∞∑
k=1

1

2k + 1

(
1

1 +
√

1− z2

)2k

,

which implies relation (45).

Similarly, one has

2A+G

3G
=

2

3
· A
G

+
1

3
=

2 +
√

1− z2

3
√

1− z2
,

so applying (∗) for b = 2 +
√

1− z2, a = 3
√

1− z2, we get, after some

simple computations, relation (46).
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Applying (∗) to b = 2
√

1− z2 + 1, a = 3
√

1− z2, and remarking that

2G+ A

3G
=

2
√

1− z2 + 1

3
√

1− z2
,

we can deduce relation (47). �

Remark 9. A similar relation is the following:

log
2A+G

3A
= −

∞∑
k=0

2

2k + 1

(
1−
√

1− z2

5 +
√

1− z2

)2k+1

. (48)

Remark 10. Applying identity (28) for z =
(a− b)2

3a2 + 2ab+ 3b2
, since

1 + z

1− z
=
Q2

A2
,

we get the identity

log
Q

A
= −

∞∑
k=1

1

2k − 1

(
b− a√

3a2 + 2ab+ 3b2

)4k−2

. (49)

Corollary 7.

log
Q

A
<
∞∑
k=1

1

(2k − 1)22k−1

(
b− a
b+ a

)4k−2

.

Proof. Apply (49) and the inequality

√
3a2 + 2ab+ 3b2 >

√
2(a+ b). �

Theorem 8. One has

log
I

G
=

1

2

∞∑
k=1

(b− a)k

k(k + 1)

[
(−1)k−1

ak
− 1

bk

]
, (50)

1

L
− 1

H
=

1

2

∞∑
k=1

(b− a)k

k + 1

[
(−1)k

ak+1
+

1

bk+1

]
, (51)
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L = A+
1

2

∞∑
k=1

(log a− log b)k

(k + 1)!

[
b+ (−1)ka

]
. (52)

Proof. Let f(x) = log x, f(x) =
1

x
, f(x) = ex respectively in (19) of

Theorem B. For example, for f(x) = ex, we get

eb − ea

b− a
=
ea + eb

2
+

1

2

∞∑
k=1

(b− a)k

(k + 1)!

[
ea + (−1)keb

]
.

Then replace a→ log a, b→ log b in order to deduce identity (52). �
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3.11 On some exponential means, II

1. Introduction

All the means that appear in this paper are functions M : R2
+ → R+

with the property that

min(a, b) ≤M(a, b) ≤ max(a, b), ∀ a, b > 0.

Of course M(a, a) = a,∀a > 0. As usual A,G,L, I, Ap denote the arith-

metic, geometric, logarithmic, identric, respectively power means of two

positive numbers, defined by

A = A(a, b) =
a+ b

2
, G = G(a, b) =

√
ab,

L = L(a, b) =
b− a

log b− log a
, I = I(a, b) =

1

e

(
bb

aa

)1/(b−a)

,

Ap = Ap(a, b) =

(
ap + bp

2

)1/p

, p 6= 0.

In [16], the first part of this paper, we have studied the exponential

mean

E = E(a, b) =
beb − aea

eb − ea
− 1

introduced in [23]. Another exponential mean was defined in [19] by

E = E(a, b) =
aeb − bea

eb − ea
+ 1.

It is the complementary of E, according to a definition from [4], i.e.

E = 2A− E. (1)

A basic inequality proved in [23] is

E > A, (2)
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which gives the new inequality

E < A.

More general means have been studied in [14], [17] and [19]. For ex-

ample, letting f(x) = ex in formula (5) from [14], we recapture (2). We

note that by selecting f(x) = log x in the formula (8) from [14], and then

f(x) = 1/x, we get the standard inequalities

G < L < I < A (3)

(for history see for example [7]).

In what follows, for any mean M we will denote byM the new mean

given by

M(x, y) = logM(ex, ey), x, y > 0.

As we put a = ex, b = ey and then take logarithms, we call this procedure

the exp-log method. The method will be applied also to some inequalities

for deriving new inequalities. For example, in [16] we proved that

E = I,

and so (3) becomes

A < L < E < A. (4)

In [16] was also shown that

A+A− L < E < 2L − A,

and

A2/3 < E < Alog 2

(see also [6] and [22]). In [9], the first author improved the inequality (2)

by

E >
A+ 2A

3
> A.
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This is based on the following identity proved there

(E − A)(a, b) =
A(ea, eb)

L(ea, eb)
− 1. (5)

We get the same result using the known result

I >
2A+G

3
>
(
A2G

)1/3
and the exp-log method.

The aim of this paper is to obtain other inequalities related to the

above means.

2. Main results

1. After some computations, the inequality (2) becomes

eb − ea

b− a
<
ea + eb

2
. (6)

This follows at once from the Hadamard inequality

1

b− a

∫ b

a

f(t)dt <
f(a) + f(b)

2
,

applied to the strictly convex function f(t) = et. We note that by the

second Hadamard inequality, namely

1

b− a

∫ b

a

f(t)dt > f

(
a+ b

2

)
,

for the same function, one obtains

eb − ea

b− a
> e

a+b
2 , (7)

which has been proposed as a problem in [3].
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The relation (4) improves the inequality (6), which means A > L,

and (7), which means L > A. In fact, by the above remarks one can say

that

E > A ⇐⇒ A > L. (8)

2. In [23] was proven that E is not comparable with Aλ for λ > 5/3.

Then in [17] we have shown, among others, that

A(a, b) < E(a, b) < A(a, b) · e|b−a|/2.

Now, if |b− a| becomes small, clearly e|b−a|/2 approaches to 1, i.e. the

conjecture E > Aλ of [23] cannot be true for any 1 < λ ≤ 5/3.

We get another double inequality from (1) and (2)

A < E < 2A.

These inequalities cannot be improved. Indeed, for 1 < λ < 2, we have

lim
x→∞

[E(1, x)− λA(1, x)] =∞,

but

E(1, 1)− λA(1, 1) = 1− λ < 0,

thus E is not comparable with λA.

On the other hand,

E(a, b) =
eb(a+ 1)− ea(b+ 1)

eb − ea
= (a+ 1)(b+ 1) · f(b)− f(a)

eb − ea
,

where f(x) = ex/(x+ 1). By Cauchy’s mean value theorem,

f(b)− f(a)

eb − ea
=
f ′(c)

ec
, c ∈ (a, b).

Since
f ′(c)

ec
=

c

(c+ 1)2
≤ 1

4
,
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we get

0 < 2A− E ≤ (a+ 1)(b+ 1)

4
.

3. By using the series representation

log
I

G
=
∞∑
k=1

1

2k + 1

(
b− a
b+ a

)2k

,

(see [9] and [21]), we can deduce the following series representation

(E − A)(a, b) =
∞∑
k=1

1

2k + 1

(
eb − ea

eb + ea

)2k

. (9)

By (6),

∣∣eb − ea∣∣
eb + ea

<
|b− a|

2
, thus we get the estimate

(E − A)(a, b) <
∞∑
k=1

1

2k + 1

(
b− a

2

)2k

.

The series is convergent at least for |b− a| < 2. Writing

A(ea, eb)

L(ea, eb)
= eA(a,b)−L(a,b),

the identity (5) implies the relation

E − A = eA−L − 1. (10)

This gives again the equivalence (8). But one can obtain also a stronger

relation by writing ex > 1 + x+ x2/2, for x > 0. Thus (10) gives

E − A > A− L+
1

2
(A− L)2 .

4. Consider the inequality proved in [10]

2

e
A < I < A.
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By the exp-log method, we deduce

log 2− 1 +A < E < A. (11)

From the inequality

I <
2

e
(A+G) =

4

e

(√
a+
√
b

2

)2

,

given in [5], we have, by the same method,

E(x, y) < 2 log 2− 1 + 2A
(x

2
,
y

2

)
. (12)

Relation (12) may be compared with the left side of (11). Take now the

relation

L < L(A,G) =
A−G
log A

G

from [5]. Since

A−G =
1

2

(√
a−
√
b
)2
,

one obtains

A− A <
1

2eL
(
ex/2 − ey/2

)2
.

The relation

L3 >

(
A+G

2

)2

G,

from [13], gives similarly

3L(x, y) > A(x, y) + 4A
(x

2
,
y

2

)
,

while the inequality

log
I

L
> 1− G

L
,

from [7], offers the relation

E − L > 1− eA−L.
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5. The exp-log method applied to the inequality

L >
√
GI,

given in [2] and [11], implies

L > A+ E

2
>

2A+A
3

.

On the other side, the inequality

I >
√
AL

proven in [11], gives on the same way the inequality

E >
A+ L

2
. (13)

After all we have the double inequality

A+ L
2

< E < 2L − A.

6. Consider now the inequality

3I2 < 2A2 +G2,

from [20]. It gives

log 3 + 2E < log
(
e2A + 2e2A

)
.

Similarly

I >
2A+G

3
,

given in [8], implies

log 3 + E > log
(
2eA + eA

)
. (14)

In fact, the relation

I >
A+ L

2
,
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from [7] gives

log 2 + E > log
(
eL + eA

)
, (15)

but this is weaker than (14), as follows from [8]. The inequalities (13)

and (15) can be combined as

E > log

(
eL + eA

2

)
>
L+A

2
,

where the second inequality is a consequence of the concavity of the

logarithmic function. We notice also that, by

L+ I < A+G,

given in [1], one can write

eL + eE < eA + eA.

7. In [9] was proved the inequality

I
(
a2, b2

)
<
A4(a, b)

I2(a, b)
.

By the exp-log method, we get

E(2x, 2y) < 4A(x, y)− 2E(x, y). (16)

It is interesting to note that by the equality

log
I2
(√

a,
√
b
)

I(a, b)
=
G(a, b)

L(a, b)
− 1,

given in [7], we have the identity

2E
(x

2
,
y

2

)
− E(x, y) = eA(x,y)−L(x,y) − 1. (17)

Putting x → x

2
, y → y

2
in (16), and taking into account (17), we can

write

2E(x, y) + eA(x,y)−L(x,y) − 1 < 4A
(x

2
,
y

2

)
.
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This may be compared to (12).

8. We consider now applications of the special Gini mean

S = S(a, b) =
(
aabb

)1/(a+b)
(see [15]). Its attached mean (by the exp-log method)

S(x, y) =
xex + yey

ex + ey
= logS(ex, ey),

is a special case of

Mf (x, y) =
xf(x) + yf(y)

f(x) + f(y)

which was defined in [18]. Using the inequality(
S

A

)2

<

(
I

G

)3

from [15], we get

2S − 2A < 3E − 3A.

The inequalities
A2

I
< S <

A4

I3
<
A2

G
given in [15] imply

2A− E < S < 4A− 3E < 2A− A.

These offer connections between the exponential means E and S.

Let now the mean

U = U(a, b) =
1

3

√
(2a+ b) (a+ 2b).

In [12] it is proved that

G <
4
√
U3G < I <

U2

A
< U < A.

By the exp-log method, we get

A <
1

4
(3U + A) < E < 2U −A < U < A.

These relations offer a connection between the means E and U .
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15. J. Sándor, I. Raşa, Inequalities for certain means of two arguments,

Nieuw Arch. Wiskunde, 15(1997), no. 1-2, 51-55.

16. J. Sándor, Gh. Toader, On some exponential means, Babeş-Bolyai
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3.12 On global bounds for generalized

Jensen’s inequality

1. Introduction

Let f : [a, b] → R be a convex function, and xi ∈ [a, b] for i =

1, 2, . . . , n. Let p = {pi},
n∑
i=1

pi = 1, pi > 0 (i = 1, n) be a sequence of

positive weights. Put x = {xi}. Then the Jensen functional Jf (p, x) is

defined by

Jf (p, x) =
n∑
i=1

pif(xi)− f

(
n∑
i=1

pixi

)
.

In a recent paper [7] the following global bounds have been proved:

Theorem 1. Let f, p, x be defined as above, and let p, q ≥ 0, p+q = 1.

Then

0 ≤ Jf (p, x) ≤ max
p

[pf(a) + qf(b)− f(pa+ qb)]. (1)

The left side of (1) is the classical Jensen inequality. Both bounds of

Jf (p, x) in (1) are global, as they depend only on f and the interval [a, b].

As it is shown in [7], the upper bound in relation (1) refines many ear-

lier results, and in fact it is the best possible bound. In what follows, we

will show that, this result has been discovered essentially by the present

author in 1991 [4], and in fact this is true in a general framework for pos-

itive linear functionals defined on the space of all continuous functions

defined on [a, b].

In paper [4], as a particular case of a more general result, the following

is proved:

Theorem 2. Let f, p, x as above. Then one has the double inequality:

f

(
n∑
i=1

pixi

)
≤

n∑
i=1

pif(xi)
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≤

(
n∑
i=1

pixi

)[
f(b)− f(a)

b− a

]
+
bf(a)− af(b)

b− a
. (2)

The right side of (2) follows from the fact that the graph of f is below

the graph of line passing through the points (a, f(a)), (b, f(b)):

f(x) ≤ (x− a)
f(b)

b− a
+ (b− x)

f(a)

b− a
.

By letting x = xi, and multiplying both sides with pi, after summation

we get the right side of (2) (the left side is Jensen’s inequality).

Now, remark that the right side of (2) can be written also as

f(a)


b−

n∑
i=1

pixi

b− a

+ f(b)


n∑
i=1

pixi − a

b− a

 .
Therefore, by denoting

b−
n∑
i=1

pixi

b− a
= p and

n∑
i=1

pixi − a

b− a
= q,

we get p ≥ 0, p+ q = 1 and
n∑
i=1

pixi = pa+ qb. Thus, from (2) we get

0 ≤ Jf (p, x) ≤ pf(a) + qf(b)− f(pa+ qb) (3)

and this immediately gives Theorem 1.

2. An extension

Let C[a, b] denote the space of all continuous functions defined on

[a, b], and let L : C[a, b]→ R be a linear and positive functional defined

on C[a, b] i.e. satisfying

L(f1 + f2) = L(f1) + L(f2), L(λf) = λL(f) (λ ∈ R)
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and L(f) ≥ 0 for f ≥ 0.

Define ek(x) = xk for x ∈ [a, b] and k = 0, 1, 2, . . ..

The following result has been discovered independently by A. Lupaş

[2] and J. Sándor [4]:

Theorem 3. Let f be convex and L, ek as above and suppose that

L(e0) = 1. Then we have the double inequality

f(L(e1)) ≤ L(f) ≤ L(e1)

[
f(b)− f(a)

b− a

]
+
bf(a)− af(b)

b− a
. (4)

We note that the proof of (4) is based on basic properties of convex

functions (e.g. f ∈ C[a, b]). Particularly, the right side follows on similar

lines as shown for the right side of (2).

Define now the generalized Jensen functional as follows:

Jf (L) = L(f)− f(L(e1)).

Then the following extension of Theorem 1 holds true:

Theorem 4. Let f , L, p, q be as above. Then

0 ≤ Jf (L) ≤ max
p

[pf(a) + qf(b)− f(pa+ qb)] = Tf (a, b). (5)

Proof. This is similar to the method shown in the case of Theorem

2. Remark that the right side of (4) can be rewritten as

f(a)p+ f(b)q,

where

p =
b− L(e1)

b− a
and q =

L(e1)− a
b− a

.

As e1(x) = x and a ≤ x ≤ b, we get a ≤ L(e1) ≤ b, the functional

L being a positive one. Thus p ≥ 0, q ≥ 0 and p + q = 1. Moreover,

L(e1) = pa+ qb; so relation (5) is an immediate consequence of (4).

By letting

L(f) =
n∑
i=1

pif(xi),
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which is a linear and positive functional, we get Jf (L) = Jf (p, x), so

Theorem 1 is reobtained.

Let now k : [a, b]→ R be a strictly positive, integrable function, and

g : [a, b]→ [a, b] such that f [g(x)] is integrable on [a, b]. Define

Lg(f) =

∫ b

a

k(x)f [g(x)]dx∫ b

a

k(x)dx

.

It is immediate that Lg is a positive linear functional, with Lg(e0) = 1.

Since

L(e1) =

∫ b

a

k(x)g(x)dx∫ b

a

k(x)dx

,

by denoting

Jf (k, g) =

∫ b

a

k(x)f [g(x)]dx∫ b

a

k(x)dx

− f


∫ b

a

k(x)g(x)dx∫ b

a

k(x)dx

 ,

we can deduce from Theorem 4 a corollary. Moreover, as in the discrete

case, the obtained bound is best possible:

Theorem 5. Let f, k, g as above, and let p, q ≥ 0, p+ q = 1. Then

0 ≤ Jf (k, g) ≤ Tf (a, b). (6)

The upper bound in (6) is best possible.

Proof. Relation (6) is a particular case of (5) applied to Lg and

Jf (k, g) above.

In order to prove that the upper bound in (6) is best possible, let

p0 ∈ [0, 1] be the point at which the maximum Tf (a, b) is attained (see

[7]). Let c ∈ [a, b] be defined as follows:∫ c

a

k(x)dx = p0

∫ b

a

k(x)dx. (7)
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If p0 = 0 then put c = a; while for p0 = 1, put c = b. When p0 ∈ (0, 1)

remark that the application

h(t) =

∫ t

a

k(x)dx− p0
∫ b

a

k(x)dx

has the property h(a) < 0 and h(b) > 0; so there exist t0 = c ∈ (a, b)

such that h(c) = 0, i.e. (7) is proved.

Now, select g(x) as follows:

g(x) =

 a, if a ≤ x ≤ c

b, if c ≤ x ≤ b.

Then ∫ b

a

k(x)g(x)dx/

∫ b

a

k(x)dx = a

∫ c

a

k(x)dx/

∫ b

a

k(x)dx

+b

∫ b

a

k(x)dx/

∫ b

a

k(x)dx = ap0 + bq0,

where q0 = 1− p0.
On the other hand,∫ b

a

k(x)f [g(x)]dx/

∫ b

a

k(x)dx = f(a)

∫ c

a

k(x)dx/

∫ b

a

k(x)dx

+f(b)

∫ b

c

k(x)dx/

∫ b

a

k(x)dx = p0f(a) + q0f(b).

This means that

Jf (k, g) = p0f(a) + q0f(b)− f(ap0 + bq0) = Tf (a, b).

Therefore, the equality is attained at the right side of (6), which means

that this bound is best possible.
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3. Applications

a) The left side of (6) is the generalized form of the famous Jensen

integral inequality

f


∫ b

a

k(x)g(x)dx∫ b

a

k(x)dx

 ≤
∫ b

a

k(x)f [g(x)]dx∫ b

a

k(x)dx

, (8)

with many application in various fields of Mathematics.

For f(x) = − lnx, this has a more familiar form.

Now, the right side of (4) applied to L = Lg gives the inequality∫ b

a

k(x)f [g(x)]dx∫ b

a

k(x)dx

≤ b− u
b− a

f(a) +
u− a
b− a

f(b), (9)

where

u = L(e1) =

∫ b

a

k(x)g(x)dx∫ b

a

k(x)dx

.

Inequalities (8) and (9) offer an extension of the famous Hadamard in-

equalities (or Jensen-Hadamard, or Hermite-Hadamard inequalities) (see

e.g. [1], [3], [4])

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
. (10)

Applying (8) and (9) for g(x) = x, we get from (8) and (9):

f(v) ≤

∫ b

a

k(x)f(x)dx∫ b

a

k(x)dx

≤ (b− v)f(a) + (v − a)f(b)

b− a
, (11)
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where

v =

∫ b

a

xk(x)dx∫ b

a

k(x)dx

.

When k(x) ≡ 1, inequality (11) reduces to (10).

b) Let a, b > 0 and

G = G(a, b) =
√
ab;

L = L(a, b) =
b− a

ln b− ln a
(a 6= b), L(a, a) = a,

I = I(a, b) =
1

e
(bb/aa)1/(b−a) (a 6= b), I(a, a) = a

be the well-known geometric, logarithmic and identric means.

In our paper [5] the following generalized means have been introduced

(assume a 6= b):

ln Ik(a, b) =

∫ b

a

k(x) lnxdx/

∫ b

a

k(x)dx,

Ak(a, b) =

∫ b

a

xk(x)dx/

∫ b

a

k(x)dx,

Lk(a, b) =

∫ b

a

k(x)dx/

∫ b

a

k(x)/xdx,

G2
k(a, b) =

∫ b

a

k(x)dx/

∫ b

a

k(x)/x2dx.

Clearly, I1 ≡ I, A1 ≡ A, L1 ≡ L, G1 ≡ G.

Applying inequality (6) for f(x) = − lnx, and using the fact that in

this case Tf (a, b) = ln
L · I
G2

(see [7]), we get the inequalities

0 ≤ ln


∫ b

a

k(x)g(x)dx∫ b

a

k(x)dx

−
∫ b

a

k(x) ln g(x)dx∫ b

a

k(x)dx

≤ ln
L · I
G2

. (12)
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For g(x) = x, with the above notations, we get

1 ≤ Ak
Ik
≤ L · I

G2
. (13)

Applying the right side of inequality (11) for the same function

f(x) = − lnx

we get
Ak
L
≤ 1 + ln

(
I · Ik
G2

)
, (14)

where we have used the remark that

ln(e · I) =
b ln b− a ln a

b− a
and lnG2 − ln(e · I) =

b ln a− a ln b

b− a
.

Note that the more complicated inequality (14) is a slightly stronger

than the right side of (13), as by the classical inequality lnx ≤ x − 1

(x > 0) one has

ln

(
I · Ik
G2

)
+ 1 ≤ I · Ik

G2
,

so
Ak
L
≤ 1 + ln

(
I · Ik
G2

)
≤ I · Ik

G2
.

These inequalities seem to be new even in the case k(x) ≡ 1. For

k(x) = ex one obtains the exponential mean Aex = E, where

E(a, b) =
beb − aea − 1

b− a
.

The mean Iex has been called as the ”identric exponential mean” in

[6], where other inequalities for these means have been obtained.

c) Applying inequality (6) for g(x) = lnx, f(x) = ex, we get

0 ≤ Ak − Ik ≤
eb − ea

b− a
ln

(
eb − ea

b− a

)
+
bea − aeb

b− a
− eb − ea

b− a
, (15)

297



where the right hand side is Tf (a, b) for f(x) = ex. This may be rewritten

also as

0 ≤ Ak(a, b)− Ik(a, b) ≤ 2[A(x, y)− L(x, y)]− L(x, y) ln
I(x, y)

L(x, y)
, (15′)

where ea = x, eb = y.

As in [5] it is proved that ln
I

L
≥ L−G

L
, the right side of (15′) implies

0 ≤ Ak(a, b)− Ik(a, b) ≤ 2A(x, y) +G(x, y)− 3L(x, y). (15′′)

d) Finally, applying (11) for f(x) = x lnx and k(x) replaced with

k(x)/x, we can deduce

lnLk ≤ ln Ik ≤ 1 + ln I − G2

L · Lk
, (16)

where the identity
b ln b− a ln a

b− a
= ln I + 1

has been used. We note that for k(x) ≡ 1, inequality (16) offers a new

proof of the classical relations

G ≤ L ≤ I.
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Chapter 4

Means and their Ky Fan type

inequalities

“In some sense all insights come suddenly, usually

in some impure form which is clarified later.”

(G. Faltings)

“The elegance of a mathematical theorem is directly

proportional to the number of independent ideas one can

see in the theorem and inversely proportional to the effort

it takes to see them.”

(G. Pólya)

4.1 On an inequality of Ky Fan

1

In the famous book [3] one can find the following ”unpublished result

due to Ky Fan”:
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If xi ∈
(

0,
1

2

]
, (i = 1, 2, . . . , n), then


n∏
i=1

xi

n∏
i=1

(1− xi)


1/n

≤

n∑
i=1

xi

n∑
i=1

(1− xi)
(1)

with equality only if x1 = x2 = . . . = xn.

This inequality can be established by forward and backward induction

([5], [3]) a method used by Cauchy to prove the inequality between the

arithmetic and geometric means. In [7] N. Levinson has published the

following beautiful generalization of (1):

Let xi ∈
(

0,
1

2

]
, (i = 1, 2, . . . , n) and suppose that the function f has

a nonnegative third derivative on

(
0,

1

2

)
. Then

1

n

n∑
i=1

f(xi)− f(An) ≤ 1

n

n∑
i=1

f(1− xi)− f(A′n) (2)

where the notations are introduced below.

For further extensions of Levinson’s result, see T. Popoviciu [11] and

P.S. Bullen [4]. Recently, H. Alzer [1], by answering a question asked by

C.-L. Wang: ”Are there more proofs of inequality (1) in addition to the

one by Levinson and the original, unpublished one?”, has obtained two

new proof of Ky Fan’s inequality. Our aim is to add one more proof of (1)

to be the above list, by showing that (1) is equivalent with an inequality

of P. Henrici [6], and to obtain some connected results.

2

Let xi ∈ (0, 1), (i = 1, 2, . . . , n). We denote by

An(x) = An, Gn(x) = Gn and Hn(x) = Hn
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(resp. A′n, G′n and H ′n) the arithmetic, geometric and harmonic means of

x1, . . . , xn (resp. 1− x1, . . . , 1− xn), i.e.

An =
1

n

n∑
i=1

xi, Gn =

(
n∏
i=1

xi

)1/n

, Hn =
n

n∑
i=1

1

xi

,

A′n =
1

n

n∑
i=1

(1− xi), G′n =

[
n∏
i=1

(1− xi)

]1/n
, H ′n =

n
n∑
i=1

1

1− xi

.

(3)

In 1956 P. Henrici [6] proved the following result:

Let ai ≥ 1, (i = 1, 2, . . . , n) and denote

Pn =
n∑
i=1

1

1 + ak
, Qn(a) =

n

1 + n
√
a1 . . . an

.

Then

Pn(a) ≥ Qn(a), with equality only if a1 = . . . = an. (4)

For 0 ≤ ai ≤ 1, (i = 1, 2, . . . , n), we have

Pn(a) ≤ Qn(a). (5)

Now we prove the surprising result that (4) and (1) are equivalent. Indeed,

suppose first that xi ∈
(

0,
1

2

]
and select

ai =
1− xi
xi

=
1

xi
− 1, (i = 1, 2, . . . , n)

in (4). Clearly ai ≥ 1, so we get:

An ≥
Gn

Gn +G′n
or AnG

′
n ≥ Gn(1− An).

Since An + A′n = 1 (see (3)) this means that

An
A′n
≥ Gn

G′n
(6)
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that is, inequality (1). Conversely, suppose (1) is true with xi ∈
(

0,
1

2

]
and put

xi =
1

1 + ai
, (i = 1, 2, . . . , n)

in (1). Then ai ≥ 1 and after some elementary transformations we get

(4).

Remark 2.1. An interesting simple proof for (4) (and (5)) can be

obtained by the well-known Sturm method ([13], [5]): supposing that not

all the a’s are equal, e.g. a1 < Gn(a), a2 > Gn(a), replace a1 by Gn(a) and

a2 by a1a2/Gn(a). Then Qn(a) remains unchanged while Pn(a) decreases,

etc. On the base of the above simple equivalence, perhaps would be more

convenient to call (1) as the ”Henrici-Fan” inequality.

3

Applying (4) for ai = (1− xi)k/xki , k ≥ 1, we get:

An,k
A′n,k

≥ Gk
n

G′kn
(7)

where

An,k =
1

n

n∑
i=1

xki
xki + (1− xi)k

and A′n,k is obtained from An,k by replacing xi with 1−xi. This generalizes

inequality (6).

For another generalization we consider an extension of (4), namely:

If bi ≥ 1, ai > 0 (i = 1, 2, . . . , n) and
n∑
i=1

ai = 1, then

n∑
i=1

ai
1 + bi

≥ 1

1 +
n∏
i=1

baii

(8)
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To prove this relation, we apply Jensen’s inequality

f

(
n∑
i=1

aiti

)
≤

n∑
i=1

aif(ti)

for the function f : [0,∞) → R, defined by f(t) = (1 + et)−1 which is

convex, since

f ′′(t) =
et(et − 1)

(1 + et)3
≥ 0.

From the inequality

n∑
i=1

ai
1 + eti

≥ 1

1 + e
∑
aiti

,

by replacing et = bi ≥ 1, we get the proposed inequality (8).

Let now bi = 1/xi − 1 in (8). Since 0 < xi ≤ 1/2, clearly bi ≥ 1.

Because

1−
n∑
i=1

aixi =
n∑
i=1

ai(1− xi),

a simple computation gives:

n∏
i=1

xaii

n∏
i=1

(1− xi)ai
≤

n∑
i=1

aixi

n∑
i=1

ai(1− xi)
(9)

where, as we have supposed,

n∑
i=1

ai = 1.

For ai = 1/n (i = 1, . . . , n), we can reobtain (6).
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4

An inequality of W. Sierpinski [12], [9] says that

(Hn(a))n−1An(a) ≤ (Gn(a))n ≤ (An(a))n−1Hn(a). (10)

Set ai = (1− xi)/xi for δ < xi < 1 (i = 1, 2, . . . , n). One obtains:(
1−H ′n
H ′n

)n−1
· Hn

1−Hn

≥
(
Gn

G′n

)n
≥
(

Hn

1−Hn

)n−1
· 1−H ′n

H ′n
(11)

where we have used the following relations:

n∑
i=1

xi
1− xi

=
n(1−H ′n)

H ′n
,

n∑
i=1

1− xi
xi

=
n(1−Hn)

Hn

. (12)

It would be interesting to compare this double inequality with the fol-

lowing ones: (
An
A′n

)n−1
Hn

H ′n
≥
(
Gn

G′n

)n
≥

(
Hn

H ′n

)n−1
An

A′n
(13)

obtained recently by H. Alzer [2]. (Here xi ∈
(

0,
1

2

]
).

A related result can be obtained with the use of the function

g : (0, 1)→ R, g(x) =
x

1− x
,

which is convex:
An
A′n
≤ 1−H ′n

H ′n
, xi ∈ (0, 1) (14)

This is complementary to (6). We note that in [14] is proved that

Gn

G′n
≥ Hn

H ′n
for xi ∈

(
0,

1

2

]
(15)

From (14) and (15) it follows also Hn +H ′n ≤ 1 which can be proved by

other ways, too (e.g. by Hn +H ′n ≤ Gn +G′n ≤ 1).
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Let us introduce now the notations

Mn =

(
1

n

n∑
i=1

x3i

)1/3

and M ′
n =

(
1

n

n∑
i=1

(1− xi)3
)1/3

and assume that f : [a, b] → R, a < b, has a continuous third derivative

on [a, b]. Denote

m3(f) = min{f (3)(x) : x ∈ [a, b]}, M3(f) = max{f (3)(x) : x ∈ [a, b]}

and introduce the functions f1, f2 by

f1(t) = f(t)− t3

6
·m3(f), f2(t) =

t3

6
·M3(f)− f(t), t ∈ [a, b].

Then, obviously, f1, f2 ∈ C3[a, b] with

f
(3)
1 (x) = f (3)(x)−m3(f) ≥ 0, f

(3)
2 (x) = M3(f)− f (3)(x) ≥ 0.

Supposing that [a, b] ⊂
(

0,
1

2

]
, we can apply relation (2) for these two

functions, thus giving the following improvement:

1

n

n∑
i=1

f(xi)− f(An) +
m3(f)

6
Dn ≤

1

n

n∑
i=1

f(1− xi)− f(A′n)

≤ 1

n

n∑
i=1

f(xi)− f(An) +
M3(f)

6
Dn (16)

where

Dn = (M ′3
n − A′3n )− (M3

n − A3
n) ≥ 0

which is a consequence of (2) applied with f(x) = x3. Since Dn ≥ 0, (16)

is indeed an improvement of (2).

Selecting f(t) = ln t, 0 < a < b, xi ∈ [a, b] ⊂
(

0,
1

2

]
, i = 1, 2, . . . , n,

we can derive the following refinement of Fan’s inequality:

Gn

G′n
· exp

Dn

3b3
≤ An
A′n
≤ Gn

G′n
· exp

Dn

3a3
. (17)

307



Letting f(t) = 1/t in (16), we get an additive analogue of the Ky Fan

inequality:

1

Hn

− 1

An
− 1

a4
Dn ≤

1

H ′n
− 1

A′n
≤ 1

Hn

− 1

An
− 1

b4
Dn. (18)

6

Choose n = m + 1, x1 = . . . = xm = x and xm+1 = y in (5). This

gives us [
mx+ y

m− (mx+ y)

]m+1

≥ xmy

(1− x)m(1− y)
, x, y ∈

(
0,

1

2

]
. (19)

Set x = (x1 + . . . + xm)/m, y = xm+1 in (19). After simple calculations

we get (
Am+1G

′
m+1

A′m+1Gm1

)m+1

≥
(
AmG

′
m

A′mGm

)m
≥ 1 (20)

providing a ”Popoviciu-type” inequality (see [5], [8]).

D.S. Mitrinović and P.M. Vasić [10] have obtained the following result

connected with Henrici’s inequality:

If a1 . . . am ≥ 1 and am+1 ≥ (a1 . . . am)−1/(m+2) (m ≥ 1), then

Pm+1(a)−Qm+1(a) ≥ Pm(a)−Qm(a), (21)

with Pm(a) and Qm(a) defined as in 2. If ai ≥ 1 (i = 1, . . . ,m+ 1), then

clearly the conditions are satisfied, so by setting ai = (1 − xi)/xi, we

obtain:

(m+ 1)(Gm +G′m)(Am+1G
′
m+1 − A′m+1Gm+1)

≥ m(Gm+1 +G′m+1)(AmG
′
m − A′mGm) (22)

giving a ”Rado-type” inequality ([5], [8]). This contains also a refinement

of (6). This note is a version of our paper [15], published in 1990.
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4.2 A refinement of the Ky Fan inequality

1

Let x1, . . . , xn be a sequence of positive real numbers lying in the open

interval ]0, 1[, and let An, Gn and Hn denote their arithmetic, geometric

and harmonic mean, respectively, i.e.

An =
1

n

n∑
i=1

xi, Gn =

(
n∏
i=1

xi

)1/n

, Hn =
n

n∑
i=1

1

xi

.

Further, let A′n, G′n and H ′n denote the arithmetic, geometric and har-

monic mean, respectively, of 1− x1, . . . , 1− xn, i.e.

A′n =
1

n

n∑
i=1

(1− xi), Gn =

(
n∏
i=1

(1− xi)

)1/n

, Hn =
n

n∑
i=1

1

1− xi

.

The arithmetic-geometric mean inequality Gn ≤ An (and its weighted

variant) played an important role in the development of the theory of

inequalities. Because of its importance, many proofs and refinements have

been published. In 1961, a remarkable new counterpart of the AM-GM

inequality was published in the famous book [7]:

Theorem 1. If xi ∈]0, 1/2] for all i ∈ {1, . . . , n}, then

Gn

G′n
≤ An
A′n

, (1)

with equality holding if and only if x1 = . . . = xn.

Inequality (1), which is due to Ky Fan, has evoked the interest of

several mathematicians, and different proofs as well as many extensions,

sharpenings, and variants have been published. For proofs of (1) the

reader is referred to [3], [6], [16], [17]. Refinements of (1) are proved in

[1], [5], [6], [18], while generalizations can be found in [9], [11], [19], [21].
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For converses and related results see [2], [4], [14]. See also the survey

paper [6].

In 1984, Wang and Wang [20] established the following counterpart

of (1):
Hn

H ′n
≤ Gn

G′n
. (2)

For extension to weighted means and other proofs of (2) see, for instance,

[6] and [18].

In 1990, J. Sándor [15, relation (33)] proved the following refinement

of (1) in the case of two arguments (i.e. n = 2):

G

G′
≤ I

I ′
≤ A

A′
, (3)

where G = G2, G
′ = G′2 etc. and I denotes the so-called identric mean

of two numbers:

I(x1, x2) =
1

e

(
xx22
xx11

)1/(x2−x1)

, if x1 6= x2

I(x, x) = x.

Here I ′(x1, x2) = I(1− x1, 1− x2) and x1, x2 ∈]0, 1/2].

In what follows, inequality (3) will be extended to the case of n ar-

guments, thus giving a new refinement of Ky Fan inequality (1).

2

Let n ≥ 2 be a given integer, and let

An−1 = {(λ1, . . . , λn−1) | λi ≥ 0, i = 1, . . . , n− 1, λ1 + . . .+ λn−1 ≤ 1}

be the Euclidean simplex. Given X = (x1, . . . , xn) (xi > 0 for all i ∈
{1, . . . , n}), and a probability measure µ onAn−1, for a continuous strictly

monotone function f :]0,∞[→ R, the following functional mean of n

arguments can be introduced:

Mf (X;µ) = f−1
(∫

An−1

f(X · λ)dµ(λ)

)
, (4)
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where

X · λ =
n∑
i=1

xiλi

denotes the scalar product,

λ = (λ1, . . . , λn−1) ∈ An−1 and λn = 1− λ1 − . . .− λn−1.

For µ = (n− 1)! and f(t) = 1/t, the unweighted logarithmic mean

L(x1, . . . , xn) =

(
(n− 1)!

∫
An−1

1

X · λ
dλ1 . . . dλn−1

)−1
(5)

is obtained. For properties and an explicit form of this mean, the reader

is referred to [13].

For f(t) = log t we obtain a mean, which can be considered as a

generalization of the identric mean

I(X;µ) = exp

(∫
An−1

log(X · λ)dµ(λ)

)
. (6)

Indeed, it is immediately seen that for the classical identric mean of two

arguments one has

I(x1, x2) = exp

(∫ 1

0

log(tx1 + (1− t)x2)dt
)
.

For µ = (n − 1)! we obtain the unweighted (and symmetric) identric

mean of n variables

I(x1, . . . , xn) = exp

(
(n− 1)!

∫
An−1

log(X · λ)dλ1 . . . dλn−1

)
, (7)

in analogy with (5). It should be noted that (7) is a special case of (4),

which has been considered in [13]. The mean (4) even is a special case

of the B.C. Carlson’s function M (see [8, p. 33]). For an explicit form of

I(x1, . . . , xn) see [12].
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Let n ≥ 2, let µ be a probability measure of An−1, and let i ∈
{1, . . . , n}. The ith weight wi associated to µ is defined by

wi =

∫
An−1

λidµ(λ), if 1 ≤ i ≤ n− 1, (8)

wn =

∫
An−1

(1− λ1 − . . .− λn−1)dµ(λ),

where λ = (λ1, . . . , λn−1) ∈ An−1. Obviously, wi > 0 for all i ∈ {1, . . . , n}
and w1 + . . . + wn = 1. Moreover, if µ = (n − 1)!, then wi = 1/n for all

i ∈ {1, . . . , n}.
We are now in a position to state the main result of the paper, a

weighted improvement of the Ky Fan inequality.

Theorem 2. Let n ≥ 2, let µ be a probability measure on An−1 whose

weights w1, . . . , wn are given by (8), and let xi ∈]0, 1/2] (i = 1, . . . , n).

Then

n∏
i=1

xwii

n∏
i=1

(1− xi)wi
≤ I(x1, . . . , xn;µ)

I(1− x1, . . . , 1− xn;µ)
≤

n∑
i=1

wixi

n∑
i=1

wi(1− xi)
. (9)

Proof. First remark that the function φ :]0, 1/2]→ R defined by

φ(t) = log t− log(1− t)

is concave. Consequently

n∑
i=1

wiφ(xi) ≤
∫
An−1

φ(X · λ)dµ(λ) ≤ φ

(
n∑
i=1

wixi

)
. (10)

This inequality has been established in [10]. From (10), after a simple

computation we deduce (9). �
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3

Remark. For µ = (n − 1)!, inequality (9) reduces to the following

unweighted improvement of the Ky Fan inequality, which generalizes (3):

Gn

G′n
≤ In
I ′n
≤ An
A′n

.

Here In = I(x1, . . . , xn), while I ′n = I(1− x1, . . . , 1− xn).
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4.3 A converse of Ky Fan’s inequality

Let xi ∈
(
0, 1

2

]
, i = 1, n, and let An, Gn, Hn denote the arithmetic,

geometric, resp. harmonic means of these numbers. Put A′n, G
′
n, H

′
n for

the corresponding means of the numbers 1 − xi. The famous inequality

of Ky Fan (see [1]) states that

Gn

G′n
≤ An
A′n

. (1)

Suppose that m > 0 and xi ∈
[
m, 1

2

]
. Then the following converse of (1)

is true:

Theorem 1.

An
A′n
≤ Gn

G′n
exp

[
(An −Gn)

1

m(1−m)

]
. (2)

Proof. We shall obtain a slightly stronger relation. Let us define

f(x) =
x

1− x
exp

{(
1− x

m

) 1

m

}
, where x ∈

[
m,

1

2

]
.

Then
f ′(x)

f(x)
=

1

x(1− x)
− 1

m(1−m)
≤ 0 for x ≥ m,

since the function g(x) = x(1 − x) is strictly increasing on
[
0, 1

2

]
. Thus

the function f is non-increasing on
[
m, 1

2

]
. Suppose that m ≤ x1 ≤ x2 ≤

. . . ≤ xn ≤
1

2
. Then, since m ≤ Gn ≤ An, we have f(An) ≤ f(Gn) so

that
An
A′n
≤ Gn

1−Gn

exp

[
(An −Gn)

1

m(1−m)

]
. (3)

Theorem 2. (Gn +G′n)n ≤ (Gn−1 +G′n−1)
n−1 ≤ 1 for all n ≥ 2.

Proof. Let us consider the application f : (0, 1)→ R, defined by

f(x) = (x1 . . . xn−1x)1/n + [(1− x1) . . . (1− xn−1)(1− x)]1/n.

We have

f ′(x) =
1

n
(x1 . . . xn−1)

1
xx

1
n
−1 − 1

n
[(1− x1) . . . (1− xn−1)]

1
n (1− x)

1
n
−1,
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so f ′(x) = 0 iff x = x0 =
Gn−1

Gn−1 +G′n−1
. Since

f ′′(x) =
1

n

(
1

n
− 1

)
(x1 . . . xn−1)

1
nx

1
n
−2

+
1

n

(
1

n
− 1

)
[(1− x1) . . . (1− xn−1)]

1
n (1− x)

1
n
−2 ≤ 0

we observe that f is a concave function. It is well known (see e.g. [1])

that then x0 must be a maximum point on (0, 1), implying f(xn) ≤ f(x0).

After some simple calculations this gives

Gn +G′n ≤ (Gn−1 +G′n−1)
n−1
n ,

i.e. the first relation of Theorem.
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4.4 On certain new Ky Fan type

inequalities for means

1

Let xk > 0, k = 1, 2, . . . , n and put

An = An(x) =
1

n

n∑
k=1

xk,

Gn = Gn(x) = n

√√√√ n∏
k=1

xk

for the arithmetic, respective geometric means of x = (x1, x2, . . . , xn). If

1− x = (1− x1, 1− x2, . . . , 1− xn)

we denote, as usual,

A′n = A′n(x) = An(1− x), G′n = G′n(x) = Gn(1− x)

for 0 < xk < 1, k = 1, 2, . . . , n. The famous Ky Fan inequality states

that for all xk ∈
(

0,
1

2

]
, k = 1, 2, . . . , n one has:

An
A′n
≥ Gn

G′n
. (1)

In 1990 [4] we have proved the surprising fact that inequality (1) is equiv-

alent to an inequality of Henrici [3] from 1956:

n∑
k=1

1

1 + ak
≥ n

1 + n

√√√√ n∏
k=1

xk

(2)
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for ak ≥ 1, k = 1, 2, . . . , n. Indeed, if xk ∈
(

0,
1

2

]
, select ak =

1

xk
− 1 ≥ 1

in (2). We get from (2) that

An ≥
Gn

Gn +G′n
or AnG

′
n ≥ Gn(1− An) = GnA

′
n.

Thus, relation (1) follows. Conversely, if (1) is true with xk ∈
(

0,
1

2

]
, then

by letting xk =
1

1 + ak
, where ak ≥ 1, from (2) after some transformations

we get inequality (2).

For weighted variants of (1), as well as some Radó or Popoviciu type

Ky Fan inequalities, see [4], [5]. See also [6].

2

Let xk > 0, k = 1, 2, . . . , n and α ∈ (0, 1]. We introduce the following

notations

1− αx = (1− αx1, 1− αx2, . . . , 1− αxn)

and

Aαn = Aαn(x) = An(1− αx), Gα
n = Gα

n(x) = Gn(1− αx)

for 0 < xk <
1

α
, k = 1, 2, . . . , n.

The function f(x) =
1

α + ex
is convex, because

f ′′(x) =
ex(ex − α)

(α + ex)3
> 0

and from Jensen’s inequality, we get:

n∑
k=1

1

α + eln ak
≥ n

α + e
1
n

n∑
k=1

ln ak

. (4)
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If ln ak = xk, k = 1, 2, . . . , n, we obtain the inequality:

n∑
k=1

1

α + xk
≥ n

α + n

√√√√ n∏
k=1

xk

(3)

If xk ∈
(

0,
1

1 + α

]
, k = 1, 2, . . . , n, select xk =

1

xk
− α, k = 1, 2, . . . , n in

(3). We get from (3), that

An ≥
Gn

αGn +Gα
n

on the surprising inequality

An
Gn

≥ Aαn
Gα
n

(5)

which is a generalization of Ky Fan inequality (for α = 1, we get relation

(1)).

3

If xk, pk > 0, k = 1, 2, . . . , n and

An(p, x) =

n∑
k=1

pkxk

n∑
k=1

pk

, Gn(p, x) =

(
n∏
k=1

xpkk

) 1
n∑
k=1

pk

,

then we introduce the following notation

Aαn(p, x) = An(p; 1− αx) and Gα
n(p, x) = Gn(p; 1− αx),

where α ∈ (0, 1], xk ∈
(

0,
1

α

)
, k = 1, 2, . . . , n.
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Using the weighted version of Jensen’s inequality in (4) we get

n∑
k=1

pk
α + xk

≥

n∑
k=1

pk

α +

(
n∏
k=1

xpkk

) 1
n∑
k=1

pk

(5)

Indeed, if xk ∈
(

0,
1

α + 1

]
, k = 1, 2, . . . , n select xk =

1

xk
− α, k =

1, 2, . . . , n in (5). We get from (5) that

An(p, x) ≥ Gn(p, x)

αGn(p, x) +Gα
n(p, x)

or the inequality
An(p, x)

Gn(p, x)
≥ Aαn(p, x)

Gα
n(p, x)

(6)

which is a new generalization of Ky Fan inequality (for α = 1, p = 1 we

get relation (1)).

4

In 1970 Klamkin and Newman [2], by extending certain Weierstrass

type inequalities, have shown that (their notation):

n∏
k=1

(1− Ak) ≥

 1− S1

n(
S1

n

)a2

n

n∏
k=1

Aa
2

k (7)

where 0 < Ak ≤
a

a+ 1
, S1 =

n∑
k=1

Ak.

To simplify this inequality, put Ak = xk, k = 1, 2, . . . , n and use the

notations of section 1. After some simplifications, we get the inequality

Aa
2

n

A′n
≥ Ga2

n

G′n
(8)
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for 0 < xk ≤
a

a+ 1
, k = 1, 2, . . . , n.

This is an extension of the Ky Fan inequality, as for a = 1 we get

exactly relation (1).

5

In 1990 H. Alzer [1] proved some other Weierstrass type inequalities.

One of his results states that

n∏
k=1

xk
1− xk

≤
1 + 2

n∑
k=1

xk

1 + 2
n∑
k=1

(1− xk)
(9)

for xk ∈
(

0,
1

2

]
, k = 1, 2, . . . , n. By the notation of section 1, this may

be rewritten also as(
Gn

G′n

)n
≤ 1 + 2nAn

1 + 2nA′n
for 0 < xk ≤

1

2
, k = 1, 2, . . . , n. (10)

We note here that in fact one has(
An
A′n

)n
≤ 1 + 2nAn

1 + 2nA′n
. (11)

Since this may be written also as

Ann + 2nAnn(A′n)n ≤ (A′n)n + 2n(A′n)n · Ann

and this is true by An ≤ A′n = 1−An or An ≤
1

2
. Indeed Ann ≤ (A′n)n and

2nAnn(A′n)n ≤ 2n(A′n)nAn, since this last inequality is An−1n ≤ (A′n)n−1

and for n ≥ 1 this is true again. In view of (1), we can write(
Gn

G′n

)n
≤
(
An
A′n

)n
≤ 1 + 2nAn

1 + 2nA′n
. (12)
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Another inequality from [1] states that for xk ∈
(

0,
1

2

]
, k = 1, 2, . . . , n

1 +
n∑
k=1

xk

1 +
n∑
k=1

(1− xk)
≤

1 +
n∏
k=1

xk

1 +
n∏
k=1

(1− xk)
(13)

We can write (13) as

1 + nAn
1 + nA′n

≤ 1 +Gn
n

1 + (G′n)n
(14)

Now, remark that
1 + 2nAn
1 + 2nA′n

≤ 1 + nAn
1 + nA′n

by A′n ≥ An, so by (12) and (14) the following chain of inequalities holds

true (
Gn

G′n

)n
≤
(
An
A′n

)n
≤ 1 + 2nAn

1 + 2nA′n
≤ 1 + nAn

1 + nA′n
≤ 1 +Gn

n

1 + (G′n)n
. (15)

By the well-known inequality

n∏
k=1

(ak + 1) ≤ 2n−1

(
n∏
k=1

ak + 1

)
, ak ≥ 1, k = 1, 2, . . . , n (16)

with the notations ak =
1

xk
− 1, where xk ∈

(
0,

1

2

]
, k = 1, 2, . . . , n, we

can deduce the inequality

Gn
n + (G′n)n ≥ 1

2n−1
(17)

We note that, as Gn ≤
1

2
≤ G′n, this is not trivial. As

1 +Gn
n

1 + (G′n)n
≤ 1 + 2Gn

1 +Gn
n + (G′n)n
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(more generally
1 + x

1 + y
≤ 1 + 2x

1 + 2y
for x ≤ y, here x = Gn

n, y = (G′n)n), by

(17) we get
1 +Gn

n

1 + (G′n)n
≤ 1 + 2Gn

n

1 +
1

2n−1

≤ 1 (18)

completing the chain from (15).

6

The reverse of Henrici’s inequality (see [3]) states that for 0 < bk ≤ 1,

k = 1, 2, . . . , n, one has

n∑
k=1

1

1 + bk
≤ n

1 + n

√√√√ n∏
k=1

bk

(19)

Put bk = 2xk, where xk ∈
(

0,
1

2

]
, k = 1, 2, . . . , n. Then we get:

1 + 2Gn(x) ≤ Hn(2x+ 1) (20)

where 2x+ 1 = (2x1 + 1, . . . , 2xn + 1) = (a1, a2, . . . , an) and

H(a1, a2, . . . , an) =
n

n∑
k=1

1

ak

denotes the harmonic mean of ak > 0, k = 1, 2, . . . , n.

Now, by the Chrystal inequality (see [7]), one can write

n

√√√√ n∏
k=1

(2xk + 1) ≥ n

√√√√ n∏
k=1

2xk + 1

or

Gn(2x+ 1) ≥ 2Gn(x) + 1 (21)
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so as Hn(2x+ 1) ≤ Gn(2x+ 1), relation (20) is a refinement of (21):

1 + 2Gn(x) ≤ Hn(2x+ 1) ≤ Gn(2x+ 1). (22)

However, we note that (21) holds true for all xk > 0 while the stronger

inequality (20) only for 0 < xk ≤
1

2
, k = 1, 2, . . . , n.
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No. 7, 1990, Seminar on Math. Analysis, 29-34.

5. J. Sándor, On an inequality of Ky Fan II, Intern. J. Math. Ed. Sci.

Techn., 22(1991), 326-328.

6. J. Sándor, On an inequality of Ky Fan III, Intern. J. Math. Ed. Sci.

Techn., 32(2001), 133-160.

7. J. Sándor, On certain problems of the journal Crux-Mathemati-

corum, 13(2005), no. 1A, 377-378.

326



4.5 An extension of Ky Fan’s inequalities

Let xk (k = 1, n) be positive real numbers. The arithmetic respec-

tively geometric means of xk are

A = A(x1, . . . , xn) =
x1 + . . .+ xn

n
,

G = G(x1, . . . , xn) = n
√
x1 . . . xn.

Let f : I → R (I interval) and suppose that xk ∈ (a, b). Define the

functional arithmetic, respectively geometric means, by

Af = Af (x1, . . . , xn) =
f(x1) + . . .+ f(xn)

n

and

Gf = Gf (x1, . . . , xn) = n
√
f(x1) . . . f(xn).

Clearly, Af and Gf are means in the usual sense, if

min{x1, . . . , xn} ≤ Af ≤ max{x1, . . . , xn}

and

min{x1, . . . , xn} ≤ Gf ≤ max{x1, . . . , xn}.

For example, when I = (0,+∞) and f(x) = x; Af ≡ A, Gf ≡ G; when

I = (0, 1) and f(x) = 1− x, Af = A′, Gf = G′, are indeed means in the

above sense.

The following famous relations are well-known:

G ≤ A, for xk > 0 (k = 1, n) (1)

G

G′
≤ A

A′
, for xk >

(
0,

1

2

]
(2)

The first is the arithmetic-geometric inequality, while the second is the

Ky-Fan inequality (see e.g. [2], [3], [4]). Now, even if Af and Gf are not

means in the usual sense, the following extension of (2) may be true:

G

Gf

≤ A

Af
(3)
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This inequality (with other notations) is stated in OQ. 633, in [1].

We now prove (3) for certain particular f .

Theorem. Let id : R → R, id(x) = x and suppose that f : I → R

satisfies the following conditions: f and ln
id

f
are concave functions.

Then inequality (3) holds true.

Proof. By concavity of ln
id

f
one can write:

ln

x1 + . . .+ xn
n

f

(
x1 + . . .+ xn

n

) ≥ [ln x1
f(x1)

+ . . .+ ln
xn

f(xn)

]
1

n
,

i.e.

ln
A

f(A)
≥ ln

G

Gf

.

Therefore
G

Gf

≤ A

f(A)
(4)

Now, since f is concave, one has

Af =
f(x1) + . . .+ f(xn)

n
≤ f

(
x1 + . . .+ xn

n

)
= f(A),

and by (4) this gives (3).

Remark 1. Let I =

(
0,

1

2

]
and f(x) = 1− x, then g(x) = ln

x

1− x
has a derivative

g′(x) =
1

x
+

1

1− x
,

so

g′′(x) = − 1

x2
+

1

(1− x)2
=
x2 − (1− x)2

x2(1− x)2
=

2x− 1

x2(1− x)2
≤ 0.

Therefore f and ln
id

f
are concave functions, and (4) gives Ky Fan’s

inequality (2). One has equality for xk =
1

2
(k = 1, n).

328



Remark 2. There are many functions f : I → R such that f and

ln
id

f
are simultaneously concave. Put e.g. f(x) = lnx. Then

g(x) = ln
x

lnx
= lnx− ln lnx.

One has

g′′(x) =
− ln2 x+ lnx+ 1

x2 ln2 x
≤ 0

if

lnx ≥ 1 +
√

5

2
, i.e. x ≥ e

1+
√
5

2 = x0.

(Take I = [x0,+∞)).

Remark 3. Without concavity of f , holds true (4).
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4.6 Notes on certain inequalities by

Hölder, Lewent and Ky Fan

1. Historical notes

In 1888 Rogers (see [10]) proved that for xi > 0, αi > 0 (i = 1, n)

n∏
i=1

xαii ≤


n∑
i=1

αixi

n∑
i=1

αi


n∑
i=1

αi

(1)

F. Sibirani [15] reported in 1907 that the proof of (1) was already

known. Namely, it was published by D. Besso [3] in 1879. We note that,

Besso’s original article was reprinted in 1907, but never included with a

review in JFM (”Jahrbuch der Fortschritte der Mathematik”); see [16].

It is known that, Hölder concludes inequality (1) as a special case of

ϕ


n∑
i=1

αixi

n∑
i=1

αi

 ≤
n∑
i=1

αiϕ(xi)

n∑
i=1

αi

, (2)

where ϕ has an increasing derivative; see [7], [6], [11]. The real impor-

tance of this inequality, for continuous, mid-convex (”Jensen-convex”)

functions ϕ was discovered, however by Jensen [8].

It is little (or only fragmentarily) known today that, Hölder’s result

in the case of equal weights (e.g., αi =
1

n
, ϕ′′ ≥ 0) was proved much

earlier by Grolous [5]. He applied the so-called ”method of centers” (see

e.g. [11]) in his proof.

Finally, we wish to mention here the names of the reviewers con-

tributing to JFM, related to the above mentioned articles. These were
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M. Hamburger, E. Lampe, J. Glaisher, P. Stäckel, R. Hoppe, H. Valen-

tiner, F. Müller, and F. Lewent. It seems that, they did not publish in

the area of mathematical inequalities, the only exception being [9].

2. Lewent’s and Ky Fan’s inequalities

By using the power-series method, in 1908 Lewent [9] proved the

relation

1 +
n∑
i=1

αixi

1−
n∑
i=1

αixi

≤
n∏
i=1

(
1 + xi
1− xi

)αi
, (3)

where

xi ∈ [0, 1), i = 1, 2, . . . , n; and
n∑
i=1

αi = 1. (4)

We note that, this follows also by inequality (2) applied to the function

ϕ(t) = log
1 + t

1− t
, t ∈ [0, 1).

The famous Ky Fan inequality (see e.g. [1], [2], [12], [13], [14]) states

that if ai ∈
(

0,
1

2

]
(i = 1, 2, . . . , n) and An(a) = An, Gn(a) = Gn denote

the arithmetic, resp. geometric means of a = (a1, . . . , an); by putting

A′n = An(1 − a), G′n = Gn(1 − a), where 1 − a = (1 − a1, . . . , 1 − an);

then one has
Gn

G′n
≤ An
A′n

(5)

We want to point out now that, by a method of Sándor ([13], I) (who

applied an inequality of Henrici to deduce (5)), Lewent’s inequality im-

plies Ky Fan’s inequality (5). Indeed, let αi =
1

n
, and put xi = 1 − 2ai

(i = 1, n) in (3). As ai ∈
(

0,
1

2

]
, clearly xi ∈ [0, 1). A simple transforma-

tion yields relation (5), and we are done.
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Remark. Let A+
n = An(1 + a), G+

n = Gn(1 + a), where 1 + a =

(1 + a1, . . . , 1 + an). By letting αi =
1

n
, xi = ai, inequality (3) may be

written equivalently also as

G′n
G+
n

≤ A′n
A+
n

, (6)

where 0 ≤ ai < 1, i = 1, 2, . . . , n; and G′n = G′n(a) etc. For such inequal-

ities, see also [4] and [12] (II).
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4.7 On certain new means and their

Ky Fan type inequalities

1. Introduction

Let x = (x1, . . . , xn) be an n-tuple of positive numbers. The un-

weighted arithmetic, geometric and harmonic means of x, denoted by

A = An, G = Gn, H = Hn, respectively, are defined as follows

A =
1

n

n∑
i=1

xi, G =

(
n∏
i=1

xi

)1/n

, H = n/

(
n∑
i=1

1

xi

)
.

Assume 0 < xi < 1, 1 ≤ i ≤ n and define x′ := 1−x = (1−x1, . . . , 1−xn).

Throughout the sequel the symbols A′ = A′n, G′ = G′n and H ′ = H ′n will

stand for the unweighted arithmetic, geometric and harmonic means of

x′.

The arithmetic-geometric mean inequality Gn ≤ An (and its weighted

variant) played an important role in the development of the theory of

inequalities. Because of its importance, many proofs and refinements have

been published. The following remarkable inequality is due to Ky Fan:

If xi ∈
(

0,
1

2

]
(1 ≤ i ≤ n), then

G

G′
≤ A

A′
(1)

with equality only if x1 = · · · = xn. The paper by H. Alzer [1] (who

obtained many results related to (1)) contains a very good account up

to 1995 of the Ky Fan type results (1). For example, in 1984 Wang and

Wang [11] established the following counterpart of (1):

H

H ′
≤ G

G′
(2)

Let I = I(x1, x2) =
1

e
(xx22 /x

x1
1 )1/(x2−x1) (x1 6= x2), I(x, x) = x denote

the so-called identric mean of x1, x2 > 0. In 1990 J. Sándor [8] proved
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the following refinement of (1) in the case of two arguments (i.e. n = 2):

G

G′
≤ I

I ′
≤ A

A′
, (3)

where I ′ = I ′(x1, x2) = I(1− x1, 1− x2).
We note that, inequality (14) in Rooin’s paper [6] is exactly (3).

In 1999 Sándor and Trif [10] have introduced an extension of the

identric mean to n arguments, as follows. For n ≥ 2, let

En−1 = {(λ1, . . . , λn−1) : λi ≥ 0, 1 ≤ i ≤ n− 1, λ1 + · · ·+ λn−1 ≤ 1}

be the Euclidean simplex. Given any probability measure µ on En−1, for

a continuous strictly monotone function f : (0,∞) → R, the following

functional means of n arguments can be introduced:

Mf (x;µ) = f−1
(∫

En−1

f(xλ)dµ(λ)

)
, (4)

where

xλ =
n∑
i=1

xiλi

denotes the scalar product,

λ = (λ1, . . . , λn−1) ∈ En−1 and λn = 1− λ1 − · · · − λn−1.

For µ = (n − 1)! and f(t) = 1/t, one obtains the unweighted loga-

rithmic mean, studied by A. P. Pittenger [5]. For f(t) = ln t, however we

obtain a mean

I = I(x) = exp

(∫
En−1

ln(xλ)dµ(λ)

)
(5)

which may be considered as a generalization of the identric mean. Indeed,

it is immediately seen that

I(x1, x2) = exp

(∫ 1

0

ln(tx1 + (1− t)x2)dt
)
,
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in concordance with (5), which for µ = (n − 1)! gives the unweighted

(and symmetric) identric mean of n arguments:

I = In = In(x1, . . . , xn) = exp

(
(n− 1)!

∫
En−1

ln(xλ)dλ1 . . . dλn−1

)
(6)

Let I ′ = I ′n = In(1− x) in (5) for µ = (n− 1)!. Then Sándor and Trif

[10] proved that relation (3) holds true for any n ≥ 2

(
xi ∈

(
0,

1

2

])
.

The weighted versions hold also true.

In 1990 J. Sándor [7] discovered the following additive analogue of

the Ky Fan inequality (1): If xi ∈
(

0,
1

2

]
(1 ≤ i ≤ n), then

1

H ′
− 1

H
≤ 1

A′
− 1

A
(7)

In 2002, E. Neuman and J. Sándor [2] proved the following refinement

of (7):
1

H ′
− 1

H
≤ 1

L′
− 1

L
≤ 1

A′
− 1

A
, (8)

where L is the (unweighted) logarithmic mean, obtained from (4) for

f(t) = 1/t, i.e.

L = Ln = Ln(x1, . . . , xn) =

(
(n− 1)!

∫
En−1

1

xλ
dλ1 . . . dλn−1

)−1
, (9)

and L′ = L(1− x).

For n = 2 this gives the logarithmic mean of two arguments,

L(x1, x2) =
x2 − x1

lnx2 − lnx1
(x1 6= x2), L(x, x) = 1.

We note that for n = 2, relation (8) is exactly inequality (27) in

Rooin’s paper [6].

Alzer ([1]) proved another refinement of Sándor inequality, as follows:

1

H ′
− 1

H
≤ 1

G′
− 1

G
≤ 1

A′
− 1

A
(10)
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In [2] we have introduced a new mean J = Jn and deduced a new

refinement of the Wang-Wang inequality:

H

H ′
≤ J

J ′
≤ G

G′
(11)

We note that in a recent paper, Neuman and Sándor [4] have proved

the following strong improvements of Alzer’s inequality (10):

1

H ′
− 1

H
≤ 1

J ′
− 1

J
≤ 1

G′
− 1

G
≤ 1

I ′
− 1

I
≤ 1

A′
− 1

A
(12)

(where J ′ = J(1− x) etc.).

2. New means and Ky Fan type inequalities

2.1

The results obtained by J. Rooin [6] are based essentially on the

following

Lemma 1. Let f be a convex function defined on a convex set C, and

let xi ∈ C, 1 ≤ i ≤ n. Define F : [0, 1]→ R by

F (t) =
1

n

n∑
i=1

f [(1− t)xi + txn+1−i], t ∈ [0, 1].

Then

f

(
x1 + · · ·+ xn

n

)
≤ F (t) ≤ f(x1) + · · ·+ f(xn)

n
,

and the similar double inequality holds for

∫ 1

0

F (t)dt.

Proof. By the definition of convexity, one has

f [(1− t)xi + txn+1−i] ≤ (1− t)f(xi) + tf(xn+1−i),

and after summation, remarking that

n∑
i=1

[f(xn+1−i)− f(xi)] = 0,
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we get the right-side inequality. On the other hand, by Jensen’s discrete

inequality for convex functions,

F (t) ≥ f

(
1

n

n∑
i=1

[(1− t)xi + txn+1−i]

)
= f

(
x1 + · · ·+ xn

n

)
,

giving the left-side inequality. By integrating on [0, 1], clearly the same

result holds true.

2.2

Now define the following mean of n arguments:

K = Kn = Kn(x1, . . . , xn) =

(
n∏
i=1

I(xi, xn+1−i)

)1/n

(13)

Letting f(x) = − lnx for x ∈ (0,+∞), and remarking that∫ 1

0

ln[(1− t)a+ tb]dt = ln I(a, b),

Lemma 1 gives the following new refinement of the arithmetic-geometric

inequality:

G ≤ K ≤ A, (14)

which holds true for any xi > 0 (i = 1, n).

Selecting f(x) = ln
1− x
x

for C =

(
0,

1

2

]
, and remarking that

∫ 1

0

ln{1− [(1− t)a+ tb]}dt = ln I(x′1, x
′
2) = ln I ′(x1, x2),

we get the following Ky Fan-type inequality:

G

G′
≤ K

K ′
≤ A

A′
(15)

This is essentially inequality (13) in [6] (discovered independently by

the author).
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2.3

Let now f(x) =
1

x
for x ∈ (0,∞). Since f is convex, and

∫ 1

0

1

(1− t)a+ tb
dt =

1

L(a, b)
,

Lemma 1 gives

H ≤ R ≤ A, (16)

where

R = Rn = Rn(x1, . . . , xn) = n/
n∑
i=1

1

L(xi, xn+1−i)
(17)

This is a refinement - involving the new mean R - of the harmonic-

arithmetic inequality.

Letting f(x) =
1

x
− 1

1− x
for x ∈

(
0,

1

2

]
, the above arguments imply

the relations
1

A
− 1

A′
≤ 1

R
− 1

R′
≤ 1

H
− 1

H ′
, (18)

where xi ∈
(

0,
1

2

]
, and R′ = R′n = Rn(1− x1, . . . , 1− xn). Relation (18)

coincides essentially with (26) of Rooin’s paper [6].

2.4

Let

S = Sn(x1, . . . , xn) = (xx11 . . . xxnn )1/(x1+···+xn) (19)

For n = 2, this mean has been extensively studied e.g. in [8], [9],

[3]. Applying the Jensen inequality for the convex function f(x) = x lnx

(x > 0), we get A ≤ S. On the other hand, remarking that S is a weighted

geometric mean of x1, . . . , xn with weights

α1 = x1/(x1 + · · ·+ xn), . . . , αn = xn/(x1 + · · ·+ xn),
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by applying the weighted geometric-arithmetic inequality

xα1
1 . . . xαnn ≤ α1x1 + · · ·+ αnxn,

we can deduce S ≤ Q, where

Q = Qn(x1, . . . , xn) =
x21 + · · ·+ x2n
x1 + · · ·+ xn

.

Therefore, we have proved that

A ≤ S ≤ Q (20)

In [8] it is shown that∫ b

a

x lnxdx =
b2 − a2

4
ln I(a2, b2) (21)

Denote J(a, b) = (I(a2, b2))1/2 and put J ′(a, b) = J(1 − a, 1 − b). By

applying Lemma 1, we get

A ≤ T ≤ S, (22)

where the mean T is defined by

T = Tn(x1, . . . , xn) =

[
n∏
i=1

(J(xi, xn+1−i))
A(xi,xn+1−i)

n

]1/A
(23)

Letting now

f(x) = x lnx− (1− x) ln(1− x), x ∈
(

0,
1

2

]
,

by

f ′′(x) =
1− 2x

x(1− x)
≥ 0

we can state that f is convex, so by Lemma 1 and by (21) we can write,

for xi ∈
(

0,
1

2

]
:

AA/A′
A′ ≤ TA/T ′

A′ ≤ SA/S ′
A′
, (24)

where the mean T is defined by (23), while T ′ = T (1−x). Since for n = 2,

T ≡ J , for means of two arguments (24) gives a Ky Fan-type inequality

involving A, I, S.
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2.5

Relation (23) shows that T is a generalization of the mean J to n

arguments. In what follows we shall introduce another generalization,

provided by the formula

U = Un(x1, . . . , xn)

=

{
exp

(
(n− 1)!

∫
En−1

(xλ) ln(xλ)dλ1 . . . dλn−1

)}1/A

(25)

Here the notations are as in the Introduction. Since, by (21),∫ 1

0

[(1− t)a+ tb] ln[(1− t)a+ tb]dt =
1

b− a

∫ b

a

x lnxdx

=
A

2
ln I(a2, b2) = ln JA,

for n = 2, we have U ≡ J , thus U is indeed another generalization of the

mean J .

Now, the following result is due to E. Neuman (see e.g. [2]).

Lemma 2. Let K be an interval containing x1, . . . , xn, and suppose

that f : K → R is convex. Then

f

(
x1 + · · ·+ xn

n

)
≤ (n− 1)!

∫
En−1

f(λx)dλ1 . . . dλn−1

≤ f(x1) + · · ·+ f(xn)

n
.

Letting K =

(
0,

1

2

]
, and f(x) = x lnx − (1 − x) ln(1 − x) in Lemma 2,

we can deduce for xi ∈
(

0,
1

2

]
AA/A′

A′ ≤ UA/U ′
A′ ≤ SA/S ′

A′
(26)
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Remark that for n = 2, inequalities (24) and (26) reduce to the same

inequality, as in that case one has T = J = U . The mean U separates

also A and S, since applying Lemma 2 for f(x) = x lnx (x > 0), we have

A ≤ U ≤ S. (27)

There remains an Open Problem, namely the comparability of the

above defined means T and U for n > 2. Also, the connections of these

means to K and R, introduced in the preceding sections.
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4.8 On common generalizations of some

inequalities

In what follows we shall prove a double inequality, which offers a

common proof of many famous inequalities. For example, the arithmetic

mean – geometric mean – harmonic mean inequality, the Ky Fan or the

Wang-Wang inequalities will be consequences (see e.g. [4]).

Theorem. Let I ⊂ R be an interval and
◦
I its interior. Suppose that

f : I → R is continuous and differentiable on
◦
I, and that the derivative

f ′ is monotone increasing. Then for any positive integer n and xi ∈
◦
I

(i = 1, n) one has

f

(
1

n

n∑
i=1

xi

)
≤ 1

n

n∑
i=1

f(xi) ≤ f


n∑
i=1

xif
′(xi)

n∑
i=1

f ′(xi)

 , (1)

where on the right side of (1) one assumes that
n∑
i=1

f ′(xi) 6= 0.

Proof. The left side of (1) is nothing else than the classical Jensen

inequality. For its proof, for any x, y ∈ I apply the Lagrange mean-value

theorem on the interval [x, y]:

f(y)− f(x) = (y − x)f ′(ξ),

where ξ lies between x and y. If y > x, then x < ξ < y and by mono-

tonicity of f : f ′(ξ) ≤ f ′(y), giving

f(y) ≤ f(x) + (y − x)f ′(y). (2)

But inequality (2) holds true for y < x, too. Indeed, then we have

(y − x)f ′(ξ) ≤ (y − x)f ′(y),
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since y− x < 0 and f ′(ξ) ≥ f ′(y). Thus inequality (2) holds true for any

x ∈ I, y ∈
◦
I. Let

x = xi, y =
1

n

n∑
i=1

xi (i = 1, n, xi ∈
◦
I).

Then, by (2) one has

f(y) ≤ f(xi) + (y − xi)f ′(yi), i = 1, n. (3)

After summation, from (3) we get the left side of (1), as

n∑
i=1

(y − xi)f ′(y) = f ′(y)

(
ny −

n∑
i=1

xi

)
= 0.

The right side of (1) can be proved in a similar way, by first remarking

that

f(y) ≥ f(x) + (y − x)f ′(x), (y ∈ I, x ∈
◦
I). (4)

This can be proved in a similar manner to (3). Let now

x = xi, y =

n∑
i=1

xif
′(xi)

n∑
i=1

f ′(xi)

in (4). Since
n∑
i=1

(y − xi)f ′(xi) = 0,

after summation we get the right side of (1).

Remarks. 1) If one assumes f to be convex function (in place of

monotonicity of f ′), in relation (2) in place of f ′(y) we will take f ′−(y)

(i.e. the left side derivative) and f ′+(x) in place of f ′(x) in (4). Then in

(1) the left side remains the same, while the right side appears f ′+(xi) in

place of f ′(xi).

2) From the proof we get also that if f ′ is strictly increasing (strictly

convex), then equalities (in the left side of (1), or the right side) can

occur only if x1 = x2 = . . . = xn.
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Applications

1) Let I = (0,∞), f(x) = − lnx. Since

f ′(x) = −1

x
, f ′′(x) =

1

x2
> 0,

f ′ will be strictly increasing. By computations we get from (1):

Hn ≤ Gn ≤ An, (5)

where

An =
1

n

n∑
i=1

xi, Gn = n

√√√√ n∏
i=1

xi, Hn =
n

n∑
i=1

1

xi

are the arithmetic, geometric, resp. harmonic means of xi (i = 1, n).

2) Let

(
0,

1

2

]
⊂ I, and put f(x) = ln(1− x)− lnx. Since

f ′′(x) =
1− 2x

x2(1− x)2
≥ 0,

we get that f ′ is strictly increasing. Let us introduce the notations

A′n =
1

n

n∑
i=1

(1− xi), G′n = n

√√√√ n∏
i=1

(1− xi), H ′n =
n

n∑
i=1

1

1− xi

,

where xi ∈ (0, 1). By simple computations, we get from (1) the double

inequality
Hn

H ′n
≤ Gn

G′n
≤ An
A′n

, (6)

where An = An(xi), A
′
n = A′n(xi), etc., and xi ∈

(
0,

1

2

]
.

The right side inequality of (6) is known as the famous Ky Fan in-

equality [1], while the left side is the Wang-Wang inequality [4].
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Remark. It is not difficult that the weighted version of (1) holds true,

too, so the above inequalities (5) and (6) are valid also in the weighted

case. Other proofs and refinements of these inequalities may be found in

papers [2] and [3].

This paper is an English version of [5].
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Chapter 5

Stolarsky and Gini means

“The ideas chosen by my unconscious are those which

reach my consciousness, and I see that they are those

which agree with my aesthetic sense.”

(J. Hadamard)

“In both theorems... there is a very high degree of

unexpectedness, combined with inevitability and

economy.”

(G.H. Hardy)

5.1 On reverse Stolarsky type inequalities

for means

1. Introduction

Let a, b > 0 be positive real numbers. The logarithmic, resp. identric

means of a and b are defined by

L = L(a, b) =
b− a

log b− log a
for a 6= b; L(a, a) = a (1)
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and

I = I(a, b) =
1

e
(bb/aa)1/(b−a) for a 6= b; I(a, a) = a (2)

Let

Ak = Ak(a, b) =

(
ak + bk

2

)1/k

(3)

denote the power mean of order k, where k 6= 0 is a real number. Denote

A = A1(a, b) =
a+ b

2
and G = G(a, b) = lim

k→0
Ak(a, b) =

√
ab (4)

the arithmetic, resp. geometric means of a and b.

The means (1)-(4) have been extensively investigated. In particular,

many remarkable inequalities or identities for these means have been

proved. For a survey of results, see e.g. [1-3], [5], [7], [12], [13-15]. Consider

also the weighted geometric mean S of a and b, the weights being a/(a+b)

and b/(a+ b):

S = S(a, b) = aa/(a+b)bb/(a+b) (5)

As we have the identity (see [9])

S(a, b) =
I(a2, b2)

I(a, b)
, (6)

the mean S is strongly related to the identric mean. For properties of

this mean, see e.g. [7], [8], [12].

Finally, the Heronian mean will be denoted by He (see [3]), where

He = He(a, b) =
a+
√
ab+ b

3
=

2A+G

3
(7)

Now, we quote some inequalities of interest in what follows.

In 1980 K.B. Stolarsky [16] proved that for all a 6= b one has

A2/3 < I, (8)

and that 2/3 is optimal; i.e. the constant 2/3 cannot be replaced by a

greater constant t > 2/3 such that At < I for all a 6= b.
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In 1991 J. Sándor [8] proved that for a 6= b

He < I, (9)

while in [12] it is shown that

A2 < S (10)

both being sharp in certain sense.

Clearly one has

L < I < A (11)

and, as a counterpart of the right side of (11), in [10] it is shown that

2

e
A < I, (12)

while in [6] that

I <
2

e
(A+G) (13)

The aim of this paper is to deduce certain reverses of type (12) for

the inequalities (8)-(10). One of these relations will provide an improve-

ment of inequality (13) and in fact the method will offer a new proof for

inequalities (8)-(10).

2. Main results

The first theorem is well-known, but here we will give a new proof,

which shows that the involved constants are optimal:

Theorem 1. For all a 6= b one has

I < A <
e

2
I, (14)

where the constants 1 and
e

2
are best possible.

Proof. Put x = b/a > 1, and consider the function

f1(x) =
A(x, 1)

I(x, 1)
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An easy computation implies that the logarithmic derivative of f1(x)

is
f ′1(x)

f1(x)
=

2 log x

(x− 1)2(x+ 1)

(
x+ 1

2
− x− 1

log x

)
As

x+ 1

2
− x− 1

log x
= A(x, 1)− L(x, 1) > 0

by the weaker form of (11), we get f ′1(x) > 0 for x > 1. This shows that

f1(x) is strictly increasing for x > 1, implying

f1(x) > lim
x→1

f1(x) = 1 and f1(x) < lim
x→∞

f1(x) =
2

e
.

This proves inequality (14), by the homogeneity of A and I. Since the

function f1(x) is continuous for x > 1, it is immediate that the constants

1 and 2/e cannot be improved.

Theorem 2. For all a 6= b one has

A2/3 < I <
2
√

2

e
A2/3, (15)

where the constants 1 and
2
√

2

e
are best possible.

Proof. Put x3 = b/a > 1, and consider the application

f2(x) =
A2/3(x

3, 1)

I(x3, 1)

We have
f ′2(x)

f2(x)
=

3x2

(x3 − 1)2
k(x),

where

k(x) = 3 log x− (x+ 1)(x3 − 1)

x(x2 + 1)
.

Letting t = x3 in the following inequality (see [4], p. 272):

log t

t− 1
<

1 + t1/3

t+ t1/3
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we obtain k(x) < 0 for x > 1. Thus the application f2 is strictly decreas-

ing. As

lim
x→1

f2(x) = 1, lim
x→∞

f2(x) =
2
√

2

e
,

the result follows. The function f2(x) being continuous and strictly de-

creasing, we easily get the optimality of the constants 1 and 2
√

2/e.

Theorem 3. For all a 6= b one has

He < A2/3 <
3

2
√

2
He, (16)

where the constants are best possible.

Proof. As above, let x3 = b/a > 1, and let

f3(x) =
He(x3, 1)

A2/3(x3, 1)

Logarithmic differentiation gives

f ′3(x)

f3(x)
= −3

2
· x1/2(x− 1)(x1/2 − 1)2

2(x3 + x3/2 + 1)(x2 + 1)
< 0,

so f3(x) is strictly decreasing for x > 1. The result follows.

Corollary. For all a 6= b one has

He < I <
3

e
He, (17)

where the constants 1 and
3

e
are best possible.

Proof. Inequality (17) follows by a combination of relations (15) and

(16). As He/I = (He/A2/3)(A2/3/I), and the product of two positive

strictly decreasing functions is also strictly decreasing, the sharpness of

(17) follows.

Remark 1. It is not difficult to see that

√
2 · A2/3 > A+G, (18)
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which shows that the left side of (15) offers an improvement of inequality

(13).

Theorem 4. For all a 6= b one has

A2 < S < sqrt(2)A2, (19)

where the constants 1 and sqrt(2) are best possible.

Proof. Put x = b/a > 1, and let

f4(x) =
A2(x, 1)

S(x, 1)
=

(
x2 + 1

2

)1/2

· 1

xx/(x+1)

Hence
f ′4(x)

f4(x)
=

h(x)

(x+ 1)2(x2 + 1)
,

where h(x) = x2 − 1− (x2 + 1) log x.

Since
x− 1

log x
= L(x, 1) < A(x, 1) =

x+ 1

2
<
x2 + 1

x+ 1
,

we get h(x) < 0 for x > 1, yielding that f4(x) is a strictly decreasing

function for x > 1. As lim
x→1

f4(x) = 1 and lim
x→∞

f4(x) =
1

sqrt(2)
, relation

(18) follows.

Remark 2. There are known also improvements of other types to the

Stolarsky inequality (8). For example, in [5] it is shown that for a 6= b

A2/3 <
√
I5/6 · I7/6 < I,

where It = It(a, b) = (I(at, bt))1/t (t 6= 0).

For strong inequalities connecting the mean I to other means (e.g. the

arithmetic-geometric mean of Gauss), see [11]. For connections between

L, I and a Seiffert mean, see [14].
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5.2 Inequalities for certain means

in two arguments

1

The means in two arguments are special [3] and have been intensively

investigated. We mention here the geometric, logarithmic, identric and

exponential, arithmetic, etc. means of two numbers. For b > a > 0 let

G = G(a, b) =
√
ab,

L = L(a, b) =
b− a

ln b− ln a
,

I = I(a, b) =
1

e
(bb/aa)1/(b−a),

A = A(a, b) =
a+ b

2
.

The following relations are known:

G < L < I < A (1)

A+ L < 2I ([6]) (2)

L+ I < A+G ([2]) (3)

2A+G < 3I ([7]) (4)

GI < L2 ([1]) (5)

2A < eI ([8]) (6)

L(a2, b2) = A(a, b) · L(a, b) (7)

log
A

G
=
∞∑
k=1

1

k

(
b− a
b+ a

)2k

([9]) (8)

log
I

G
=
∞∑
k=1

1

2k + 1

(
b− a
b+ a

)2k

([9]) (9)
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log
I

G
=
A

L
− 1 ([11]). (10)

Consider also the weighted geometric mean S of a and b, the weights

being

a

a+ b
and

b

a+ b
: S = S(a, b) = aa/(a+b) · bb/(a+b)

Some properties of S have been discussed in [6], [9] and [4]. Other rela-

tions connecting G,L, I, A, S will be presented in this paper.

2

By comparing S with the corresponding weighted harmonic and arith-

metic means we obtain

A(a, b)S(a, b) <
a2 + b2

a+ b
. (11)

Concerning the first inequality, the following relations are also true:

A2(a, b) < I(a2, b2) < S2(a, b) ([6], [9]) (12)

log
S

A
=
∞∑
k=1

1

2k(k − 1)

(
b− a
b+ a

)2k

([4]). (13)

From (8) and (13) we deduce the following relation similar to (8) and

(9):

log
S

G
=
∞∑
k=1

1

2k − 1

(
b− a
b+ a

)2k

. (14)

From (8) and (13) we deduce the following relation similar to (8) and

(9):

log
S

I
= 1− G2

AL
([4]) (15)

I(a2, b2) = S(a, b) · I(a, b) ([9]). (16)
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3

From (12) and (16) we deduce A2 < SI. From (8) and (13) it follows

SG < A2. Thus we have obtained:

A2

I
< S <

A2

G
([4]). (17)

The following theorem contains certain refinements.

Theorem 1. The following inequalities are valid:

A2

I
<

4A2 −G2

3I
< S <

A4

I3
<
A2

G
(18)

AL+ SI < 2A2 < S2 +G2 (19)

4A2 − 2G2

e
< SI <

A2L2

G2
. (20)

Proof. Apply (4) with a2, b2 instead of a, b. Then use (16), it follows

that

SI >
4A2 −G2

3
> A2.

On the other hand,

I(a2, b2) <
A4

I2
([9]),

this means that

S <
A4

I3
.

From (4) we deduce I3 > A2G, hence
A4

I3
<
A2

G
and this proves (18).

The left side of (19) follows from (7) and (16) with the application

of a2 and b2 in place of a and b, respectively. In order to prove the right

hand side of (19) divide each term by a2 < b2 and denote t :=
b

a
> 1.

The inequality to be proved becomes

2t2t/(t+1) > t2 + 1 (t > 1) (21)

Let

f(t) = ln 2 +
2t

t+ 1
ln t− ln(t2 + 1).
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Simple calculations give

f ′(t) = 2(t+ 1)−2
[
ln t− t2 − 1

t2 + 1

]
> 0

since by

L(t, 1) < A(t, 1) <
t2 + 1

t+ 1

it results

ln t >
t2 − 1

t2 + 1
.

Thus, via f(1) = 0, we can deduce that f(t) > 0 for t > 1, yielding (21).

Finally, by using (5) and (6) with a2, b2 instead of a, b, it is easy to

prove (20). �

Remark 1. By remarking that

2A2 −G2 = A(a2, b2),

the right hand side of (19) can also be written as

A(a2, b2) < S2(a, b) (22)

improving, in view of (1), inequality (12).

4

Let M be one of the means L, I, A or S. Denote

M(t) = (M(at, bt))1/t

if t 6= 0; M(0) = G(a, b). By examining each case, it is not difficult to

verify that

M(−t)M(t) = M2(0), t ∈ R. (23)

Theorem 2. (i) The function M(t) is increasing and continuous

on R.
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(ii) For t > 0 we have

S(2t) > S(t) > A(2t) > I(2t) > A(t) > I(t) > L(2t) > L(t). (24)

If t < 0, the inequalities in (24) are reversed.

Proof. It is well known that (i) holds for M = A. It is a matter of

calculus to prove (i) for M = I and M = S, as well as the continuity of

L(t). It was proved in [10] that L(t) > L(1) for t > 1. By using this fact

and (23), it can be proved that L(t) is an increasing function.

Let now t > 0. By (22) one has S(1) > A(2) which implies S(t) <

A(2t). From (16) and SI > A2 (see (17)) we can obtain I(2) > A(1),

giving I(2t) > A(t). From (2) it follows I2 > AL, which implies that

I(1) > L(2), and this in turn implies I(t) > L(2t). By (1) we have

A(t) > I(t). Since S(t) and I(t) are increasing, (24) is proved. Due to

(23), all the inequalities of (24) are reversed for t < 0.

5

Now we deal with series representations like (8), (9), (13), (14), de-

riving inequalities from them.

Theorem 3. One has (
S

A

)2

<

(
I

G

)3

(25)

A2 −G2

A2
< ln

S

G
<
A2 −G2

AG
. (26)

Proof. From (9) and (13) and the elementary inequality

1

2k(2k − 1)
≤ 3

2
· 1

2k + 1

with equality only for k = 1, we get relation (25).
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For (26) remark first that

ln
S

G
=

(b− a)(ln b− ln a)

2(b+ a)
<

(b− a)2

2(a+ b)
√
ab

=
A2 −G2

AG
, since L > G (see (1))

On the other hand, relation (14) gives us

ln
S

G
>

(
b− a
b+ a

)2

=
A2 −G2

A2
. �

6

Inequality (4) can be written also as

I −G
A− I

> 2.

A similar result holds for the mean S. More precisely, the following result

is true:

Theorem 4.
S −G
S − A

>
√

2 (27)

Before proving this theorem, we need an auxiliary result, interesting

in itself:

Lemma. For the logarithmic, harmonic, and geometric means the

positive numbers 0 < a < b holds the inequality

L+H >
√

2G (28)

Proof. We have H =
G2

A
. Denoting x :=

√
b√
a
> 1, after certain

elementary transformations (28) becomes equivalent with

lnx <
x4 − 1

2
√

2x
(
x2 −

√
2x+ 1

) , x > 1. (29)
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Consider the function

g(x) =

√
2

4
(x4 − 1)

x
(
x2 −

√
2x+ 1

)
− lnx

.

A simple (but tedious) computation shows that

2
√

2x2
(
x2 −

√
2x+ 1

)2
(g′(x))

= x6 − 4
√

2x5 + 11x4 − 8
√

2x3 + 11x2 − 4
√

2x+ 1.

The right side of this expression, divided by x3 and with the notation

x+ 1

x
= t,

becomes

(x3 + 1/x3)− 4
√

2(x2 + 1/x2) + 11(x+ 1/x)− 8
√

2 = t
(
t− 2

√
2
)2
.

In conclusion, g(1) = 0, g′(x) > 0 for x > 0, thus g(x) > 0 for x > 1,

proving (29), thus (28). �

Remark 2. Another inequality connecting the means L,H and G,

namely
3

L
<

1

G
+

2

H
has been proved in [6] (relation (37)).

Proof of Theorem 4. Denote
b

a
= x2. Then (27) becomes equivalent

(after certain simple computations, which we omit) to

h(x) := ln
(
x2 −

√
2x+ 1

)
− 2x2

1 + x2
lnx− ln

(
2−
√

2
)
> 0 for all x > 1.

By (28) (i.e. (29)), this implies h′(x) > 0 for x > 1, and since h(1) = 0,

we conclude that h(x) > 0 for x > 1, and this proves (27). �

Corollary.

2A2 −G2 < S2 <
(

6 + 4
√

2
)
A2 −

(
5 + 4

√
2
)
G2 (30)
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Proof. The left side inequality is exactly the second part of (19). For

the right side remark that (27) written in the form

S <
A
√

2−G√
2− 1

implies

S2 <
(

2/
(

3− 2
√

2
))

A2 −
((

2
√

2− 1
)
/
(

3− 2
√

2
))

G2

by A > G. Now, observe that

2/
(

3− 2
√

2
)

= 6 + 4
√

2,
(

2
√

2− 1
)
/
(

3− 2
√

2
)

= 5 + 4
√

2. �
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5.3 A note on certain inequalities for

bivariate means

1. Introduction

Let a, b be two distinct positive numbers. The power mean of order k

of a and b is defined by

Ak = Ak(a, b) =

(
ak + bk

2

)1/k

, k 6= 0

and

A0 = lim
k→0

Ak =
√
ab = G(a, b).

Let A1 = A denote also the classical arithmetic mean of a and b, and

He = He(a, b) =
2A+G

3
=
a+ b+

√
ab

3

the so-called Heronian mean.

In the recent paper [1] the following results have been proved:

Ak(a, b) > a1−kI(ak, bk) for 0 < k ≤ 1, b > a (1.1)

Ak(a, b) < I(a, b) for 0 < k ≤ 1

2
(1.2)

He(ak, bk) < Aβ(ak, bk) <
3

21/β
He(ak, bk) for k > 0, β ≥ 2

3
(1.3)

and

Ak < S < 21/k · Ak for 1 ≤ k ≤ 2. (1.4)

In the proofs of (1.1)-(1.4) the differential calculus has been used. Our

aim will be to show that, relations (1.1)-(1.4) are easy consequences of

some known results.
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2. Main results

Lemma 2.1. The function f1(k) =

(
ak + bk

2

)1/k

= Ak(a, b) is a

strictly increasing function of k; while f2(k) = (ak + bk)1/k is a strictly

decreasing function of k. Here k runs through the set of real numbers.

Proof. Through these results are essentially known in the mathemat-

ical folklore, we shall give here a proof.

Simple computations yield:

k2
f ′1(k)

f1(k)
=
x lnx+ y ln y

x+ y
− ln

(
x+ y

2

)
, (2.1)

and

k2
f ′2(k)

f2(k)
=
x lnx+ y ln y

x+ y
− ln(x+ y), (2.2)

where x = ak > 0, y = bk > 0. Since the function f(x) = x lnx is strictly

convex (indeed: f ′′(x) =
1

x
> 0) by

f

(
x+ y

2

)
<
f(x) + f(y)

2
,

relation (2.1) implies f ′1(k) > 0. Since the function t → ln t is strictly

increasing, one has lnx < ln(x+ y) and ln y < ln(x+ y); so

x lnx+ y ln y < (x+ y) ln(x+ y),

so relation (2.2) implies that f ′2(t) < 0. These prove the stated mono-

tonicity properties.

Proof of (1.1). By the known inequality I < A we have

I(ak, bk) < A(ak, bk) =
ak + bk

2
.

Now
ak + bk

2
≤ ak−1

(
ak + bk

2

)1/k
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is equivalent with (for 1− k > 0)(
ak + bk

2

)1/k

> a or ak + bk > 2ak,

which is true for b > a. For k = 1 the inequality becomes I < A.

Proof of (1.2). Since Ak is strictly increasing, one has

Ak ≤ A1/2 =

(√
a+
√
b

2

)2

=
A+G

2
< I,

by a known result (see [3]) of the author:

I >
2A+G

3
>
A+G

2
. (2.3)

Proof of (1.3). By the inequality He < A2/3 (see [2]) one has

He(ak, bk) < A2/3(a
k, bk) ≤ Aβ(ak, bk),

by the first part of Lemma 2.1.

Now, 21/βAβ(ak, bk) ≤ 23/2(ak, bk) by the second part of Lemma 2.1,

and A2/3(a
k, bk) <

3

2
√

2
He(ak, bk), by (see [2])

A2/3 <
3

2
√

2
He. (2.4)

Since 23/2 = 2
√

2, inequality (1.3) follows.

Proof of (1.4). In [2] it was proved that

A2 < S <
√

2A2. (2.5)

Now, by Lemma 2.1 one has, as k ≤ 2 that Ak ≤ A2 < S and√
2A2 ≤ 21/kAk. Thus, by (2.5), relation (1.4) follows. We note that

condition 1 ≤ k is not necessary.
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5.4 A note on logarithmically completely

monotonic ratios of certain mean

values

1. Introduction

A function f : (0,∞) → R is said to be completely monotonic (c.m.

for short), if f has derivatives of all orders and satisfies

(−1)n · f (n)(x) ≥ 0 for all x > 0 and n = 0, 1, 2, . . . (1)

J. Dubourdieu [3] pointed out that, if a non-constant function f is

c.m., then strict inequality holds in (1). It is known (and called as Bern-

stein theorem) that f is c.m. iff f can be represented as

f(x) =

∫ ∞
0

e−xtdµ(t), (2)

where µ is a nonnegative measure on [0,∞) such that the integral con-

verges for all x > 0 (see [11]).

Completely monotonic functions appear naturally in many fields, like,

for example, probability theory and potential theory. The main properties

of these functions are given in [11]. We also refer to [4], [1], [2], where

detailed lists of references can be found.

Let a, b > 0 be two positive real numbers. The power mean of order

k ∈ R \ {0} of a and b is defined by

Ak = Ak(a, b) =

(
ak + bk

2

)1/k

.

Denote

A = A1(a, b) =
a+ b

2
, G = G(a, b) = A0(a, b) = lim

k→∞
Ak(a, b) =

√
ab

the arithmetic, resp. geometric means of a and b.

370



The identric, resp. logarithmic means of a and b are defined by

I = I(a, b) =
1

e

(
bb/aa

)1/(b−a)
for a 6= b; I(a, a) = a;

and

L = L(a, b) =
b− a

log b− log a
for a 6= b; L(a, a) = a.

Consider also the weighted geometric mean S of a and b, the weights

being a/(a+ b) and b/(a+ b) :

S = S(a, b) = aa/(a+b) · bb/(a+b).

As one has the identity (see [6])

S(a, b) =
I(a2, b2)

I(a, b)
,

the mean S is connected with the identric mean I.

Other means which occur in this paper are

H = H(a, b) = A−1(a, b) =
2ab

a+ b
, Q = Q(a, b) = A2(a, b) =

√
a2 + b2

2
,

as well as Seiffert’s mean (see [10], [9])

P = P (a, b) =
a− b

2 arcsin

(
a− b
a+ b

) for a 6= b, P (a, a) = a.

In the paper [2] C.-P. Chen and F. Qi have considered the ratios

a)
A

I
(x, x+ 1), b)

A

G
(x, x+ 1), c)

A

H
(x, x+ 1),

d)
I

G
(x, x+ 1), e)

I

H
(x, x+ 1), f)

G

H
(x, x+ 1),

g)
A

L
(x, x+ 1),
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where
A

I
(x, x+ 1) =

A(x, x+ 1)

I(x, x+ 1)

etc., and proved that the logarithms of the ratios a)− f) are c.m., while

the ratio from g) is c.m.

In [2] the authors call a function f as logarithmically completely

monotonic (l.c.m. for short) if the function g = log f is c.m. They notice

that they proved earlier (in 2004) that if f is l.c.m., then it is also c.m.

We note that this result has been proved already in paper [4]:

Lemma 1. If f is l.c.m, then it is also c.m.

The following basic property is well-known (see e.g. [4]):

Lemma 2. If a > 0 and f is c.m., then a · f is c.m., too. The sum

and the product of two c.m. functions is c.m., too.

Corollary 1. If k is a positive integer and f is c.m., then the function

fk is c.m., too.

Indeed, it follows by induction from Lemma 2 that, the product of a

finite number of c.m. functions is c.m., too.

Particularly, when there are k equal functions, Corollary 1 follows.

The aim of this note is to offer new proofs for more general results

than in [2], and involving also the means S, P,Q.

2. Main results

First we note that, as one has the identity

H =
G2

A
,

we get immediately
A

H
=
A2

G2
,

G

H
=
A

G

so that as

log
A

H
= 2 log

A

G
and log

G

H
= log

A

G
,
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by Lemma 2 the ratios c) and f) may be reduced to the ratio a).

Similarly, as
I

H
=
A

G
· I
G
,

the study of ratio e) follows (based again on Lemma 2) from the ratios

b) and d).

As one has
A

G
=
A

I
· I
G
,

it will be sufficient to consider the ratios a) and d).

Therefore, in Theorem 1 of [2] we should prove only that
A

I
(x, x+ 1)

and
I

G
(x, x+ 1) are l.c.m., and

A

L
(x, x+ 1) is c.m.

A more general result is contained in the following:

Theorem 1. For any a > 0 (fixed), the ratios

A

I
(x, x+ a) and

I

G
(x, x+ a)

are l.c.m., and the ratio
A

L
(x, x+ a)

is c.m. function.

Proof. The following series representations are well-known (see e.g.

[6], [9]):

log
A

G
(x, y) =

∞∑
k=1

1

2k
·
(
y − x
y + x

)2k

, (3)

log
I

G
(x, y) =

∞∑
k=1

1

2k + 1
·
(
y − x
y + x

)2k

. (4)

By substraction, from (3) and (4) we get

log
A

I
(x, y) =

∞∑
k=1

1

2k(2k + 1)
·
(
y − x
y + x

)2k

, (5)
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where
A

G
(x, y) =

A(x, y)

G(x, y)
, etc.

By letting y = x+ a in (4), we get that

log
I

G
(x, x+ a) =

∞∑
k=1

a2k

2k + 1
·
(

1

2x+ a

)2k

. (6)

As
1

2x+ a
is c.m., by Corollary 1, g(x) =

(
1

2x+ a

)2k

will be c.m.,

too. This means that

(−1)ng(n)(x) ≥ 0 for any x > 0, n ≥ 0,

so by n times differentiation of the series from (6), we get that

log
I

G
(x, x+ a)

is c.m., thus
I

G
(x, x+ a) is l.c.m.

The similar proof for
A

I
(x, x+a) follows from the series representation

(5).

Finally, by the known identity (see e.g. [6], [9])

log
I

G
=
A

L
− 1 (7)

we get the last part of Theorem 1. �

Remark 1. It follows from the above that
A

G
(x, x+ a),

A

H
(x, x+ a),

I

H
(x, x+ a),

G

H
(x, x+ a) are all l.c.m. functions.

Theorem 2. For any a > 0, the ratios

√
2A2 +G2

I
√

3
(x, x+ a),

√
2A2 +G2

G
√

3
(x, x+ a) and

Q

G
(x, x+ a)
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are l.c.m. functions.

Proof. In paper [8] it is proved that

log

√
2A2 +G2

I
√

3
=
∞∑
k=1

1

2k
·
(

1

2k + 1
− 1

3k

)
·
(
y − x
y + x

)2k

, (8)

while in [9] that

log

√
2A2 +G2

G
√

3
=
∞∑
k=1

1

2k
·
(

1− 1

3k

)
·
(
y − x
y + x

)2k

. (9)

Letting y = x + a, by the method of proof of Theorem 1, the first

part of Theorem 2 follows. Finally, the identity

log
Q

G
=
∞∑
k=1

1

2k − 1
·
(
y − x
y + x

)4k−2

(10)

appears in [9]. This leads also to the proof of l.c.m. monotonicity of the

ratio
Q

G
(x, x+ a). �

Theorem 3. For any a > 0, the ratios

L

G
(x, x+ a), −H

L
(x, x+ a) and

A

P
(x, x+ a)

are c.m. functions.

Proof. In [5] (see also [9] for a new proof) it is shown that

L

G
(x, y) =

∞∑
k=0

1

(2k + 1)!
·
(

log x− log y

2

)2k

. (11)

Letting y = x+ a and remarking that the function

f(x) = log(x+ a)− log x

is c.m., by Corollary 1, and by differentiation of the series from (11), we

get that
L

G
(x, x+ a) is c.m.
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The identity

log
S

I
= 1− H

L
(12)

appears in [9]. Since we have the series representations (see [7], [9])

log
S

G
(x, y) =

∞∑
k=1

1

2k − 1
·
(
y − x
y + x

)2k

(13)

and

log
S

A
(x, y) =

∞∑
k=1

1

2k(2k − 1)
·
(
y − x
y + x

)2k

, (14)

by using relation (4), we get log
S

G
− log

I

G
= log

S

I
, so

log
S

I
(x, y) =

∞∑
k=1

2

4k2 − 1
·
(
y − x
y + x

)2k

, (15)

thus
S

I
(x, x + a) is l.c.m., which by (12) implies that the ratio −

H

L
is

l.c.m. function.

Finally, Seiffert’s identity (see [10], [9])

log
A

P
(x, y) =

∞∑
k=0

1

4k(2k + 1)
·
(

2k

k

)
·
(
y − x
y + x

)2k

, (16)

implies the last part of the theorem. �

Remark 2. By (13), (14) and (15) we get also that
S

G
(x, x + a),

S

A
(x, x+ a) and

S

I
(x, x+ a) are l.c.m. functions.
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5.5 On means generated by two positive

functions

1

Let f, g : (0,+∞) → (0,+∞) be two positive functions of positive

arguments. We shall consider the following means generated by these

functions:

Mf,g := Mf,g(a, b) =
af(a) + bg(b)

f(a) + g(b)
(a, b > 0) (1)

and

Nf,g := Nf,g(a, b) =
(
af(a) · bg(b)

)1/(f(a)+g(b))
(a, b > 0) (2)

First remark that M and N are indeed means, since

Mf,g = Nf,g = (a, a) = a and a < Mf,g(a, b) < b

⇔ a < b and a < Nf,g(a, b) < b⇔ a < b

for any f, g. Some particular cases of these general means are worthy to

note:

1) Let f(x) = g(x) = xk (k ∈ R). Then one obtains the means

Mk := Mk(a, b) =
ak+1 + bk+1

ak + bk
,

known also as the Lehmer means. For k = 0 one gets

M0 = M0(a, b) =
a+ b

2
= A(a, b), the arithmetic mean,

for k = −1 one has

M−1 = M−1(a, b) =
2

1

a
+

1

b

= H(a, b), the harmonic mean,
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for k = 1 one gets

M1 = M1(a, b) =
a2 + b2

a+ b
;

for k = −1/2 one has

M−1/2 =
√
ab = G(a, b), the geometric mean.

Similarly, for the means N one obtains:

Nk := Nk(a, b) =
(
aa

k

bb
k
)1/(ak+bk)

.

Here

N0 =
√
ab = G(a, b), the geometric mean;

N1 = (aabb)1/(a+b) = S(a, b),

a mean studied e.g. in [1], [4], [5].

For k = −1 one can deduce the following similar mean:

N−1 = (a1/ab1/b)ab/(a+b) = (abba)1/(a+b) = S∗(a, b)

(which we denote here as the conjugate of the mean S).

2

But certainly, by selecting f 6= g, one can write certain unsymmetric

means, as for f(x) = x, g(x) =
√
x:

Mf,g =
a2 + b

√
b

a+
√
b
, Nf,g =

(
aab
√
b
)1/(a+√b)

.

3

For f(x) = g(x) = ex, one has

Mf,g =
ae

a
+ be

b

ea + eb

(studied also in [5]), while

Nf,g =
(
a(e

a)b(e
b)
)1/(ea+eb)

.
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4

Finally, when f(x) = ex, g(x) = e−x one gets

Mf,g =
aea + be−b

ea + e−b
, Nf,g =

(
a(e

a)a(e
−b)
)1/(ea+e−b)

but we stop with the examples.

Lemma 1. Let ai > 0, λi > 0 (i = 1, n),
n∑
i=1

λi = 1. Then

aλ11 . . . aλnn ≤ λ1a1 + . . .+ λnan (3)

with equality only for a1 = . . . = an = 1.

Proof. (With an idea by F. Riesz [6]). Apply the logarithmic inequal-

ity

lnx ≤ x− 1 (x > 0, with equality for x = 1) (4)

to x =
ai
A

, where A = λ1a1 + . . . + λnan (i = 1, n) and multiply (4) by

λi. One gets

λi ln
ai
A
≤ λiai

A
− λi.

By summing on i = 1, n, one can deduce

ln
aλ11 . . . aλnn
Aλ1+...+λn

≤ A

A
−

n∑
i=1

λi, i.e. ln
aλ11 . . . aλnn

A
≤ 0,

giving (3). One has equality only for x = 1, i.e.
ai
A

= 1, implying

a1 = a2 = . . . = an = A.

Theorem 1. For all f, g one has

Nf,g ≤Mf,g (5)

with equality only for a = b.
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Proof. Remark that Nf,g can be written as aλ1bλ2 , where

λ1 =
f(a)

f(a) + g(b)
, λ2 =

g(b)

f(a) + g(b)
.

Then λ1, λ2 > 0, λ1 + λ2 = 1, and by Lemma 1 (n = 2) we get

aλ1bλ2 ≤ λ1a+ λ2b =
af(a) + bg(b)

f(a) + f(b)
= Mf,g(a, b).

One has equality for a = b, one base of Lemma 1. This proves Theorem 1.

Remark. Since for a < b one has Mf,g(a, b) < b, (5) gives an

improvement of relation a < Nf,g(a, b) < b (right side), and also of

a < Mf,g(a) < b (left side). For particular f, g, relation (5) contains

many inequalities.

5

The definition of Nf,g remembers the identric mean I defined by

I := I(a, b) =
1

e
(aa/bb)1/(a−b) (a 6= b); I(a, a) = a. (6)

Therefore it is natural that following the above ideas to look for a gen-

eralization like

If,g := If,g(a, b) = c
(
af(a)/bg(b)

)1/(f(a)−g(b))
(7)

where c is a positive constant. For f = g the following result can be

proved:

Theorem 2. Let us suppose that f is differentiable. Then (7) defines

a mean if and only if f(x) = kxλ and c = e−1/λ where λ 6= 0 is a real

number, k > 0 constant.

Proof. Let 0 < a < b. Then If is a mean if

a < c
(
af(a)/bf(b)

)1/(f(a)−f(b))
< b,
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or written equivalently

1

c
<
(a
b

) f(b)
f(a)−f(b)

and
(a
b

) f(a)
f(a)−f(b)

<
1

c
.

Now, remark that

(a
b

)f(b)/(f(a)−f(b))
=

[(a
b

) a
a−b
] f(b)(a−b)
a(f(a)−f(b))

.

It is immediate that

lim
b→a

(a
b

) a
a−b

= e,

so by the above identity, on letting b→ a we get

1

c
≤ ef(a)/af

′(a) and ef(a)/af
′(a) ≤ 1

c
, (8)

i.e.

ef(a)/af
′(a) =

1

c
, ∀ a > 0.

This well-known differential equation, by integrating gives

f(a) = kaλ, λ 6= 0.

Conversely, if f is given by this formula, then If given by (7) defines a

mean for c = e−1/λ. Indeed, as above one can write

e
1
λ ≤

(a
b

) bλ

aλ−bλ
.

Denoting
a

b
= x ∈ (0, 1) and logarithming this becomes

1

xλ − 1
log x ≥ 1

λ
,

which is obviously true. Analogously, the second inequality becomes

xλ

xλ − 1
lg x ≤ 1

λ

which is also true.
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6

We now consider certain particular means of the general means intro-

duced above. In Example 1), we have denoted

S(a, b) = (aabb)1/(a+b), S∗(a, b) = (abba)1/(a+b).

The example from 3), was defined in [5] by F :

F (a, b) =
aea + beb

ea + eb
.

Now the following identities were remarked (see [3], [5]).

F (a, b) = log S(ea, eb) (9)

S(a, b) =
I(a2, b2)

I(a, b)
, (10)

where I is the identric mean. Another identity for these means in ([3])

log
S

I
= 1− G2

AL
(11)

where L is the logarithmic mean. See [7] for related identities. By replac-

ing a→ 1/a, b→ 1/b in (6) one gets the mean

J(a, b) =
1

I

(
1

a
,
1

b

)
introduced in [1].

J(a, b) = e(ab/ba)1/(b−a) (12)

Now, remark that

S(a, b) · S∗(a, b) = (aa+bba+b)1/(a+b) = ab,

giving

S∗ =
G2

S
(13)
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This is very similar to H =
G2

A
. By replacing a → 1/a, b → 1/b in

definition of S and S∗, one gets the surprising fact:

S∗(a, b) =
1

S

(
1

a
,
1

b

) and S(a, b) =
1

S∗
(

1

a
,
1

b

) . (14)

Definition. Two means M,N are T -similar (related to the mean T )

if

MN = T 2 (15)

The mean M∗ is named as the conjugate mean of M of

M∗(a, b) =
1

M

(
1

a
,
1

b

) .
For example, H and A; as well as S and S∗ are G-similar (see (13)). We

have:

Theorem 3. If M,N are T -similar, then M∗ and N∗ are T ∗-similar,

and reciprocally.

Proof. In M(a, b)N(a, b) = T 2(a, b) apply a→ 1/a, b→ 1/b and use

the above definition.
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Bolyai, Math., 38(1993), no. 4, 7-14.

384



4. J. Sándor, I. Raşa, Inequalities for certain means in two arguments,

Nieuw Arc. Wiskunde, 15(1997), 51-55.

5. J. Sándor, Gh. Toader, I. Raşa, The construction of some new
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5.6 On certain weighted means

1. Introduction

For a, b > 0 let

A = A(a, b) =
a+ b

2
, G = G(a, b) =

√
ab,

Q = Q(a, b) =

√
a2 + b2

2
, S(a, b) = (aa · bb)1/(a+b)

denote some classical means, and let

L = L(a, b) =
a− b

ln b− ln a
(a 6= b), L(a, a) = a

and

I = I(a, b) =
1

e
(bb/aa)1/(b−a) (a 6= b), I(a, a) = a

be the well-known logarithmic and identric means. For these means many

interesting relations, including various identities and inequalities have

been proved. For a survey of results, see e.g. [2], [3], [5], [6], [7]. Particu-

larly, the following chain of inequalities holds true:

G < L < I < A < Q < S, (1)

where in all cases a 6= b.

Recently, in paper [1] the following weighted means have been intro-

duced

G(a, b; p, q) =
G(ap, bq)

G(p, q)
, where a, b, p, q > 0, etc.

and more generally

M(a, b; p, q, ) =
M(ap, bq)

M(p, q)
, (2)

where M is a given homogeneous mean.

In [1] the authors have essentially proved the following:
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Theorem 1. For all 0 < a < b and 0 < p < q one has

G(a, b; p, q) < L(a, b; p, q) < I(a, b; p, q)

< A(a, b; p, q) < Q(a, b; p, q) < S(a, b; p, q). (3)

We note that in the author’s paper [7] (see Corollary 4, p. 117) the

following is proved:

Theorem A. If a, b, c, d > 0 and c > d, ad− bc > 0 then

L(a, b)

L(c, d)
>
G(a, b)

G(c, d)
. (4)

Now put a := b · q, b := a · p, c := q, d := p. We get from Theorem

A that if q > p > 0 and b > a > 0, then the first inequality of (3) holds

true.

Remark. Therefore, the idea of considering the means G(a, b; p, q)

and L(a, b; p, q) could be reduced to Theorem A.

The other aim of this paper is to offer new proofs for the remaining

inequalities, and even to (4). We point out that the second inequality of

(3) has been proved essentially in our paper [4].

2. Main results

The following auxiliary result will be used:

Lemma A. Let M and N be two homogeneous means and suppose

that the application

f(x) =
M(1, x)

N(1, x)
is strictly increasing for x > 1.

Then for any b > a > 0 and q > p > 0 one has

M(a, b; p, q) > N(a, b; p, q). (5)

Proof. Inequality (5) can be written also as

M(ap, bq)

N(ap, bq)
>
M(p, q)

N(p, q)
,
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and as M , N are homogeneous (of order one),

M

(
1,
b

a
· q
p

)
N

(
1,
b

a
· q
p

) >

M

(
1,
q

p

)
N

(
1,
q

p

) , or f

(
bq

ap

)
> f

(
q

p

)
.

Now, if bq > ap and b > a, then as f is strictly increasing, the result

follows.

Proof of I(a, b; p, q) > L(a, b; p, q). In our paper [4] it is proved that
I(1, x)

L(1, x)
is strictly increasing function of x > 1. By the Lemma, the proof

is completed.

Proof of L(a, b; p, q) > G(a, b; p, q). In our paper [4] it is proved that

L′

L
=

1

x− 1

(
1− L

x

)
,

where L = L(1, x) and L′ =
d

dx
L(1, x). Now, as

G′

G
=

1

2x
, and as it is

well known that L <
x+ 1

2
(particular case of (1): L < aA), we easily

get
L′

L
>
G′

G
. Since

(
L

G

)′
=
L′G−G′L

G2
, we get that

L(1, x)

G(1, x)
is strictly

increasing for x > 1. By the Lemma, the result follows.

Proof of A(a, b; p, q) > I(a, b; p, q). As
I ′

I
=

1

x− 1

(
1− 1

L

)
(see [4]),

and by
A′

A
=

1

x+ 1
, where I = I(1, x), etc., we get

A′

A
>

I ′

I
, as by

L <
x+ 1

2
this holds true. Now, the Lemma implies the result.

Proof of S(a, b; p, q) > Q(a, b; p, q). As lnS(a, b) =
a ln a+ b ln b

a+ b
, an

easy computation gives

S ′

S
=

(
x+ 1 +

x− 1

L

)
/(x+ 1)2.

Since
Q′

Q
=

x

x2 + 1
, we can prove that

S ′

S
>
Q′

Q
, as by L <

x+ 1

2
this
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reduces to (x2 + 4x − 1)(x2 + 1) > x(x + 1)3, or after some elementary

computations, to (x− 1)3 > 0. The Lemma applies.

3. Corrected result and new proofs

In [1] Theorem 8 incorrectly states that I(a, b; p, q) < I(a, b) for 0 <

a < b and 0 < p < q, while Theorem 7 states that L(a, b; p, q) > L(a, b).

In what follows, the following corrected result, with new proofs, will be

offered:

Theorem 2. One has, for any b > a > 0 and q > p > 0

I(p, q) · I(a, b) > I(pa, qb) (6)

and

L(p, q) · L(a, b) < L(pa, qb). (7)

Proof. The following integral representations are well-known:

ln I(a, b) =

∫ 1

0

ln(ua+ (1− u)b)du (8)

and

L(a, b) =

∫ 1

0

au · b1−udu. (9)

By taking into account of (8), it will be sufficient to show that

upa+ (1− u)qb ≥ [up+ (1− u)q][ua+ (1− u)b], u ∈ [0, 1]. (10)

After some elementary computations, (10) becomes:

u(1− u)(a− b)(p− q) ≥ 0

which is true. Since in (10) there is equality only for u = 0 or u = 1, by

integration we get the strict inequality (6).

Now, by (9) inequality becomes∫ 1

0

atb1−tdt

∫ 1

0

ptq1−tdt <

∫ 1

0

(pa)t(bq)1−tdt,
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and this is consequence of the Chebysheff integral inequality

1

y − x

∫ y

x

f(t)dt · 1

y − x

∫ y

x

g(t)dt <
1

y − x

∫ y

x

f(t)g(t)dt, (11)

where x < y and f, g : [x, y]→ R are strictly monotonic functions of the

same type. In our case [x, y] = [0, 1];

f(t) = at · b1−t = b
(a
b

)t
, g(t) = ptq1−t = q

(
p

q

)t
which are both strictly decreasing functions for b > a > 0 and q > p > 0.

Remarks. 1) Another proof of (7) can be given by the formula

lnL(a, b) =

∫ 1

0

ln I(at, bt)

t
dt,

and by taking into account of the relation (6) (proved before via (8) and

(10)).

2) A generalization of (6) and (7), for the so-called ”Stolarsky means”

has been given by E. Neuman and the author in 2003 (see [2], Theorem

3.8).

4. Refinements

First we will use the method of proof of Theorem A from [7] to deduce

a refinement of I(a, b; p, q) < A(a, b; p, q).

Refinement of I(a, b; p, q) < A(a, b; p, q). Let us introduce the mean

R =

√
2A2 +G2

3
.

The following series representations may be found in [7]:

ln
R

I
=
∞∑
k=1

1

2k

(
1

2k + 1
− 1

3k

)
z2k (12)
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and

ln
R

G
=
∞∑
k=1

1

2k

(
1− 1

3k

)
z2k, (13)

ln
A

G
=
∞∑
k=1

1

2k
· z2k, (14)

where z =
b− a
b+ a

. By a subtraction, from (13) and (14) we get

ln
A

R
=
∞∑
k=1

1

2k · 3k
· z2k. (15)

Assume now that a, b, c, d > 0 are given in such a way that b > a,

d > c and
b− a
b+ a

>
d− c
d+ c

. This latest inequality may be written also as

bc > ad. Then from (12) we get
R

I
(a, b) >

R

I
(c, d), or equivalently

R(a, b)

R(c, d)
>
I(a, b)

I(c, d)
.

By putting here a := pa, b := qb, c := p, d := q the above con-

ditions become b > a and q > p and we have obtained I(a, b; p, q) <

R(a, b; p, q). By using the same method for the representation (15), we

get R(a, b; p, q) < A(a, b; p, q). Thus we have obtained the refinement:

Theorem 3.

I(a, b; p, q) < R(a, b; p, q) < A(a, b; p, q), if b > a > 0, q > p > 0. (16)

Refinements of L(a, b; p, q) < I(a, b; p, q). Let us introduce the follow-

ing means:

U = U(a, b) =
2G+ A

3
, V = V (a, b) =

2A+G

3
,

P = P (a, b) =
a− b

2 arcsin

(
a− b
a+ b

) (a 6= b), P (a, a) = a.
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Here the mean P is called also the first Seiffert mean (see [?], [?]).

The following chain of inequalities is known:

L < U < P < V < I. (17)

The first inequality of (17) is due to B.C. Carlson ([3]), for the second

and third inequality see [5], while for the last inequality, see [3], [5] and

the references therein (the last inequality has been proved by the author

in 1991).

Now, from Section 2 we know that

I ′

I
=

1

x− 1

(
1− 1

L

)
,

L′

L
=

1

x− 1

(
1− L

x

)
,

where L = L(1, x), etc. and x > 1. One can deduce also the following

formulae

U ′

U
=

2 +
√
x√

x(4
√
x+ x+ 1)

,
V ′

V
=

2
√
x+ 1

2
√
x(x+

√
x+ 1)

,

and
P ′

P
=

1

x− 1

[
1− 2P

(x+ 1)
√
x

]
.

Now, the inequality
U ′

U
>
L′

L
becomes, after some elementary trans-

formations:

L >
2
√
x(x+ 1 +

√
x)

4
√
x+ x+ 1

.

Since
√
x = G, x+ 1 = 2A, this inequality is in fact the following:

Lemma 1. One has

L >
G(2A+G)

2G+ A
. (18)

Proof. By the Leach-Sholander inequality ([3]) L >
3
√
G2A, it is suf-

ficient to prove that

3
√
G2A > G(2A+G)/(2G+ A).

392



By putting A/G = t > 1, and by letting logarithms, this becomes

u(t) = ln t+ 3 ln(t+ 2)− 3 ln(2t+ 1) > 0.

After elementary computations, we can deduce:

t(t+ 2)(2t+ 1)U ′(t) = 2(t− 1)2 > 0.

Since u(t) is strictly increasing, we can write U(t) > U(1) = 0, so

(18) follows. This proves U ′/U < L′/L.

Inequality
U ′

U
<
P ′

P
, after some elementary transformations becomes:

Lemma 2.

P <
(2A+G)A

2G+ A
. (19)

Proof. By P < V =
2A+G

3
and

2A+G

3
<

(2A+G)A

2G+ A
⇔

2G+ A < 3A, i.e. G < A,

which is true.

The inequality
P ′

P
<
V ′

V
becomes:

Lemma 3.

P >
A(2G+ A)

2A+G
. (20)

Proof. In our paper [5] it is proved that

P >
3

√
A

(
A+G

2

)2

.

Therefore, it is sufficient to prove that

3

√
A

(
A+G

2

)2

>
A(2G+ A)

2A+G
.

Put
A

G
= t > 1, and by logarithmation, we have to prove

v(t) = 3 ln(2t+ 1) + 2 ln

(
t+ 1

2

)
− 2 ln t− 3 ln(t+ 2) > 0.
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After elementary computations we get

t(t+ 1)(t+ 2)(2t+ 1)v′(t) = (t− 1)(5t+ 4) > 0.

This implies v(t) > v(1) = 0, so (20) follows.

Finally, the inequality
V ′

V
<
I ′

I
becomes again inequality (18).

By the proved inequalities

L′

L
<
U ′

U
<
P ′

P
<
V ′

V
<
I ′

I
,

and by taking into account Lemma A, we get:

Theorem 4. For b > a > 0, q > 0 > 0 one has

L(a, b; p, q) < U(a, b; p, q) < P (a, b; p, q)

< V (a, b; p, q) < I(a, b; p, q). (21)
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5.7 Stolarsky and Gini means

1

First class of means studied here was introduced by K. Stolarsky [20].

For a, b ∈ R they are denoted by Da,b(·, ·) and defined as

Da,b(x, y) =



[
b(xa − ya)
a(xb − yb)

]1/(a−b)
, ab(a− b) 6= 0

exp

(
−1

a
+
xa lnx− ya ln y

xa − ya

)
, a = b 6= 0[

xa − ya

a(lnx− ln y)

]
, a 6= 0, b = 0

√
xy, a = b = 0.

(1.1)

Stolarsky means are sometimes called the difference means (see, e.g., [10],

[8]). Here x, y > 0, x 6= y.

The identric, logarithmic, and power means of order a (a 6= 0) will

be denoted by Ia, La, and Aa, respectively. They are all contained in the

family of means under discussion. We have Ia = Da,a, La = Da,0, and

Aa = D2a,a. When a = 1 we will write I, L, and A instead of I1, L1, and

A1. There is a simple relationship between means of order a (a 6= 1) and

those of order one. We have

Ia(x, y) = [I(xa, ya)]1/a

with similar formulas for the remaining means mentioned above. Finally,

the geometric mean of x and y is G(x, y) = D0,0(x, y).

Second family of bivariate means studied was introduced by C. Gini

[4]. Throughout the sequel they will denoted by Sa,b(·, ·) and they are
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defined as follows

Sa,b(x, y) =



[
xa + ya

xb + yb

]1/(a−b)
, a 6= b

exp

(
xa lnx+ ya ln y

xa + ya

)
, a = b 6= 0

√
xy, a = b = 0.

(1.2)

Gini means are also called the sum means. It follows from (1.2) that

S0,−1 = H – the harmonic mean, S0,0 = G, and S1,0 = A. The following

mean S = S1,1 will play an important role in the discussion that follows.

Alzer and Ruscheweyh [1] have proven that the joint members in the

families of the Stokarsky and Gini means are exactly the power means.

2

For the reader’s convenience we give here a list o basic properties of

the Stolarsky and Gini means. They follow directly from the defining

formulas (1.1) and (1.2) and most of them can be found in [5] and [20].

Although they are formulated for the Stolarsky means they remain valid

for the Gini means, too. In what follows we assume that a, b, c ∈ R.

(P1) Da,b(·, ·) is symmetric in its parameters, i.e. Da,b(·, ·) = Db,a(·, ·).

(P2) D·,·(x, y) is symmetric in the variables x and y, i.e.,

D·,·(x, y) = D·,·(y, x).

(P3) Da,b(x, y) is homogeneous function of order one in its variables, i.e.,

Da,b(λx, λy) = λDa,b(x, y), λ > 0.

(P4) Da,b(x
c, yc) = [Dac,bc(x, y)]c.

(P5) Da,b(x, y)D−a,−b(x, y) = xy.

(P6) Da,b(x
c, yc) = (xy)cDa,b(x

−c, y−c).
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(P7) Da,b(x, y)Sa,b(x, y) = Da,b(x
2, y2) = D2

2a,2b(x, y).

(P8) Da,b increases with increase in either a or b.

(P9) If a > 0 and b > 0, then Da,b is log-concave in both a and b.

If a < 0 and b < 0, then Da,b is log-convex in both a and b.

Property (P8) for the Stolarsky means in established in [5] and [20].

F. Qi [13] has established (P8) for the Gini means. Logarithmic concavity

(convexity) property for the Stolarsky means is established in [12].

(P10) If a 6= b, then

lnDa,b =
1

b− a

∫ b

a

ln Itdt and lnSa,b =
1

b− a

∫ b

a

ln Jtdt.

First formula in (P10) is derived in [20] while the proof of the second

one is an elementary exercise in calculus.

We shall prove now the property (P9) for the Gini means. The fol-

lowing result will be utilized.

Lemma 2.1. [14] Let f : [a, b]→ R be a twice differentiable function.

If f is increasing (decreasing) and/or convex (concave), then the function

g(a, b) =
1

b− a

∫ b

a

f(t)dt

is increasing (decreasing) and/or convex (concave) function in both vari-

ables a and b.

Let r = (x/y)t and let µ(t) = lnSt (t ∈ R). It follows from (1.2) that

tµ(t) = t lnx− ln r

r + 1
.

Hence

t2µ′(t) = r

(
ln r

r + 1

)2

> 0
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and

t3µ′′(t) = r(1− r)
(

ln r

r + 1

)3

< 0

for all t 6= 0. Thus the function µ(t) is strictly concave for t > 0 and

strictly convex or t < 0. This in conjunction with Lemma 2.1 and the

second formula of (P10) gives the desired result.

We close this section with three comparison theorems for the means

under discussion. The following functions will be used throughout the

sequel. Let

k(x, y) =


|x| − |y|
x− y

, x 6= y

sign(x), x = y

and let

l(x, y) =

 L(x, y), x > 0, y > 0

0, x · y = 0

where

L(x, y) =
x− y

lnx− ln y
, x 6= y, L(x, x) = x

is the logarithmic mean of x and y. Function l(x, y) is defined for non-

negative values of x and y only.

The comparison theorem for the Stolarsky mean reads as follows.

Theorem A. ([10], [6]) Let a, b, c, d ∈ R. Then the comparison in-

equality

Da,b(x, y) ≤ Dc,d(x, y)

holds true if and only if a+ b ≤ c+ d and

l(a, b) ≤ l(c, d) if 0 ≤ min(a, b, c, d),

k(a, b) ≤ k(c, d) if min(a, b, c, d) < 0 < max(a, b, c, d),

−l(−a,−b) ≤ −l(−c,−d) if max(a, b, c, d) ≤ 0.

A comparison result for the Gini means is contained in the following.
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Theorem B. ([9]) Let a, b, c, d ∈ R. Then the comparison inequality

Sa,b(x, y) ≤ Sc,d(x, y)

is valid if and only if a+ b ≤ c+ d and

min(a, b) ≤ min(c, d) if 0 ≤ min(a, b, c, d),

k(a, b) ≤ k(c, d) if min(a, b, c, d) < 0 < max(a, b, c, d),

max(a, b) ≤ max(c, d) if max(a, b, c, d) ≤ 0.

A comparison result for the Stolarsky and Gini means is obtained in [8].

Theorem C. Let a, b ∈ R. If a+ b > 0, then

Da,b(x, y) < Sa,b(x, y)

with the inequality reversed if a+ b < 0. Moreover, Da,b(x, y) = Sa,b(x, y)

if and only if a+ b = 0.

The new proof of Theorem C is included below.

Proof. There is nothing to prove when a+ b = 0 because

da,−a = Sa,−a = G.

Define r = (x/y)t and φ(t) = ln It − ln Jt. One can verify easily that

tφ(t) =
2r ln r

(r + 1)(r − 1)
− 1 =

H(r, 1)

L(r, 1)
− 1 < 0,

where the last inequality follows from the harmonic-logarithmic mean

inequality. Also, φ(−t) = −φ(t) for t ∈ R. Hence φ(t) < 0 if t > 0 and

φ(t) > 0 for t < 0. Let a 6= b. Making use of (P10) we obtain

lnDa,b − lnSa,b =
1

b− a

∫ b

a

φ(t)dt < 0,

where the last inequality holds true provided a+ b > 0. The same argu-

ment can be employed to show that Da,b > Sa,b if a+ b < 0. Assume now

that a = b 6= 0. Sándor and Raşa [17] have proven that Da,a < Sa, for

a > 0 with the inequality reversed if a < 0. This completes the proof. �
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3

Proofs of some results in this section utilize a refinement of the clas-

sical inequality which is due to Hermite and Hadamard.

Let f : [a, b]→ R be a convex function. Then

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(t)dt ≤ 1

2
[f(a) + f(b)] (3.1)

with the inequalities reversed if f is concave on [a, b]. Equalities hold in

(3.1) if and only if f is a polynomial of degree one or less (see, e.g., [11]).

To obtain a refinement of (3.1) we introduce a uniform partition of

[a, b] with the breakpoints αk, i.e., a = α0 < α1 < . . . < αn = b with

αk − αk−1 = h > 0. Also, let β1 < β2 < . . . < βn be the midpoints of the

consecutive subintervals. Thus

αk =
(n− k)a+ kb

n
, 0 ≤ k ≤ n

and

βk =
(2n− 2k + 1)a+ (2k − 1)b

2n
, 1 ≤ k ≤ n.

Let n be a positive integer. We define

Mn =
1

n

n∑
k=1

f(βk)

and

Tn =
1

n

{
1

2
[f(a) + f(b)] +

n−1∑
k=1

f(αk)

}
.

Lemma 3.1. Let f be a convex function on [a, b]. Then

Mn ≤
1

b− a

∫ b

a

f(t)dt ≤ Tn. (3.2)

Inequalities (3.2) are reversed if f is concave on [a, b].
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Proof. Applying (3.1) to each of the integrals

1

h

∫ αk

αk−1

f(t)dt

(h = (b − a)/n) and next summing the resulting expression, for k =

1, 2, . . . , n, we obtain the assertion. �

It is easy to verify that if f is a convex function on [a, b], then

Mn ≥ f

[
1

n

n∑
k=1

βk

]
= f

(
a+ b

2

)
and

Tn ≤
1

2n
[f(a) + f(b)] +

1

n

n−1∑
k=1

[(n− k)f(a) + kf(b)] =
1

2
[f(a) + f(b)].

Thus (3.2) gives the refinement of the Hermite-Hadamard inequality

(3.1). Inequality (3.2), when n = 2, appears in [3]. See also [2].

We shall use Lemma 3.1 in the proof of the following.

Theorem 3.2. Let a and b, a 6= b, be nonnegative numbers. Then(√
IaIb

n−1∏
k=1

Iαk

)1/n

≤ Da,b ≤

(
n∏
k=1

Iβk

)1/n

, (3.3)

n
n∑
k=1

Iβk

≤ 1

Da,b

≤ 1

2n

(
1

Ia
+

1

Ib
+ 2

n−1∑
k=1

1

Iαk

)
, (3.4)

and (√
I2aI2ab

n−1∏
k=1

I2αk

)2/n

≤ Da,bSa,b ≤

(
n∏
k=1

I2βk

)2/n

. (3.5)

Inequalities (3.3) and (3.5) are reversed if a ≤ 0 and b ≤ 0, a 6= b.

Proof. Assume that a ≥ 0 and b ≥ 0, a 6= b. For the proof of (3.3)

we use Lemma 3.1 with f(t) = ln It and property (P9) to obtain

1

n

(
ln
√
IaIb +

n−1∑
k=1

ln Iαk

)
≤ 1

b− a

∫ b

a

ln Itdt ≤
1

n

n∑
k=1

ln Iβk .
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Application of (P10) to the middle term gives the assertion. In order to

establish inequality (3.4) we use inequality (3.3) to obtain

n∏
k=1

(
1

Iβk

)1/n

≤ 1

Da,b

≤
(

1

IaIb

)1/2n n−1∏
k=1

(
1

Iαk

)1/n

.

Application of the geometric mean-harmonic mean inequality together

with the use of the arithmetic mean-geometric mean inequality completes

the proof of (3.4). Inequality (3.5) follows from (3.3). Replacing a by 2a

and b by 2b and next using the duplication formula Da,bSa,b = D2
2a,2b (see

(P7)) we obtain the desired result. Case a ≤ 0 and b ≤ 0 is treated in an

analogous manner, hence it is not included here. �

Inequalities (3.3) and (3.4) are valid for the Gini means with the

identric means being replaced by S-means of the appropriate order.

Bounds on the product Da,bSa,b are obtained below.

Theorem 3.3. Let a, b ∈ R. Assume that a+ b ≥ 0. Then

Da,bSa,b ≤ A2
q (3.6)

if and only if q = max(r1, r2), where r1 =
2

3
(a+ b) and

r3 =

 (ln 4)l(a, b) if a ≥ 0 and b ≥ 0,

0 if a < 0 and b > 0.

If a + b ≤ 0, then the inequality (3.6) is reversed if and only if q =

min(r1, r2), where r1 is the same as above and

r2 =

 −(ln 4)l(−a,−b) if a ≤ 0 and b ≤ 0,

0 if a > 0 and b > 0.

Proof. We shall use again the duplication formula√
Da,bSa,b = D2a,2b.
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Assume that a ≥ 0 and b ≥ 0. Using Theorem A we see that D2a,2b ≤
D2q,q if and only if 2(a + b) ≤ 3q and l(2a, 2b) ≤ l(2q, q). Solving these

inequalities for q we obtain q ≥ r1 and q ≥ r2. Assume now that a ≥ 0,

b ≤ 0 with a+ b ≥ 0. Invoking Theorem A we obtain

q ≥ r1 and k(2a, 2b) ≤ k(2q, q).

The last inequality can be written as

(a+ b)/(a− b) ≤ 1.

Clearly it is satisfied for all values of a and b in the stated domain because

0 ≤ a + b ≤ a − b. Case when a ≤ 0, b ≥ 0 with a + b ≥ 0 is treated in

the same way. We omit the proof of theorem when a+ n ≤ 0 because it

goes along the lines introduced above. �

Numerous inequalities for the particular means are contained in those

of Theorems 3.2 and 3.3.

Corollary 3.4. We have

A2/3 <
√
I5/6I7/6 < I, (3.7)

√
AL <

√
I1/2I3/2 < I, (3.8)

√
AL < A2/3, (3.9)
√
IS < Aln 4. (3.10)

Proof. First inequalities in (3.7)-(3.8) follows from the second in-

equalities in (3.3) and (3.5) by letting n = 2 and putting (a, b) =

(
4

3
,
2

3

)
and (a, b) = (1, 0), respectively while the second inequalities are an ob-

vious consequence of the logarithmic concavity of the identric mean. In-

equalities (3.9)-(3.10) follow from (3.6) by letting (a, b) = (1, 0) and

(a, b) = (1, 1), respectively. �

Combining (3.7) and (3.9) we obtain
√
AL < A2/3 < I (see [15]). The

second inequality in the last result is also established in [21].
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The following result

A2
4a/3 ≤ IaSa ≤ A2

(ln 4)a, a ≥ 0 (3.11)

is also worth mentioning. Inequalities (3.11) are reversed if a ≤ 0. Let

a ≥ 0. Then the second inequality in (3.11) follows immediately from

(3.6). For the proof of the first inequality in (3.11) we use (3.7) and the

duplication formula (P7) to obtain

A2
4/3(x, y) = A2/3(x

2, y2) < I(x2, y2) = I(x, y)S(x, y).

This completes the proof when a = 1. A standard argument is now used

to complete the proof when a ≥ 0. �

Our next result reads as follows.

Theorem 3.5. Let a ≤ 0 and b ≤ 0. Then

Da,b ≤ L(Ia, Ib). (3.12)

If a ≥ 0 and b ≥ 0, then

Da,b ≥
IaIb

L(Ia, Ib)
. (3.13)

Proof. There is nothing to prove then a = b. Assume that a ≤ 0,

b ≤ 0, a 6= b. For the proof of (3.12) we use (P10), Jensen’s inequality

for integrals, logarithmic convexity of It and the formula

L(x, y) =

∫ 1

0

xty1−tdt

(see [7]) to obtain

lnDa,b =
1

b− a

∫ b

a

ln Itdt =

∫ 1

0

ln Ita+(1−t)bdt

≤ ln

(∫ 1

0

Ita+(1−t)bdt

)
≤ ln

(∫ 1

0

I taI
1−t
b dt

)
= lnL(Ia, Ib).
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Let now a ≥ 0 and b ≥ 0. For the proof of (3.13) we use (P5) and (3.12)

to obtain

Da,b(x, y) =
xy

D−a,−b(x, y)
≥ xy

L(I−a, I−b)
=

xy

L

(
xy

Ia
,
xy

Ib

)

=
1

L

(
1

Ia
,

1

Ib

) =
IaIb

L(Ia, Ib)
. �

Corollary 3.6. The following inequality

IG

L(I,G)
< L (3.14)

is valid.

Proof. In (3.13) put (a, b) = (1, 0). �

Inequalities similar to those in (3.12)-(3.13) hold true for the Gini

means. We have

Sa,b ≤ L(Sa, Sb), a ≤ 0, b ≤ 0

and

Sa,b ≥
SaSb

L(Sa, Sb)
, a ≥ 0, b ≥ 0.

Theorem 3.7. Let a, b, c ∈ R, c 6= 0. Then

[Da,b(x
c, yc)]1/c ≥ Da,b(x, y) (3.15)

if and only if (a + b)(c − 1) ≥ 0. A similar result is valid for the Gini

means.

Proof. We shall use (P4) in the form

[Da,b(x
c, yc)]1/c = Dac,bc(x, y). (3.16)

It follows from Theorem A that Da,b ≤ Dac,bc if and only if a+b ≤ c(a+b)

and if one of the remaining three inequalities of the above mentioned

theorem is valid. Assume that a + b ≥ 0 and consider the case when
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c > 1. If a ≥ 0 and b ≥ 0, then min(a, b, ac, bc) ≥ 0 and l(ac, bc) =

cl(a, b) ≥ l(a, b). Making use of (3.16) we obtain the desired inequality

(3.15). Now let a ≥ 0, b ≤ 0 with a + b ≥ 0. Then min(a, b, ac, bc) ≤
0 ≤ max(a, b, ac, bc) and k(ac, bc) = k(a, b) which completes the proof

of (3.15) in the case under discussion. Cases 0 < c < 1 and c < 0 are

treated in a similar way, hence they are not discussed here in detail. For

the proof of the counterpart of (3.15) for the Gini means one uses the

comparison inequality of Theorem B. �

We close this section with the result which can be regarded as the

Chebyshev type inequality for the Stolarsky and Gini means.

Theorem 3.8. Let p = (p1, p2) and q = (q1, q2) be positive vectors.

Assume that 0 < p1 < p2 and 0 < q1 < q2 or that 0 < p2 < p1 and

0 < q2 < q1. Let s = (s1, s2), where s1 = p1q1 and s1 = p2q2. If a+ b ≥ 0,

then

Da,b(p)Da,b(q) ≤ Da,b(s). (3.17)

If a + b ≤ 0, then the inequality (3.17) is reversed. A similar result is

valid for the Gini means.

Proof. The following function

ψ(t) = ln It(s)− ln[It(p)It(q)], t ∈ R (3.18)

plays an important role in the proof of (3.17). We shall prove that

ψ(−t) = −ψ(t) and also that ψ(t) ≥ 0 for t ≥ 0. We have

ψ(t)+ψ(−t) = ln It(s)+ln−t(s)−[ln It(p)+ln I−t(p)]−[ln It(q)+ln I−t(q)]

= 2[lnG(s)− lnG(p)− lnG(q)] = 0.

Here we have used the identity ln It + ln I−t = 2 lnG which is a special

case of (P5) when a = b = t. Nonnegativity of the function ψ(t) (t ≥ 0)

can be established as follows. Let 0 ≤ u ≤ 1 and let v = (u, 1− u). The

dot product of v and p, denoted by v · p, is defined in the usual way

v · p = up1 + (1− u)p2.
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Using the integral representation for the identric mean of order one

ln I(p) =

∫ 1

0

ln(v · p)du

we obtain

ln[I(p)I(q)] =

∫ 1

0

ln[(v · p)(v · q)]du.

Application of the Chebyshev inequality

(v · p)(v · q) ≤ v · s

gives

ln[I(p)I(q)] ≤
∫ 1

0

ln(v · s)du = ln I(s).

This implies the inequality

It(p)It(q) ≤ Iy(s), t ≥ 0

with the inequality reversed if t ≤ 0. This completes the proof of (3.17)

when a = b = t and shows that ψ(t) ≥ 0 for t ≥ 0. Assume now that

a 6= b. Let a+ b ≥ 0. Using (P10) together with the two properties of the

function ψ we obtain

ln[Da,b(p)Da,b(q)] =
1

b− a

∫ b

a

ln[It(p)It(q)]dt

≤ 1

b− a

∫ b

a

ln It(s)dt = lnDa,b(s).

If a+b ≤ 0, then the last inequality is reversed. Proof of the corresponding

inequality for the Gini means goes the lines introduced above. We omit

further details. �

4

The goal of this section is to obtain the Ky Fan type inequalities for

the means discussed in this paper.
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To this end we will assume that 0 < x, y ≤ 1

2
with x 6= y. We define

x′ = 1− x, y′ = 1− y and write G′ for the geometric mean of x′ and y′,

i.e., G′ = G(x′, y′). The same convention will be used for the remaining

means which appear in this section.

We need the following.

Lemma 4.1. Let a 6= 0. Then∣∣∣∣xa − yaxa + ya

∣∣∣∣ > ∣∣∣∣(1− x)a − (1− y)a

(1− x)a + (1− y)a

∣∣∣∣ . (4.1)

Proof. For the proof of (4.1) we define a function

φa(t) =
ta − 1

ta + 1
, t > 0.

Clearly φa is an odd function in a, i.e., φ−a = −φa. In what follows we

will assume that a > 0. Also, φa(t) > 0 for t > 1 and φa(t) < 0 for

0 < t < 1. Since both sides of the inequality (4.1) are symmetric, we

may assume, without loss a generality, that x > y > 0. Let z = x/y and

w = (1− x)/(1− y). It is easy to verify that z > 1 > w > 0 and zw > 1.

In order to prove (4.1) it suffices to show that |φa(z)| > |φa(w)| for a > 0.

Using the inequalities which connect z and w we obtain

za − wa > 0 and (zw)a > 1.

Hence

za − wa + (zw)a − 1 > za − wa − (zw)a + 1

or what is the same that

(za − 1)(1 + wa) > (za + 1)(1− wa).

This implies that φa(z) > −φa(w) > 0. The proof is complete. �

Proposition 4.2. Let a ≥ 0. Then

G

G′
≤ Ia
I ′a
≤ Aa
A′a
≤ Ja
J ′a
. (4.2)
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Inequalities (4.2) are reversed if a ≤ 0 and they become equalities if and

only if a = 0.

Proof. There is nothing to prove when a = 0. Assume that a 6= 0.

We need the following series expansions

A = G exp

[
∞∑
k=1

1

2k

(
x− y
x+ y

)2k
]
, (4.3)

I = G exp

[
∞∑
k=1

1

2k + 1

(
x− y
x+ y

)2k
]
, (4.4)

J = G exp

[
∞∑
k=1

1

2k − 1

(
x− y
x+ y

)2k
]

(4.5)

(see [18], [19], [16]). It follows from (4.3)-(4.5) that for any a 6= 0

Aa = G exp

[
1

a

∞∑
k=1

1

2k

(
xa − ya

xa + ya

)2k
]
, (4.6)

Ia = G exp

[
1

a

∞∑
k=1

1

2k + 1

(
xa − ya

xa + ya

)2k
]
, (4.7)

Ja = G exp

[
1

a

∞∑
k=1

1

2k − 1

(
xa − ya

xa + ya

)2k
]
. (4.8)

Eliminating G between equations (4.6) and (4.7) and next between (4.6)

and (4.8), we obtain

Ia = Aa exp

[
−1

a

∞∑
k=1

1

2k(2k + 1)

(
xa − ya

xa + ya

)2k
]

(4.9)

and

Ja = Aa exp

[
1

a

∞∑
k=1

1

2k(2k − 1)

(
xa − ya

xa + ya

)2k
]
. (4.10)
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Assume that a > 0. For the proof of the first inequality in (4.2) we use

(4.7) to obtain

Ia
I ′a

=
G

G′
exp

[
1

a

∞∑
k=1

1

2k + 1
(u2k − v2k)

]
, (4.11)

where

u =
xa − ya

xa + ya
and v =

(1− x)a − (1− y)a

(1− x)a + (1− y)a
.

Making use of Lemma 4.1 we obtain u2k − v2k > 0 for k = 1, 2, . . . This

in conjunction with (4.11) gives the desired result. Second and third

inequalities in (4.2) can be established in an analogous manner using

(4.9) and (4.10), respectively. The case a < 0 is treated in the same

way. �

The main result of this section reads as follows.

Theorem 4.3. Let a, b ∈ R. If a+ b ≥ 0, then

G

G′
≤ Da,b

D′a,b
≤ Sa,b
S ′a,b

. (4.12)

Inequalities (4.12) are reversed if a+ b ≤ 0 and they become equalities if

and only if a+ b = 0.

Proof. There is nothing to prove when a + b = 0. Assume that

a+ b > 0. For the proof of the first inequality in (4.12) we use (P5) twice

with a = b = t to obtain

ln
It
I ′t

+ ln
I−t
I ′−t

= 2 ln
G

G′
. (4.13)

Let us define

h(t) = ln
G

G′
− ln

It
I ′t
.

It follows from (4.13) that h(t) = −h(−t). Also h(t) ≥ 0 for t ≥ 0

and h(t) ≤ 0 for t ≤ 0. This is an immediate consequence of the first

inequality in (4.2). Making use of (P10) we obtain

0 ≥ 1

b− a

∫ b

a

h(t)dt = ln
G

G′
− ln

Da,b

D′a,b
.
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For the proof of the second inequality in (4.12) we define not h(t) as

h(t) = ln
It
I ′t
− ln

St
S ′t
.

It follows that

h(t) = (ln It − lnSt)− (ln I ′t − lnS ′t).

Since both terms on the right side are odd functions in t (see proof of

Theorem C) it follows that function h(t) is also odd as a function of

variable t. Using (4.2) we see that h(t) ≤ 0 for t > 0 with the inequality

reversed if t > 0. This in conjunction with (P10) gives

0 ≥ 1

b− a

∫ b

a

h(t)dt = ln
Da,b

D′a,b
− ln

Sa,b
S ′a,b

.

This completes the proof in the case when a+b ≥ 0. Case when a+b ≤ 0

is treated in an analogous manner. �

Corollary 4.4. The following inequalities are valid

H

H ′
≤ G

G′
≤ L

L′
≤ A

A′
.

Proof. To obtain the inequalities in question we use Theorem 4.3

twice letting (a, b) = (−1, 0) and (a, b) = (1, 0). �
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5.8 A note on the Gini means

1

In paper [1], the following two means are compared to each others:

Let 0 < a < b. The power mean of two arguments is defined by

Mp =


(
ap + bp

2

)1/p

, p 6= 0

√
ab, p = 0,

(1)

while the Gini mean is defined as

Sp =


(
ap−1 + bp−1

a+ b

)1/(p−2)

, p 6= 2,

S(a, b), p = 2,

(2)

where S(a, b) = (ab · bb)1/(a+b). The properties of the special mean S have

been extensively studied by us e.g. in [7], [8], [9], [10]. In paper [6] it is

conjectured that

Sp
Mp

=


< 1, if p ∈ (0, 1)

= 1, if p ∈ {0, 1}

> 1, if p ∈ (−∞, 0) ∪ (1,∞),

(3)

while in [1], (3) is corrected to the following:

Sp
Mp

=


< 1, if p ∈ (0, 1) ∪ (1, 2)

= 1, if p ∈ {0, 1}

> 1, if p ∈ (−∞, 0) ∪ [2,∞)

(4)

For the proof of (4), for p 6∈ {0, 1, 2}, the author denotes t = b/a > 1,

when

log
Sp
Mp

=
1

p
f(t),
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where

f(t) =
p

p− 2
· log

1 + tp−1

1 + t
− log

1 + tp

2
, t > 1.

Then

f ′(t) =
p

p− 2
· g(t)

(1 + t)(1 + tp−1)(1 + tp)
,

where

g(t) = t2p−2 − (p− 1)tp + (p− 1)tp−2 − 1, t > 0.

It is immediate that

g′(t) = (p− 1)tp−3h(t), where h(t) = 2tp − pt2 + p− 2.

Then the author wrongly writes h′(t) = 2p(tp−1 − 1). In fact one has

h′(t) = 2pt(tp−2 − 1), and by analyzing the monotonicity properties, it

follows easily that relations (3) are true (and not the corrected version

(4)!).

2

However, we want to show, that relations (3) are consequences of

more general results, which are known in the literature.

In fact, Gini [2] introduced the two-parameter family of means

Su,v(a, b) =



(
au + bu

av + bv

)1/(u−v)

, u 6= v

exp

(
au log a+ bu log b

au + bu

)
, u = v 6= 0

√
ab, u = v = 0

(5)

for any real numbers u, v ∈ R. Clearly,

S0,−1 = H (harmonic mean),

S0,0 = G (geometric mean),
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S1,0 = A (arithmetic mean),

S1,1 = S (denoted also by J in [4], [10]),

Sp−1,1 = Sp,

where Sp is introduced by (2). In 1988 Zs. Páles [5] proved the following

result on the comparison of the Gini means (5).

Theorem 2.1. Let u, v, t, w ∈ R. Then the comparison inequality

Su,v(a, b) ≤ St,w(a, b) (6)

is valid if and only if u+ v ≤ t+ w and

i) min{u, v} ≤ min{t, w}, if 0 ≤ min{u, v, t, w},
ii) k(u, v) ≤ k(t, w), if min{u, v, t, w} < 0 < max{u, v, t, w},
iii) max{u, v} ≤ max{t, w}, if max{u, v, t, w} ≤ 0.

Here k(x, y) =


|x| − |y|
x− y

, x 6= y

sign(x), x = y.
The cases of equality are trivial.

Now, remarking that Sp = Sp−1,1 and Mp = Sp,0, results (3) will be a

consequence of this Theorem. In our case u = p− 1, v = 1, t = p, w = 0;

so u+ v ≤ t+ w = p, i.e. (6) is satisfied.

Now, it is easy to see that denoting

min{p− 1, 0, 1, p} = ap, max{p− 1, 0, 1, p} = Ap,

the following cases are evident:

1) p ≤ 0⇒ p− 1 < p ≤ 0 < 1, so ap = p− 1, Ap = 1;

2) p ∈ (0, 1]⇒ p− 1 < 0 < p ≤ 1, so ap = p− 1, Ap = 1;

3) p ∈ (1, 2]⇒ 0 < p− 1 ≤ 1 < p, so ap = 0, Ap = p;

4) p > 2⇒ 0 < 1 < p− 1 < p, so ap = 0, Ap = p.

In case 2) one has

|p− 1| − 1

p− 2
≤ |p|

p
if p− 1 < 0 < p
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only if
1− p− 1

p− 2
≤ 1, i.e.

2(1− p)
p− 2

≤ 0,

which is satisfied. The other cases are not possible.

Now, in case p 6∈ (0, 1) write Sp,0 < Sp−1,1, and apply the same

procedure.

For another two-parameter family of mean values, i.e. the Stolarsky

means Du,v(a, b), and its comparison theorems, as well as inequalities

involving these means see e.g. [11], [3], [4], [10], and the references.
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5.9 Inequalities for the ratios of certain

bivariate means

1. Introduction

In recent years a problem of comparison of ratios of certain bivariate

homogeneous means has attracted attention of researchers (see, e.g., [17],

[6]).

In order to formulate this problem let us introduce a notation which

will be used throughout the sequel. Let a = (a1, a2) and b = (b1, b2) stand

for vectors whose components are positive numbers. To this end we will

always assume that a and b satisfy the monotonicity conditions

a1
a2
≥ b1
b2
≥ 1. (1.1)

Further, let φ and ψ be bivariate means. We will always assume that φ

and ψ are homogeneous of degree 1 (or simply homogeneous) in their

variables. The central problem discussed in this paper is formulated as

follows. Assume that the variables ai and bi (i = 1, 2) satisfy monotonicity

conditions (1.1). For what means φ and ψ does the following inequality

φ(a)

φ(b)
≤ ψ(a)

ψ(b)
(1.2)

hold true? In [6] the authors have proven that the inequality (1.2) is valid

for power means of certain order, logarithmic, identric and the Heronian

mean of order ω. For the definition of the latter mean see [7] and formula

(2.6).

In this paper we shall obtain inequalities of the form (1.2) for the Sto-

larsky, Gini, Schwab-Borchardt, and the lemniscatic means. Definitions

and basic properties of these means are presented in Section 2. The main

results are derived in Section 3. We close this paper with a result which

deals with the relationship of the Ky Fan inequality and the inequality

(1.2).
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2. Definitions and basic properties of certain

bivariate means

We begin with the definition of the Stolarsky means which have been

introduced in [18] and studied extensively by numerous researchers (see,

e.g., [4], [8], [10], [11], [15]). For x > 0, y > 0 and p, q ∈ R, they are

denoted by Dp,q(x, y), and defined for x 6= y as

Dp,q(x, y) =



[
q(xp − yp)
p(xq − yq)

] 1
p−q

, pq(p− q) 6= 0

exp

(
−1

p
+
xp lnx− yp ln y

xp − yp

)
, p = q 6= 0[

xp − yp

p(lnx− ln y)

] 1
p

, p 6= 0, q = 0

√
xy, p = q = 0.

(2.1)

Also, Dp,q(x, x) = x.

Stolarsky means are sometimes called the extended means or the dif-

ference means (see [8], [10], [15]).

A second family of bivariate means employed in this paper was in-

troduced by C. Gini [5]. Throughout the sequel they will be denoted by

Sp,q(x, y). Following [5]

Sp,q(x, y) =



[
xp + yp

xq + yq

] 1
p−q

, p 6= q

exp

(
xp lnx+ yp ln y

xp + yp

)
, p = q 6= 0

√
xy, p = q = 0.

(2.2)

Gini means are also called the sum means (see, e.g., [10]).

For the reader’s convenience we recall basic properties of these two

families of means. Properties (P1)-(P3) follow directly from (2.1) and

(2.3). Properties (P4)-(P6) are established in [8], [18] and [11]. For the

421



sake of presentation, let φp,q stand either for the Stolarsky or Gini mean

of order (p, q). We have

(P1) φp,q(·, ·) = φq,p(·, ·).
(P2) φ·,·(x, y) = φ·,·(y, x).

(P3) φp,q(x, y) is homogeneous of degree 1 in its variables, i.e.,

φp,q(λx, λy) = λφp,q(x, y), λ > 0.

(P4) φp,q(·, ·) increases with increase in either p or q.

(P5) lnDp,q(x, y) =


1

p− q

∫ q

p

ln It(x, y)dt, p 6= q

ln Ip(x, y), p = q,
where

Ip(x, y) = Dp,p(x, y) (2.3)

is the identric mean of order p. Similarly

(P6) lnSp,q(x, y) =


1

q − p

∫ q

p

ln Jt(x, y)dt, p 6= q

lnSt(x, y), p = q,
where

Sp(x, y) = Sp,p(x, y). (2.4)

Other means used in this paper include the power mean Ap of order

p ∈ R. Recall that

Ap(x, y) =


(
xp + yp

2

)1/p

, p 6= q

√
xy, p = 0.

(2.5)

The Heronian mean Hω of order ω ≥ 0 is defined as

Hω(x, y) =
x+ y + ω

√
xy

2 + ω
(2.6)

(see [7]). Also we will deal with the harmonic, geometric, logarithmic,

identric, arithmetic and centroidal means of order one. They will be de-

noted by H, G, L, I, A and C, respectively. They are special cases of the
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Stolarsky mean Dp,q. We have

H = D−2,−1, G = D0,0, L = D0,1, H1 = D1/2,3/2

I = D1,1, A = D1,2, C = D2,3.
(2.7)

The Comparison Theorem for the Stolarsky means (see, eg., [15]) implies

the chain of inequalities

H < G < L < H1 < I < A < C (2.8)

provided x 6= y.

Another mean used in this paper is commonly referred to as the

Schwab-Borchardt mean. Now let x ≥ 0 and y > 0. The latter mean,

denoted by SB(x, y) ≡ SB, is defined as the common limit of two se-

quences {xn}∞0 and {yn}∞0 , i.e.,

SB = lim
n→∞

xn = lim
n→∞

yn,

where

x0 = x, y0 = y, xn+1 =
xn + yn

2
, yn+1 =

√
xn+1yn, (2.9)

n ≥ 0 (see [2]). It is known that the mean under discussion can be

expressed in terms of the elementary transcendental functions

SB(x, y) =



√
y2 − x2

arccos(x/y)
, 0 ≤ x < y√

x2 − y2
arccosh(x/y)

, y < x

x, x = y

(see [1, Theorem 8.4], [2, (2.3]). The Schwab-Borchardt mean has been

studied extensively in recent papers [12] and [14].

The lemniscatic mean of x > 0 and y ≥ 0, denoted by

LM(x, y) ≡ LM,
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is also the iterative mean, i.e.,

LM = lim
n→∞

xn = lim
n→∞

yn,

where

x0 = x, y0 = y, xn+1 =
xn + yn

2
, yn+1 =

√
xn+1xn, n ≥ 0.

The explicit formula

[LM(x, y)]−1/2 =



(x2 − y2)−1/4arcsl

(
1− y2

x2

)1/4

, y < x

(y2 − x2)−1/4arcslh

(
y2

x2
− 1

)1/4

, x < y

x−1/2, x = y

involves two incomplete symmetric integrals of the first kind

arcslx =

∫ x

0

dt√
1− t4

, |x| ≤ 1

and

arcslhx =

∫ x

0

dt√
1 + t4

,

which are also called the Gauss lemniscate functions, (see [2, (2.5)-(2.6)],

[1, p. 259]). It is known [2, (4.1)] that

arcslx = xRB(1, 1− x4) (2.10)

and

arcslhx = xRB(1, 1 + x4), (2.11)

where

RB(x, y) =
1

4

∫ ∞
0

(t+ x)−3/4(t+ y)−1/2dt (2.12)

(see [2, (3.14)]). The lemniscatic mean has been studied extensively in

[9].
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For later use let us record the fact that both SM and LM are homo-

geneous of degree 1, however, they are not symmetric in their variables.

We shall make use of the inequality which has been established in [9,

Theorem 5.2]:

SB(x, y) ≤ LM(y, x) ≤ A ≤ LM(x, y) ≤ SB(y, x) (2.13)

provided 0 < y ≤ x. Inequalities (2.13) are reversed if y ≥ x > 0.

3. Main results

Before we state and prove one of the main results of this section

(Theorem 3.3) we shall investigate a function u(t) which is defined as

follows

u(t) ≡ u(t;x) =
d

dx
It(x, 1)

(0 < x < 1), where It is the identric mean defined in (2.3). It follows

from (2.1) that

u(t) =


x2t−1 − xt−1 − txt−1 lnx

(xt − 1)2
, t 6= 0

1

2x
, t = 0.

(3.1)

We need the following:

Lemma 3.1. The function u(t) has the following properties

u(t) ≥ 0, t ∈ R, (3.2)

u(−t) + u(t) = 2u(0), (3.2)

u(t) is strictly decreasing for every t 6= 0, (3.4)

u(t) is strictly convex for t > 0 and strictly concave for t < 0. (3.5)

Proof. In order to establish the inequality (3.2) it suffices to apply

the inequality lnxt < xt − 1 to the right side of (3.1). Formula (3.3)
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follows easily from (3.1). For the proof of monotonicity property (3.4) we

differentiate (3.1) to obtain

(xt − 1)3

xt−1 lnx
u′(t) = y ln y + ln y − 2y + 2, (3.6)

where y = xt. Letting z = x−t we can rewrite the right side of (3.6) as

(xt − 1)3

xt−1 lnx
u′(t) =

(z − 1)(z + 1)

z

[
1

A(z, 1)
− 1

L(z, 1)

]
. (3.7)

Let t > 0. Then 0 < xt < 1. This in turn implies that z > 1. Application

of the well-known inequality L(z, 1) < A(z, 1) shows that the right side

of (3.7) is negative. Hence u′(t) < 0 for t > 0. The same argument can

be used that u′(t) < 0 for positive t. This completes the proof of (3.4).

For the proof of (3.5) we differentiate (3.6) to obtain

(xt − 1)4

xt−1(lnx)2
u′′(t) = 3(y2 − 1)− (ln y)(y2 + 4y + 1). (3.8)

The right side of (3.8) can also be written as

6(ln y)

[
L(y2 − 1)− A(y2, 1) + 2G(y2, 1)

3

]
=: R.

Let t > 0. Then y < 1. This in turn implies that R > 0 because

L <
A+ 2G

3
(3.9)

(see [3], [12]). This in conjunction with (3.8) shows that u′′(t) > 0 for

t > 0. Since the proof of strict concavity of u(t) when t < 0 goes along

the lines introduced above, it is omitted. �

For later use let us record a generalization of the classical Hermite-

Hadamard inequalities.

Proposition 3.2. ([4]) Let f(t) be a real-valued function which is

concave for t < 0, convex for t > 0, and satisfies the symmetry condition

f(−t) + f(t) = 2f(0).
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Then for any r and s (r 6= s) in the domain of f(t) the following inequal-

ities

f

(
r + s

2

)
≤ 1

s− r

∫ s

r

f(t)dt ≤ 1

2
[f(r) + f(s)] (3.10)

hold true provided r+s ≥ 0. Inequalities (3.10) are reversed if r+s ≤ 0.

We are in a position to prove the following.

Theorem 3.3. Let the vectors a = (a1, a2) and b = (b1, b2) of positive

numbers be such that the inequalities (1.1) are satisfied. Further, let the

numbers p, q, r and s satisfy the conditions p ≤ q and r ≤ s. Then the

following inequality
Dr,s(a)

Dr,s(b)
≤ Dp,q(a)

Dp,q(b)
(3.11)

is satisfied if either

(i) r + s ≥ 0 and p ≥ r + s

2
or

(ii) r + s ≤ 0 and p ≥ r

or

(iii) p+ q ≥ 0 and s ≤ p

or

(iv) p+ q ≤ 0 and s ≤ p+ q

2
.

Proof. The following function

φ(x) =
Dp,q(x, 1)

Dr,s(x, 1)
, (3.12)

0 < x < 1 plays a crucial role in the proof of the inequality (3.11).

Logarithmic differentiation together with the use of (P5) yields

φ′(x)

φ(x)
=



1

q − p

∫ q

p

u(t)dt− 1

s− r

∫ s

r

u(t)dt, p 6= q and r 6= s

u(p)− 1

s− r

∫ s

r

u(t)dt, p = q and r 6= s

1

q − p

∫ q

p

u(t)dt− u(r), p 6= q and r = s

u(p)− u(r), p = q and r = s,

(3.13)
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where

u(t) =
d

dx
It(x, 1).

We shall prove that φ(x) is a decreasing function on its domain. Consider

the case when r+ s ≥ 0 and p ≥ (r+ s)/2. Taking into account that the

function u(t) is strictly decreasing for t 6= 0 (see (3.4)) we have

1

q − p

∫ q

p

u(t)dt ≤ u(p). (3.14)

This in conjuction with the first inequality in (3.10) and the first line of

(3.13) gives
φ′(x)

φ(x)
≤ u(p)− u

(
r + s

2

)
≤ 0,

where the last inequality holds true because p ≥ (r + s)/2.

Hence φ′(x) ≤ 0 for 0 < x < 1. Assume now that r + s ≤ 0. Making use

of (3.14) and the second inequality in (3.10) applied to the expression on

the right side in the second line of (3.13) we obtain

φ′(x)

φ(x)
≤ u(p)− 1

2
[u(r) + u(s)] =

1

2
[u(p)− u(r)] +

1

2
[u(p)− u(s)] ≤ 0,

where the last inequality holds true provided p ≥ r and p ≥ s. Since

r ≤ p, φ′(x) ≤ 0 provided p ≥ r. Assume now that p + q ≥ 0. Utilizing

monotonicity of the function u(t) together with the use of r ≤ s gives

1

s− r

∫ s

r

u(t)dt ≥ u(s). (3.15)

This in conjunction with the third member of (3.13) and the second

inequality in (3.10) gives

φ′(x)

φ(x)
≤ 1

2
[u(p) + u(q)]− u(s) =

1

2
[u(p)− u(s)] +

1

2
[u(q)− u(s)] ≤ 0,

where the last inequality is valid provided p ≥ s and q ≥ s.

Thus φ′(x) ≤ 0 if s ≤ p. Finally, let p+ q ≤ 0. Then

φ′(x)

φ(x)
≤ u

(
p+ q

2

)
− u(s), (3.16)
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where the last inequality follows from the first inequality in (3.10) and

from (3.15). Since u(t) is strictly decreasing, the right side of (3.16) is

nonpositive if s ≤ (p + q)/2. The desired property of the function φ(x)

now follows. In order to establish the inequality (3.11) we employ the

inequality φ(x) ≤ φ(y) with

x =
a2
a1
≤ b2
b1

= y < 1.

Making use of (3.12) and properties (P2) and (P3) we obtain the asser-

tion. The proof is complete. �

We shall establish now an inequality between the ratios of the Sto-

larsky and Gini means.

Theorem 3.4. Let the vectors a and b satisfy assumptions of Theorem

3.3. If p+ q ≥ 0, then
Dp,q(a)

Dp,q(b)
≤ Sp,q(a)

Sp,q(b)
. (3.17)

Inequality (3.17) is reversed if p+ q ≤ 0.

Proof. Let now

φ(x) =
Dp,q(x, 1)

Sp,q(x, 1)
, (3.18)

where 0 < x < 1. Using (P5) and (P6) we obtain

lnφ(x) =


1

q − p

∫ q

p

[ln It(x, 1)− lnSt(x, 1)]dt, p 6= q

ln Ip(x, 1)− lnSp(x, 1), p = q.

Differentiation with respect to x gives

φ′(x)

φ(x)
=


1

q − p

∫ q

p

u(t)dt, p 6= q

u(p), p = q,

(3.19)

where now

u(t) =
d

dx
[ln It(x, 1)− lnSt(x, 1)].

429



Making use of (2.3), (2.1), (2.4), and (2.2) we obtain

ln It(x, 1)− lnSt(x, 1) = −1

t
+

2xt lnx

x2t − 1
, t 6= 0.

Hence

u(t) =
2xt−1

(x2t − 1)2
[x2t − 1− (x2t + 1) lnxt]. (3.20)

We shall prove that the function u(t) has the following properties

u(t)

 > 0 if t > 0,

< 0 if t < 0
(3.21)

and

u(−t) = −u(t). (3.22)

For the proof of (3.21) we substitute y = xt into (3.20) to obtain

u(t) =
4xt−1 lnx

(x2t − 1)2

(
y2 − 1

ln y2
− y2 + 1

2

)
=

4xt−1 lnx

(x2t − 1)2
[L(y2 − 1)− A(y2, 1)].

Since 0 < x < 1, 0 < y < 1 for t > 0 and y > 1 for t < 0, the inequality

of the logarithmic and arithmetic means implies (3.21). For the proof of

(3.22) we rewrite (3.20) as

u(t) =
2

x
· y

(y2 − 1)2
[y2 − 1− (y2 + 1) ln y],

where y = xt. Easy computations give the assertion. It follows from

(3.19), (3.21) and (3.22) that φ′(x) ≥ 0 if p + q ≥ 0 and φ′(x) ≤ 0 if

p+ q ≤ 0 with equalities if p+ q = 0. To complete the proof of (3.17) we

let

x =
a2
a1
≤ b2
b1

= y < 1

in φ(x) ≤ φ(y) when p + q ≥ 0. This in conjunction with (3.18) and

properties (P2) and (P3) completes the proof. The case when p + q ≤ 0

can be treated in an analogous manner. This completes the proof. �
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Our next result reads as follows.

Theorem 3.5. Let the vectors a and b satisfy monotonicity conditions

(1.1). Then

H(a)

H(b)
≤ G(a)

G(b)
≤
[
G2(a)A(a)

G2(b)A(b)

]1/3
≤ L(a)

L(b)

≤ H4(a)

H4(b)
≤ H1(a)

H1(b)
≤
A2/3(a)

A2/3(b)
≤ I(a)

I(b)

≤ He−2(a)

He−2(b)
≤ Hω(a)

Hω(b)
≤ A(a)

A(b)
≤ C(a)

C(b)
. (3.23)

Proof. The first inequality in (3.23) follows from (3.11) and (2.7)

with r = −2, s = −1, p = q = 0 while the second one is an immediate

consequence of G(a)/G(b) ≤ A(a)/A(b) which is a part of (3.23). For the

proof of the third inequality in (3.23) we define a function

φ(x) =
L3(x, 1)

G2(x, 1)A(x, 1)
, (3.24)

0 < x < 1. We shall prove that φ(x) is a decreasing function on the

stated domain. Logarithmic differentiation gives

φ′(x)

φ(x)
= 3

(
1

x− 1
− 1

x lnx

)
− 2x+ 1

x(x+ 1)
.

Letting x = 1/t (t > 1) we see that the last formula can be written as

φ′(x)

φ(x)
=

3t

t− 1

[
t− 1

ln t
− t2 + 4t+ 1

3(t+ 1)

]
. (3.25)

To complete the proof of monotonicity of φ(x) we apply Carlson’s in-

equality (3.9) to obtain

t− 1

ln t
≤ t2 + 4t+ 1

3(t+ 1)
.

This in conjunction with (3.25) gives the desired result. To complete the

proof of the inequality in question we follow the lines introduced at the
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end of the proofs of Theorems 3.3 and 3.4. The fourth, sixth, and eighth

inequalities in (3.23) are established in [6]. (See Theorems 3.2, 3.1, and

3.3, respectively.) The fifth, ninth, and the tenth inequalities in (3.23)

are a consequence of the monotonicity in ω of the ratio Hω(a)/Hω(b).

We have
Hα(a)

Hα(b)
≤ Hβ(a)

Hβ(b)
(3.26)

provided α > β ≥ 0 and 0 < x ≤. For, let

φ(x) =
Hα(x, 1)

Hβ(x, 1)
. (3.27)

Differentiating we obtain

φ′(x) =
(2 + β)(α− β)

2 + α
· 1− x

2
√
x (x+ 1 + β

√
x)

2 .

Thus φ(x) is increasing for 0 < x ≤ 1. Letting in (3.27)

x =
a2
a1
≤ b2
b1

= y ≤ 1

we obtain the inequality (3.26). The seventh inequality in (3.23) is a

consequence of the fact that A2/3(x, 1)/I(x, 1) is a decreasing function

for 0 < x < 1 (see [13, p. 104]). The remaining part of the proof of the

inequality in question goes along the lines introduced in the proofs of

Theorems 3.3 and 3.4. The last inequality in (3.23) is a special case of

(3.11) when r = 1, s = 2, p = 2 and q = 3. The proof is complete. �

We shall now derive inequalities involving ratios of the Schwab-

Borchardt means and the lemniscatic means. The following result, some-

times called the L’Hospital-type rule for monotonicity, will be utilized in

the sequel.

Proposition 3.6. ([21]) Let f and g be continuous functions on [c, d].

Assume that they are differentiable and g′(t) 6= 0 on (c, d). If f ′/g′ is

strictly increasing (decreasing) on (c, d), then so are

f(t)− f(c)

g(t)− g(c)
and

f(t)− f(d)

g(t)− g(d)
.
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(See also [16].)

We are in a position to prove the following.

Theorem 3.7. Let the vectors satisfy the monotonicity conditions

(1.1). Then the following inequalities

SB(a1, a2)

SB(b1, b2)
≤ LM(a2, a1)

LM(b2, b1)
≤ LM(a1, a2)

LM(b1, b2)
≤ SB(a2, a1)

SB(b2, b1)
(3.28)

hold true.

Proof. In order to establish the first inequality in (3.28) we introduce

a function

φ(x) =
SB(x, 1)

LM(1, x)
(3.29)

(x ≥ 1). Making use of

SB(x, 1) =
t2

arcsinh t2

(see [12, (1.3)]) and

LM(1, x) =
t2

(arcslh t)2

(see [9, (6.2]) we obtain

φ(x) =
(arcslh t)2

arcsinh t2
,

where t = 4
√
x2 − 1. To prove that φ(x) is an increasing function on its

domain we write

φ(x) =
f(t)

g(t)
,

where f(t) = (arcslh t)2 and g(t) = arcsinh t2 (t ≥ 0). Differentiation

gives
f ′(t)

g′(t)
=

arcslh t

t
= RB(1, 1 + t4),

where in the last step we have used (2.11). Since RB is a decreasing func-

tion in each of its variables (see (2.12)) we conclude, using Proposition
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3.6 and the fact that f(0) = g(0) = 0, that φ(x) has the desired property,

i.e., φ(x) ≥ φ(y) whenever x ≥ y. Letting

x =
a1
a2
≥ b1
b2

= y ≥ 1

and next using (3.29) and the fact that both means SB and LM are ho-

mogeneous we obtain the assertion. For the proof of the second inequality

in (3.28), we define

φ(x) =
LM(1, x)

LM(x, 1)

(x ≥ 1). Using [9, (6.1)-(6.2)] we obtain

φ(x) =

[
f(t)

g(t)

]2
, (3.30)

where

f(t) = arcsl

(
t

4
√

1 + t4

)
= tRB(1 + t4, 1)

and

g(t) = arcslh t = tRB(1, 1 + t4) and t =
4
√
x2 − 1.

Taking into account that

f ′(t) = (1 + t4)−3/4 and g′(t) = (1 + t4)−1/2

we see that
f ′(t)

g′(t)
= (1 + t4)−1/4

is the decreasing function for t ≥ 0. Making use of Proposition 3.6 we

conclude that the function f(t)/g(t) decreases with an increase in t. This

together with (3.30) implies that φ(x) ≤ φ(y) whenever x > y. We now

follow the lines introduced in the proof of the first inequality in (3.28)

to obtain the desired result. In order to establish the third inequality in

(3.28) we define

φ(x) =
LM(x, 1)

SB(1, x)
(3.31)
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(x ≥ 1). In order to prove that φ(x) is a decreasing function on its domain

it suffices to show that a function

ψ(x) = φ

(
1

x

)
is the increasing function on (0, 1]. Using (3.31) and the fact that LM

and SB are homogeneous functions we obtain

ψ(x) =
LM(1, x)

SB(x, 1)

(0 < x ≤ 1). Making use of [9, (6.1)] and [12, (1.2)] we obtain

ψ(x) =
f(t)

g(t)
, (3.32)

where f(t) = arcsin t2, g(t) = (arcsl t)2 and t = 4
√

1− x2. Hence

f ′(t)

g′(t)
=

t

arcsl t
=

1

RB(1, 1− t4)
,

where the last equality follows from (2.10). We conclude that the ratio

f ′(t)/g′(t) is a decreasing function of t because RB is also decreasing in

each of its variables. This in conjunction with Proposition 3.6 applied

to (3.32) and the fact that t and x satisfy t = 4
√

1− x2 leads to the

conclusion that ψ(x) is an increasing function on (0, 1]. This in turn

implies that φ(x) defined in (3.31) is decreasing for every x ≥ 1. We

follow the lines introduced earlier in this proof to complete the proof of

the last inequality in (3.28). �

Before we state and prove a corollary of Theorem 3.7, let us introduce

some special means derived from SB and LM . To this end let x > 0,

y > 0 and let G, A and

Q ≡ Q(x, y) =

√
x2 + y2

2
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stand for the geometric mean, arithmetic mean and the root-mean –

square mean of x and y. Following [12, (2.8)] let

L = SB(A,G), P = SB(G,A),

M = SB(Q,A), T = SB(A,Q),
(3.33)

where L stands for the logarithmic mean and P and T are the Seiffert

means (see [19], [20]). Clearly all four means defined above are symmet-

ric and homogeneous of degree 1. The lemniscate counterparts of these

means have been introduced in [9, (6.4)]:

U = LM(G,A), V = LM(A,G),

R = LM(A,Q), J = LM(Q,A).
(3.34)

It is easy to see that these means are symmetric and homogeneous of

degree 1. The following inequalities

L ≤ U ≤ V ≤ P ≤ A ≤M ≤ R ≤ J ≤ T (3.35)

have been established in [9, (6.10)].

We are in a position to establish the following.

Corollary 3.8. The means defined in (3.33) and (3.34) satisfy the

following inequalities
L

M
≤ U

R
≤ V

J
≤ P

T
. (3.36)

Proof. Let a1 = A, a2 = G, b1 = Q and b2 = A. Since A2 ≥ GQ,

the numbers ai and bi satisfy the inequalities (1.1). Utilizing (3.28) and

(3.33) and (3.34) one obtains the assertion (3.36). �

Let a and b satisfy (1.1). Then the inequalities (3.35) can be obtained

immediately from

L(a)

L(b)
≤ U(a)

U(b)
≤ V (a)

V (b)
≤ P (a)

P (b)
≤ A(a)

A(b)

≤ M(a)

M(b)
≤ R(a)

R(b)
≤ J(a)

J(b)
≤ T (a)

T (b)
(3.37)
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by letting b1 = b2. Since the proof of (3.37) goes along the lines introduced

in [9, Theorem 6.2], it is omitted.

We close this section with a result which shows that the inequality

(1.2) implies the Ky Fan inequality for the means φ and ψ:

φ(a)

φ(a′)
≤ ψ(a)

ψ(a′)
, (3.38)

where a = (a1, a2) with 0 < a1, a2 ≤
1

2
and

a′ = 1− a = (1− a1, 1− a2). (3.39)

Proposition 3.9. Let φ and ψ be symmetric homogeneous means of

two positive variables and assume that the inequality (1.2) holds true for

the vectors a and b which satisfy monotonicity conditions (1.1). Then the

means φ and ψ also satisfy the Ky Fan inequalities (3.38).

Proof. Without a loss of generality let us assume that a = (a1, a2) is

such that 0 < a2 < a1 ≤
1

2
and b = (b1, b2) = (1 − a2, 1 − a1). It is easy

to verify that a and b satisfy (1.1). Since φ and ψ are symmetric means,

inequality (1.2) holds true with b replaced by a′ (see (3.39)). �

Application of Proposition 3.9 to Theorems 3.1-3.3 in [6] gives imme-

diately Theorems 4.1, 4.2 and 4.4 in [6].
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4. P. Czinder, Zs. Páles, An extension of the Hermite-Hadamard in-

equality and application for Gini and Stolarsky means, J. Inequal.

Pure Appl. Math., 5(2)(2004), Article 42 (electronic). (Online:

http://jipam.vu.edu/au/images/167 03 JIPAM/167 03.pdf).

5. C. Gini, Di una formula comprensiva delle medie, Metron, 13

(1938), 3-22.

6. K. Guan, H. Zhou, The generalized Heronian mean and its inequal-

ities, Univ. Beograd, Publ. Elektrotehn. Fak., Ser. Mat., 17(2006),

60-75.

7. W. Janous, A note on generalized Heronian means, Math. Inequal.

Appl., 3(2001), 369-375.

8. E.B. Leach, M.C. Sholander, Extended mean values, Amer. Math.

Monthly, 85(2)(1978), 84-90.

9. E. Neuman, On Gauss lemniscate functions and lemniscatic mean,

submitted.
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15. Zs. Páles, Inequalities for differences of powers, J. Math. Anal.

Appl., 131(1988), 271-281.

16. I. Pinelis, On L’Hospital-type rules for monotonicity, J. Inequal.

Pure Appl. Math., 7(2)(2006), Article 40 (electronic). (Online:

http://jipam.vu.edu.au/images/157 05 JIPAM/157 05.pdf).

17. J. Sándor, Monotonicity and convexity properties of means, Octo-

gon Math. Mag., 7(2)(1999), 22-27.

18. K.B. Stolarsky, Generalization of the logarithmic mean, Math.

Mag., 48(2)(1975), 87-92.

19. H.-J. Seiffert, Problem 887, Nieuw. Arch. Wisk., 11(1993), 176.

20. H.-J. Seiffert, Augabe 16, Wurzel, 29(1995), 87.

21. M.K. Vamanamurthy, M. Vuorinen, Inequalities for means, J.

Math. Anal. Appl., 183(1994), 155-166.

439



5.10 Inequalities involving logarithmic

mean of arbitrary order

1. Introduction

The history of mean values is long and laden with detail. Among

means of two variables the logarithmic mean has attracted attention of

several researchers. A two-parameter generalizations of the logarithmic

mean have been introduced by K. B. Stolarsky (see [15]). A particular

case of Stolarsky mean is called the logarithmic mean of arbitrary order

(see 2.1). The goal of this note is to establish new inequalities satisfied by

the latter mean. Some known inequalities involving logarithmic mean of

order one are special cases of the main results established in this paper. In

Section 2 we give definitions of bivariate means used in the sequel. Also,

some known inequalities involving hyperbolic functions are included in

this section. The main results of this note are established in Section 3.

2. Definitions and preliminaries

Throughout the sequel we will assume that x and y are positive and

unequal numbers. We begin this section with definitions of certain bi-

variate means used in the sequel. The logarithmic mean of order t ∈ R
of x and y, denoted by Lt(x, y) ≡ Lt, is defined as follows [11]:

Lt(x, y) =

L(xt, yt)
1
t if t 6= 0,

G(x, y) if t = 0,
(2.1)

where

L(x, y) ≡ L =
x− y

lnx− ln y

is the logarithmic mean of order one and

G(x, y) ≡ G =
√
xy
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is the geometric mean of x and y. Another mean used in this paper is

the power mean At(x, y) ≡ At of order t ∈ R:

At(x, y) =


(
xt + yt

2

) 1
t

if t 6= 0,

G(x, y) if t = 0.

(2.2)

It is worth mentioning that all means defined above belong to a two-

parameter family of mens introduced by K.B. Stolarsky in [15]. These

means have been studied by several researchers. See, e.g., [10], [6] and

the references therein.

The key inequality used in this paper is the following one

(coshx)1/3 <
sinhx

x
<

2 + cosh x

3
(2.3)

(x 6= 0). First inequality in (2.3) is due to Lazarević [2] while the sec-

ond one is commonly referred to as the Cusa-Huygens inequality for

hyperbolic functions. Inequalities (2.3) are special cases of inequalities

established in [9].

For later use let us recall a result which has been established in [5]

(see Theorem 3.2).

Theorem 2.1 Let u, v, γ and δ be positive numbers which satisfy the

following conditions

(i) min(u, v) < 1 < max(u, v),

(ii) 1 < uγvδ,

(iii) γ + δ < γ
1

u
+ δ

1

v
.

Then the following inequality

2 <

(
1

u

)γp
+

(
1

v

)δp
< uγp + vδp. (2.4)

holds true provided γ ≥ 1, δ ≥ 1, and p ≥ 1. Second inequality in (2.4)

is valid if p > 0.

We will also utilize the following result (see [5], Theorem 3.1).
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Theorem 2.2. Assume that the numbers u, v, γ and δ satisfy as-

sumptions of Theorem 2.1. Further, let α and β be positive numbers and

assume that v < 1 < u. Then

α + β < αup + βvq (2.5)

if either

p > 0 and q ≤ p
δα

γβ
, (2.6)

or if

q ≤ p ≤ −1 and δα ≤ γβ. (2.7)

Conditions of validity of (2.5) when u < 1 < v are also obtained in

[5]. We omit further details.

3. Main results

In this section we shall establish inequalities involving logarithmic

mean Lt. For the later use let us introduce a variable λ = (t/2) ln(x/y)

(t ∈ R). One can easily verify, using (2.1)-(2.2), that

A
(
eλ, e−λ

)
= coshλ =

(
At
G

)t
(3.1)

and

L
(
eλ, e−λ

)
=

sinhλ

λ
=

(
Lt
G

)t
. (3.2)

This implies that
tanhλ

λ
=

(
Lt
At

)t
(3.3)

Our first result reads as follows.

Theorem 3.1. Let x and y be positive and unequal numbers, let t 6= 0,

and let p ≥ 1. Then

2 <

(
G

Lt

)2pt

+

(
At
Lt

)pt
<

(
Lt
G

)2pt

+

(
Lt
At

)pt
. (3.4)
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Second inequality in (3.4) holds true for p > 0.

Proof. We shall prove the assertion using Theorem 2.1 with

u =
sinh z

z
, v =

tanh z

z
, γ = 2, δ = 1.

It is well known that v < 1 < u holds for all z 6= 0. Moreover, the first

inequality in (2.3) can be written as 1 < u2v while the second one is the

same as 3 < 2
1

u
+

1

v
. Letting z = λ, where λ is the same as above, we

obtain

2 <

(
λ

sinhλ

)2pt

+

(
λ

tanhλ

)pt
<

(
sinhλ

λ

)2pt

+

(
tanhλ

λ

)pt
.

Application of (3.2) and (3.3) completes the proof. �

Particular cases of inequality (3.4) have been obtained in [4].

Corollary 3.2. The following inequalities

2L

L+G
<
A1/2

L
<

L2

GA1/2

<
L+G

2G
(3.5)

hold true.

Proof. We utilize the first two members of (3.4) with p = 1 and t = 1
2

and next apply L1/2 = L2/A1/2, to obtain

2 <
A1/2G

L2
+
A1/2

L
. (3.6)

Multiplying both sides of (3.6) by L/(L+G) we obtain the first inequality

in (3.5). The second inequality in (3.5) is equivalent to A2
1/2G < L3 (see

[13] and [7]), while the third one is equivalent to the first inequality in

(3.5). The proof is complete. �

The first inequality in (3.5) has been established in [12].

A generalization of the inequality which connects first and third mem-

bers of (3.4) reads as follows.

Theorem 3.3. Let x > 0, y > 0 (x 6= y), and let t 6= 0. Further, let

α > 0 and β > 0.Then

α + β < α

(
Lt
G

)pt
+ β

(
Lt
At

)qt
(3.7)
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if either

p > 0 and q ≤ p
α

2β
, (3.8)

or if

q ≤ p ≤ −1 and α ≤ 2β. (3.9)

Proof. We shall prove this result using Theorem 2.2 with

u =
sinh z

z
, v =

tanh z

z
, γ = 2, δ = 1.

As pointed out in the proof of Theorem 3.1 that they satisfy conditions

(i) - (iii). Letting z = λ, where λ is the same as in the proof of Theorem

3.1, we conclude, using inequality (2.5), that

α + β < α

(
sinhλ

λ

)p
+ β

(
tanhλ

λ

)q
.

Making use of (3.2) and (3.3) we obtain the desired result. This completes

the proof. �

To this end we will assume that α > 0 and β > 0. Several inequalities

can be derived from (3.7). For the sake of presentation we define the

weights

w1 = α/(α + β) and w2 = β/(α + β).

Clearly w1 + w2 = 1.

We shall now prove the following.

Corollary 3.4. Let t 6= 0. If α ≤ 2β, then

Ltt < w1G
t + w2A

t
t. (3.10)

Also, if α ≥ 2β, then

L−tt < w1G
−t + w2A

−t
t . (3.11)

Proof. In order to establish (3.10) it suffices to use Theorem 3.3 with

p = q = −1. Similarly, (3.11) can be obtained using Theorem 3.3 with

p = q = 1. This completes the proof. �
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Letting in (3.10) t = 1 and t = 1/2 we obtain, respectively,

L < w1G+ w2A

and

L < w1(A1/2G)1/2 + w2A1/2

provided α ≤ 2β. The last two inequalities are known in mathematical

literature in the case when α = 2 and β = 1 (see [1], [7], and [14]).

Similarly, letting in (3.11) t = −1 and t = −1/2 we obtain, respectively,

L−1 < w1G
−1 + w2A

−1

and

L−1 < w1(A1/2G)−1/2 + w2A
−1
1/2

provided α ≥ 2β. For more inequalities involving L−1, the interested

reader is referred to [7].

Inequalities for the extended logarithmic mean Et, where Et−1
t = Ltt/L

have been derived in [3]. They can be used to obtain more inequalities

for the mean discussed in this paper.
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Chapter 6

Sequential means

“The art of doing mathematics consists in finding that

special case which contains all the germs of generality.”

(D. Hilbert)

“There is a great power in truth and sincerity. The mathe-

matics community has tremendous reserves of human

potential energy. If we are lean and hungry, we are likely

to use our energy. If we are honest, it is likely to be

effective...”

(W. Thurston)

6.1 On some inequalities for means

1

Let x > 0 and y > 0. The logarithmic mean L(x, y) is defined by

L(x, y) =
x− y

lnx− ln y
for x 6= y; L(x, x) = x.

The identric mean of x and y is

I(x, y) =
1

e
(xx/yy)1/(x−y) for x 6= y; I(x, x) = x,
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while the arithmetic-geometric mean M(x, y) is defined by

x0 = x, y0 = y, xn+1 =
xn + yn

2
, yn+1 = (xnyn)1/2, n = 0, 1, 2, . . . ,

lim
n→∞

xn = lim
n→∞

yn = M(x, y).

For these means many results, especially inequalities, are known. For

historical remarks, applications, and inequalities, see, e.g., [1], [12], [13].

For early results and refinements see also [5], [9], [14], [15], [11], [8], [2],

[6], [17]. For an extensive bibliography on the mean M see [3] and [17].

The aim of this note is to obtain new and unitary proofs for certain

known inequalities as well as refinements and some new relations.

First we will obtain a simple proof of the double inequality

2

e
· A < I < A, (1)

where A = A(x, y) = (x+ y)/2 denotes the arithmetic mean of x and y.

A similar inequality will be

L < M <
π

2
· L. (2)

We shall deduce a new inequality, namely

2

π

(
1

L
− 1

A

)
<

1

M
− 1

A
<

12

5π

(
1

L
− 1

A

)
. (3)

In [17] it is proved (by studying certain integrals) that M < (A+G)/2,

where G = G(x, y) = (xy)1/2 denotes the geometric mean of x and y.

Here we will prove that

M >
√
A ·G (4)

so that the mean M separates the geometric and arithmetic mean of A

and G. (In all inequalities (1)-(4) we suppose x 6= y).
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2

In order to obtain relation (1), apply an inequality of Mitrinović and

Djoković (see [10, inequality 3.6.35, p. 280]):

2

e
< aa/(1−a) + a1/(1−a) < 1 for all 0 < a < 1. (5)

Put a = x/y in (5), where 0 < x < y. Then

1

1− a
=

y

y − x
,

a

1− a
=

x

y − x
.

Remarking that

y(y/x)x/(y−x) = e · I(x, y) and x(y/x)y/(y−x) = e · I(x, y),

after some simple computations we get

2

e
<
x+ y

e
· I < 1,

which yields (1). We note that the right side of (1) is due to Stolarski

[14].

3

Write t = (y−x)/(y+x), so that y/x = (1+t)/(1−t) with 0 < t < 1.

Since M and L are homogeneous means (of order 1) it will suffice to show

that (2) holds true in the form

L(1 + t, 1− t) < M(1 + t, 1− t) < π

2
· L(1 + t, 1− t). (6)

It is easy to see that

L(1 + t, 1− t) =
2t

ln(1 + t)/(1− t)

=

(
1 +

1

3
t2 +

1

5
t4 + . . .+

1

2n+ 1
· t2n + . . .

)−1
. (7)
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On the other hand, Gauss [7] (see also [4]) has shown that for |t| < 1

M(1 + t, 1− t) =

(
1 +

1

4
t2 +

9

64
t4 + . . .+ A−2n t2n + . . .

)−1
, (8)

where

An =
2 · 4 . . . (2n)

1 · 3 . . . (2n− 1)
for n ≥ 1.

The numbers (An) satisfy a relation essentially due to Wallis (see, e.g.,

[10, p. 192]):

π · n < (An)2 < π ·
(
n+

1

2

)
for n ≥ 1. (9)

Now, since π · n > 2n + 1, it is immediate that by (7) and (8), relation

(9) implies (6). The left side of (2) has been discovered by Carlson and

Vuorinen [6]. For the right side (with a different proof), see [17, Theorem

1.3(2)].

4

A refinement of the left side of (9) is due to Kazarinoff (see [10, p.

192]):

π ·
(
n+

1

4

)
< A2

n < π ·
(
n+

1

2

)
for n ≥ 1. (10)

We note that the right side of inequality (10) can be improved to 2/7 in

place of 1/2 [16], but this fact has no importance here.

Remark first that, since (2n+ 1)/(4n+ 1) ≤ 3/5 for n ≥ 1, from (10)

it results that

12

5π
· 1

2n+ 1
> A−2n >

2

π
· 1

2n+ 1
for n ≥ 1. (11)

Now, by using the method used in Section 2, by the homogeneity of M ,

L and A, (3) is equivalent to

2

π
·
(

1

L
− 1

)
<

1

M
− 1 <

12

5π
·
(

1

L
− 1

)
, (12)
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where L = L(1 + t, 1− t), etc.

By (7) and (8), this double inequality follows at once from (11).

5

Since

M(x, y) = A(x, y) ·M(1 + t, 1− t), G(x, y) = A(x, y) ·
√

1− t2,

(4) is equivalent to the inequality

(1− t2)−1/4 > 1 +
1

4
t2 + . . .+ A−2n t2n + . . . (13)

By the binomial theorem,

(1− t2)−1/4 = 1 +
1

4 · 1!
t2 +

1 · 5
42 · 2!

t4

+ . . .+
1 · 5 · 9 . . . (4n− 3)

4n · n!
t2n + . . .

so if we are able to prove that

A−2n < 1 · 5 · 9 . . . (4n− 3)/4n · n!, n > 1, (14)

then (13) is valid. From the definition of An, it is obvious that (14) and

(1 · 2 · 3 . . . n) · (1 · 5 · 9 . . . (4n−3)) > 12 · 32 . . . (2n−1)2, n>1 (15)

are the same. This inequality is true for n = 2, and accepting it for n, the

induction step follows by (n+1)(4n+1) > (2n+1)2, so via mathematical

induction, (15) follows. This proves (4).
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6.2 On inequalities for means by sequential

method

1

Let x, y be positive real numbers. The arithmetic-geometric mean of

Gauss is defined as the common limit of the sequences (xn), (yn) defined

recurrently by

x0 = x, y0 = y, xn+1 =
xn + yn

2
, yn+1 =

√
xnyn (n ≥ 0). (1)

Let M = M(x, y) := lim
n→∞

xn = lim
n→∞

yn. The mean M was considered

firstly by Gauss [8] and Lagrange [9], but its real importance and con-

nections with elliptic integrals are due to Gauss. For historical remarks

and an extensive bibliography on M , see [4], [2], [16].

The logarithmic mean and identric mean of x and y are defined by

L = L(x, y) :=
x− y

log x− log y
for x 6= y, L(x, x) = x, (2)

and

I = I(x, y) :=
1

e
(xx/yy)1/(x−y) for x 6= y, I(x, x) = x, (3)

respectively. For a survey of results, refinements, and extensions related

to these means, see [5], [10], [1], [11], [12].

Very recently, by using a variant of L’Hospital’s rule and representa-

tion theorems with elliptic integrals, Vamanamurthy and Vuorinen [16]

have proved, among other results, the inequalities

M <
√
AL (4)

L < M <
π

2
L (5)

M < I < A (6)

M <
A+G

2
(7)
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A <
M(x2, y2)

M(x, y)
< A2 :=

√
x2 + y2

2
, (8)

where A = A(x, y) := (x + y)/2 and G = G(x, y) :=
√
xy denote, as

usual, the arithmetic and geometric mean of x and y, respectively. Here,

in all cases, x and y are distinct.

The left side of (5) has been discovered by Carslon and Vuorinen [7].

In a recent note [13], by using the homogeneity of the above means and

a series representation of M due to Gauss [8], we have obtained, among

other results, new proofs for (5), (6), and a counterpart of (7),
√
AG < M, (9)

which shows that, M lies between the arithmetic and geometric means

of A and G.

The aim of this paper is to deduce new proofs for (4), (6), (7), (8),

and (9) by using only elementary methods for recurrent sequences and,

in fact, to prove much stronger forms of these results.

2

The algorithm (1) giving the mean M is known as Gauss’ algorithm.

Borchardt’s algorithm is defined in a similar manner [3] by

a0 = x, b0 = y, b1 =
√
xy, an+1 =

an + bn
2

(n ≥ 0),

bn+1 =
√
an+1bn (n ≥ 1)

It can be shown that for x 6= y, (an) (n ≥ 1) is strictly decreasing, while

(bn) (n ≥ 1) is strictly increasing, and

lim
n→∞

an = lim
n→∞

bn = L. (10)

Here L is exactly the logarithm mean, see [5]. For a new proof of this

fact, see [15]. Carlson has proved the important inequality

L <
A+ 2G

3
. (11)

455



For a new proof of (11) with improvements, see [14].

We now deduce an important counterpart of (11) due to Leach and

Sholander [10]:

L3 > G2A. (12)

This is based on the sequence (b2n·an) (n ≥ 1), which is strictly increasing.

Indeed, for n ≥ 1 one has

b2n+1 · an+1 = (an+1bn)an+1 = a2n+1bn > b2nan

by a2n+1 > anbn, i.e.

((an + bn)/2)2 > anbn,

which is true. Thus

b2nan > b2n−1an−1 > . . . > b22a2 > b21a1 = G2A (n > 2). (13)

For n→∞, via (10) and (11) one gets

L3 >

(
A+G

2

)2

G > G2A (14)

since a1 = A, b1 = G, etc. Inequality (14) refines (12), and, as can be

easily seen by (13), other improvements are also valid.

In what follows, it will be convenient also to introduce the algorithm

p0 = x2, q0 = y2, pn+1 =
pn + qn

2
, qn+1 =

√
pnqn (n ≥ 0). (15)

Clearly,

lim
n→∞

pn = lim
n→∞

qn = M(x2, y2). (16)

3

The idea of proving inequalities such as (14), which is an application

of monotonicity of certain sequences, appears in [14]. The first theorem,

which follows, is well known and can be proved by mathematical induc-

tion.
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Theorem 1. Let n ≥ 1 (and x 6= y). Then the sequences (xn) and

(an) are strictly decreasing, while the sequences (yn) and (bn) are strictly

increasing. In fact, one has

0 < y1 < y2 < . . . < yn < xn < xn−1 < . . . < x1 (n > 1) (17)

0 < b1 < b2 < . . . < bn < an < an−1 < . . . < a1 (n > 1) (18)

Corollary of (17). One can write

√
AG < M <

A+G

2
, (19)

i.e., relations (7) and (9).

Indeed, for n ≥ 2 one has xn < x2 = (A+G)/2 and yn > y2 =
√
AG.

By letting n → ∞, we get (19), whit ≤ in place of <, but note that

actually there are strong inequalities because of M ≤ x3 < x2 and M ≥
y3 > y2. We obtain the following sharpening of (19):

√
AG <

√
A+G

2

√
AG < M <

(√
A+
√
G

2

)2

<
A+G

2
. (20)

Let us now introduce the notation un = xn/yn and vn = an/bn (n ≥ 0).

Clearly, un > 1, vn > 1 and un+1 < un, vn+1 < vn for n ≥ 1, by (17) and

(18). On the other hand, a simple computation shows that

un+1 =
1

2

(
√
un +

1
√
un

)
, n ≥ 0 (21)

vn+1 =

√
vn + 1

2
, n ≥ 0. (22)

We now prove that

un ≤ vn for n ≥ 1, with equality for n = 1 only. (23)

For n = 1 there is equality, but u2 < v2. We remark that the function

f(x) = (1/2)
(√

x+ 1/
√
x
)

(x > 1)
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is strictly increasing, so if we admit that un < vn, then

f(un) ≤ f(vn) and un+1 ≤ f(vn) = (vn+1)/2
√
vn = v2n+1/

√
vm < vn+1

by (22) and vn > 1, which imply vn+1 <
√
vn, n ≥ 1. By induction, (23)

is proved for all n ≥ 1.

Theorem 2. Let tn = any
2
n/b

2
n. The sequence (tn) (n > 1) is strictly

decreasing. One has

x2n ≤ an · A (n ≥ 1). (24)

Proof. tn+1 < tn is equivalent to xn/yn < an/bn (simple computa-

tion), the inequality proved at (23). Now, by x2n ≤ a2ny
2
n/b

2
n, if we can show

that any
2
n/b

2
n ≤ A, inequality (24) is proved. By tn ≤ t1 = A (n ≥ 1),

this holds true.

Corollary of Theorem 2. We have

M2 <

√
A

(
A+G

2

)
· L < AL. (25)

Indeed, for n > 4 we have tn < t4 so for n→∞ one has

M2/L ≤ t4 < t3 =
√
A((A+G)/2) < A.

This yields (25), which in turn sharpens (4). We note here that it is

known [11] that

I >
A+ L

2
>
√
AL (26)

so by (26), relation (6) is a consequence of (4).

We now obtain a result concerning the sequences (xn), (yn) and (pn),

(qn).

Theorem 3. Let hn = qn+1/yn, rn = pn+1/xn, and n ≥ 1. Then the

sequences (hn) and (rn) are strictly decreasing and increasing, respec-

tively.

Proof. One has hn+1 = qn+2/yn+1 =
√
qn+1pn+1/xnyn < qn+1/yn iff

pn+1/qn+1 < xn/yn (n ≥ 1). (27)
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For n = 1 it is true that p2/q2 = A2/A2G < A/G = x1/y1 by A < A2.

Now, since

pn+1/qn+1 := sn+1 = (1/2) (
√
sn + 1/

√
sn) = f(sn)

(see the proof of (21) and (23)), if we assume relation (27), by the mono-

tonicity of f one obtains

f(pn+1/qn+1) < f(xn/yn), i.e. pn+2/qn+2 < xn+1/yn+1,

proving (27) and the monotonicity of (hn).

For (rn) one can write

pn+2/xn+1 = (pn+1 + qn+1)/(xn + yn) > pn+1/xn,

which is equivalent to pn+1/qn+1 < xn/yn (n ≥ 1) and this is exactly

inequality (27).

Corollary. Since q2/y1 = A2 and p2/x1 = A, one can deduce that

pn+1xn > A and qn+1/yn < A2 (n > 1),

proving with n→∞ relation (8). Since

q3/y2 = (AA2)
1/2 and p3/x2 = (A2 + A2G)/(A+G),

one obtains the refinements

A <
A2 + A2G

A+G
<
M(x2, y2)

M(x, y)
< (AA2)

1/2 < A2. (28)

By computing, e.g. q4/y3 and p4/x3, a new refinement of (28) can be

deduced.

Certain other properties of the above sequences are collected in

Theorem 4. Let n > 1. Then

(a) pn > x2n and qn > y2n; (29)

(b) if un = xn/yn and sn = pn/qn, then sn > u2n. (30)
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Proof. (a) p1 = (x2 + y2)/2 > ((x+ y)/2)2 = x21; q1 = xy = y21.

By assuming (29) for n, one has

pn+1 = (pn + qn)/2 ≥ (x2n + y2n)/2 > x2n+1 = ((xn + yn)/2)2

and

qn+1 =
√
pnqn > xnyn = y2n+1,

i.e., the properties are valid for n+ 1 too, so via induction, (a) is proved.

(b) s1 > u21 is true since 2(x2 + y2) > (x+ y)2. On the other hand, by

un+1 = (1/2) (
√
un + 1/

√
un) and sn+1 = (1/2) (

√
sn + 1/

√
sn)

and the induction step,

sn+1 = f(sn) > f(u2n) = (1/2)(un + 1/un)

> u2n+1 = (1/4) (
√
un + 1/

√
un)

2

by
(√

un − 1/
√
un
)2
> 0. This proves (30).

Corollary of (29). One obtains

M(x2, y2) ≥M2(x, y). (31)

This can be slightly sharpened, since by L(x2, y2) = LA, and relations

(4) and (5) one has

M2(x, y) < L(x2, y2) < M(x2, y2). (32)

This result follows also from (28) and inequality A > M .

Finally, we prove:

Theorem 5. Let α = 2A/(A+G) (> 1). Then for all n ≥ 1 one has

xn ≤ αan+1 and yn ≤ αbn. (33)

Proof. Let n = 1. Then x1 = A ≤ αa2 = α(A + G)/2, which holds,

by assumption. Similarly, y1 = G < αb1 = αG by α > 1. Assuming now

that (33) is valid, one can write

xn+1 = (xn + yn)/2 ≤ α(an+1 + bn)/2 < α(an+1 + bn+1)/2 = αan+2
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(see (18)). Analogously,

yn+1 =
√
xnyn ≤ α

√
an+1bn = α · bn+1.

This finishes the proof of (33).

Corollary of (33). Letting n→∞,

M ≤ αL for α = 2A/(A+G). (34)

We note that this result cannot be compared with (5) since 2A/(A+G)

and π/2 are not comparable.
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6.3 On certain inequalities for means, III

1. Introduction

Let x, y be positive real numbers. The logarithmic mean and the

identric mean of x and y are defined by

L = L(x, y) =
x− y

log x− log y
for x 6= y, L(x, x) = x, (1)

and

I = I(x, y) =
1

e
(xx/yy)1/(x−y) for x 6= y, I(x, x) = x, (2)

respectively. Let

A = A(x, y) =
x+ y

2
and G = G(x, y) =

√
xy

denote the arithmetic, resp. geometric mean of x and y.

It is well-known that for x 6= y one has (see e.g. [5])

G < L < I < A. (3)

In 1993 H.-J. Seiffert [10] has introduced the mean

P = P (x, y) =
x− y

4 arctan
(√

x/y
)
− π

for x 6= y, P (x, x) = x.

Seiffert [10] proved that for x 6= y

L < P < I (4)

and later [11], by using certain series representations:

1

P
<

1

3

(
1

G
+

2

A

)
, (5)

GA < GP, (6)

P < A <
π

2
P. (7)

463



In fact, P can be written also in the equivalent form

P (x, y) =
x− y

2 arcsin
x− y
x+ y

for x 6= y (8)

(see [9]). Clearly, we may suppose 0 < x < y, and we note that (8) implies

A

P
=

arcsin z

z
= f(z),

where z =
x− y
z + y

, 0 < z < 1, and f being a strictly function, clearly

1 = lim
x→0

f(z) <
A

P
< lim

z→1
f(z) =

π

2
,

giving (7).

Another remark is that (8) can be written also as

P (x, y) =
2

x− y
arccos

(
2

x+ y

√
xy

)
=

2

x− y
arccos

x0
y0

(9)

where x0 =
√
xy, y0 =

x+ y

2
. Since x0 < y0, P is the common limit of a

pair of sequences given by

xn+1 =
xn + yn

2
, yn+1 =

√
xn+1yn, n = 0, 1, . . . (10)

(see [1], p. 498). According to B.C. Carlson [1], the algorithm (10) is

due to Pfaff (see also [3]), who determined the common limit (9) of the

sequences (xn) and (yn).

By using the sequential method from part II of this series (see [7],

[8]), we will be able in what follows to improve relations (4)-(6), and to

obtain other inequalities related to the mean P .

2. Gauss’, Borchardt’s and Pfaff’s algorithms

Pfaff’s algorithm is given by (10), where

x0 =
√
xy, y0 =

x+ y

2
.
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Let us denote the Borchardt algorithm by

an+1 =
an + bn

2
, bn+1 =

√
an+1bn (n ≥ 1),

a0 = x, b0 = y, b1 =
√
xy

(11)

and the Gauss algorithm by

fn+1 =
fn + gn

2
, gn+1 =

√
gnfn (n ≥ 0), f0 = x, g0 = y. (12)

It is well known that

lim
n→∞

an = lim
n→∞

bn = L(x, y) − the logarithmic mean of x and y;

lim
n→∞

fn = lim
n→∞

gn = M(x, y) − the famous arithmetic-geometric

mean of Gauss

(see e.g. [1], [2], [3], [8]). M.K. Vamanamurthy and M. Vuorinen ([14])

have proved that

L < M <
π

2
L (13)

M < I < A (14)

M <
A+G

2
(15)

and the author [8] has obtained refinements, based on the Gauss and

Borchardt algorithm.

The aim of this paper is to offer new proof of (4), (5), (6) and in fact

to obtain strong refinements of these relations.

3. Monotonicity properties and applications

Theorem 1. For all n ≥ 0 we have

xn < P < yn. (16)
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Particularly,

A+G

2
< P <

√(
A+G

2

)
A. (17)

Proof. Since y0 < x0 and yn+1 > xn+1 iff

xn + yn
2

>

√
xn + yn

2
yn i.e. yn > xn,

by induction it follows that yn > xn for all n. The inequality xn+1 > xn

is equivalent to yn > xn, while yn+1 < yn to xn+1 < yn i.e.
xn + yn

2
< yn,

thus xn < yn, which is proved. We have proved that the sequence (xn)n≥0

is strictly increasing, (yn)n≥0 strictly decreasing, having the same limit

P , so (16) follows. From

x1 =
A+G

2
, y1 =

√
x1y0 =

√
A+G

2
A

we obtain relation (17).

Corollary 1.

L < M <
A+G

2
< P. (18)

This follows by (13), (15) and (17).

Remark 1. Relation L <
A+G

2
follows also from the known fact

(see e.g. [5], [7]) that

L < A1/3 < A1/2 =
A+G

2
, where As = As(x, y) =

(
xs + ys

2

)1/s

.

Theorem 2. For all n ≥ 0 we have

3
√
y2nxn < P <

xn + 2yn
3

. (19)

Particularly,
3
√
A2G < P <

G+ 2A

3
. (20)

Proof. One has

y2n+1xn+1 = (xn+1yn)xn+1 = x2n+1yn > y2nxn
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iff x2n+1 > xnyn i.e.

(
xn + yn

2

)2

< xnyn, which is true. Thus, the sequence

(y2nxn)n≥0 is strictly increasing, laving as limit P 3. This gives the first part

of (19). Next, from

xn+1 + 2yn+1 =
xn + yn

2
+ 2

√
xn + yn

2
yn <

xn + yn
2

+
xn + yn

2
+ yn

(by 2
√
uv < u + v for u 6= v) we get that the sequence (xn + 2yn)n≥0 is

strictly decreasing, having the limit 3P . This implies the second part of

(19). For n = 0 we obtain the double inequality (20).

Corollary 2.

AG

L
<

3
√
A2G < P <

G+ 2A

3
< I. (21)

The first inequality is a consequence of L >
3
√
G2A, due to Leach

and Sholander (for refinements see [8]), and the last inequality is due to

the author (see [7]). We will see (Remark 4) that this relation, combined

with other results improves known inequalities.

Remark 2. The left side of (21) improves inequality (6). Similarly,

the left side of (20) improves inequality (5). Indeed,

1

3

(
1

G
+

2

A

)
=

1

3

(
1

G
+

1

A
+

1

A

)
>

3

√
1

G
· 1

A2
>

1

P

by the arithmetic-geometric inequality

x+ y + z

3
> 3
√
xyz.

Remark 3. A better estimate for the right side of (21) can be ob-

tained by applying (19), e.g. for n = 1. Since

x1 =
A+G

2
, y1 =

√
A+G

2
A,

we obtain

P <
1

3

(
A+G

2
+ 2

√
A+G

2
A

)
<
G+ 2A

3
< I. (22)
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In an analogous way, the left side of (19) gives[(
A+G

2

)2

A

] 1
3

< P, (23)

which is better than the left side of (17).

This follows by the remark that

3

√
y21x1 =

3

√(
A+G

2

)2

A.

Remark 4. A.A. Jagers (see [4]) proved that A1/2 < P < A2/3. The

left side inequality is exactly the left side of (17). Since, it is known that
G+ 2A

3
< A2/3 (see [12], where it is mentioned that this inequality was

proposed at the ”16th Austrian-Polish Mathematics Competition 1993”),

the right side of (20) is better than the right side of Jager’s inequality.

By an inequality of Stolarsky (see [13]) we have A2/3 < I so the right

side of (21) can be written also in an improved form.

Theorem 3. One has

a) P (xk, yk) ≥ (P (x, y))k and

M(xk, yk) ≥ (M(x, y))k for all k ≥ 1, (24)

b) P (xk, yk) > Akk/2 ≥ Ak > (P (x, y))k for all k ≥ 2, (25)

c) M(xk, yk) >
1

k
· x

k − yk

x− y
L(x, y) ≥ Ak−1L > (M(x, y))k

for all k ≥ 2. (26)

Proof. a) As in [8] (for the mean M , with k = 2) we consider the

sequences (pn), (qn) defined by

p0 =
√
xkyk, q0 =

xk + yk

2
, pn+1 =

pn + qn
2

, qn+1 =
√
pn+1qn.

Clearly, lim
n→∞

pn = lim
n→∞

qn = P (xk, yk).

We prove inductively that

pn ≥ xkn, qn ≥ ykn for all n ≥ 0, k ≥ 1. (27)
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We have p0 = xk0 and q0 ≥ yk0 since
xk + yk

2
≥
(
x+ y

2

)k
, which follows

by the convexity of the function t 7→ tk (k ≥ 1). Then, if (27) is valid for

an n, we can write

pn+1 =
pn + qn

2
≥ xkn + ykn

2
≥
(
xn + yn

2

)k
= xkn+1

and

qn+1 =
√
pn+1qn ≥

√
xkn+1y

k
n = ykn+1,

i.e. (27) is valid for n+ 1, too. By taking n→∞ in (27), we get the first

part of (a). The second part can be proved in a completely analogous

way.

b) By writing the right side of inequality (18) for xk, yk in place of

x, y, one has

P (xk, yk) >

(√
xk +

√
yk

2

)2

=

(x k2 + y
k
2

2

) 2
k

2

= Akk/2 ≥ Ak1 = Ak

for k ≥ 2 (since As is increasing in s), by A > P , we get b).

Finally, for c) remark that L(xk, yk) < M(xk, yk), but

L(xk, yk) =
xk − yk

lnxk − ln yk
= L

xk − yk

k(x− y)
.

We shall prove that

(M(x, y))k <
xk − yk

k(x− y)
L(x, y) for k ≥ 2. (∗)

First, we note that the function t 7→ tk−1 is convex for k ≥ 2, so by

Hadamard’s inequality∫ x

y

f(t)dt ≥ (x− y)f

(
x+ y

2

)
(y < x)
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we get
xk − yk

k(x− y)
≥ Ak−1.

It is sufficient to prove that

M < Ak−1L

(
≤ xk − yk

k(x− y)
L

)
.

It is known that (see [14], [8]) M2 < AL, i.e. Mk < Ak/2Lk/2 ≤ Ak−1L,

since this is equivalent to Lk/2−1 ≤ Ak/2−1, valid by L < A and k ≥ 2.

So (∗) holds true, and this finishes the proof of (26).

Finally, we prove

Theorem 4. a) For all k > 1 we have

P (xk, yk) <
xk + yk

x+ y
P (x, y). (27)

b) For 0 < k < 2 we have

P (xk, yk) >
xk + yk

x2 + y2
P (x2, y2). (28)

c) For all k > 0,

P (xk+1, yk+1) <
xk+1 + yk+1

xk + yk
P (xk, yk). (29)

Proof. We have seen in Introduction that

A

P
=

arcsin z

z
= f(z), where z =

x− y
x+ y

(0 < y < x)

is an increasing function of x. Since

xk − yk

xk + yk
>
x− y
x+ y

for k > 1 (and 0 < y < x),

we get
A(xk, yk)

P (xk, yk)
>
A(x, y)

P (x, y)
,
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giving (27).

Relation (28) follows from

xk − yk

xk + yk
<
x2 − y2

x2 + y2
for k < 2

in the same manner. Finally, (29) is a consequence of

xk+1 − yk+1

xk+1 + yk+1
>
xk − yk

xk + yk
.
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6.4 On two means by Seiffert

1

Let A,G,Q be the classical means of two arguments defined by

A = A(x, y) =
x+ y

2
, G = G(x, y) =

√
xy,

Q = Q(x, y) =

√
x2 + y2

2
, x, y > 0.

Let L and I denote the logarithmic and identric means. It is well known

that G < L < I < A for x 6= y.

In 1993 H.-J. Seiffert [4] introduced the mean

P = P (x, y) =
x− y

4 arctan

√
x

y
− π

(x 6= y), P (x, x) = x

and proved that L < P < I for x 6= y. In [5] he obtained other relations,

too. The mean P can be written also in the equivalent form

P (x, y) =
x− y

2 arcsin
x− y
x+ y

(x 6= y), (1)

see e.g. [3].

Let x < y. In the paper [1] we have shown that the mean P is the

common limit of the two sequences (xn), (yn), defined recurrently by

x0 = G(x, y), y0 = A(x, y), xn+1 =
xn + yn

2
, yn+1 =

√
xn+1yn.

This algorithm appeared in the works of Pfaff (see [1]). By using simple

properties of these sequences, strong inequalities for P can be deduced.

For example, in [1] we have proved that

xn <
3
√
y2nxn < P <

xn + 2yn
3

< yn (n ≥ 0)
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and that e.g.

P (xk, yk) ≥ (P (x, y))k for all k ≥ 1.

As applications, the following inequalities may be deduced:

AG

L
<

3
√
A2G < P <

G+ 2A

3
< I, (2)

A+G

2
< P <

√
A+G

2
A,

P >
3

√(
A+G

2

)2

A, (3)

etc.

In 1995 Seiffet [6] considered another mean, namely

T = T (x, y) =
x− y

2 arctan
x− y
x+ y

(x 6= y), T (x, x) = x. (4)

(Here T , as P in [1], is our notation for these means, see [2]). He proved

that

A < T < Q. (5)

2

Our aim in what follows is to show that by a transformation of argu-

ments, the mean T can be reduced to the mean P . Therefore, by using

the known properties of P , these will be transformed into properties of T .

Theorem 1. Let y, v > 0 and put

x =

√
2(u2 + v2) + u− v

2
, y =

√
2(u2 + v2) + v − u

2
.

Then x, y > 0 and T (u, v) = P (x, y).

Proof. From
√

2(u2 + v2) > |u−v| we get that x > 0, y > 0. Clearly

one has

x+ y =
√

2(u2 + v2), x− y = u− v.
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From the definitions (1) and (4) we must prove

arctan
u− v
u+ v

= arcsin
u− v√

2(u2 + v2)
.

Let u > v and put α = arctan
u− v
u+ v

. By

sinα = cosα tanα =
tanα√

1 + tan2 α

and
u− v
u+ v√

1 +

(
u− v
u+ v

)2
=

u− v√
2(u2 + v2)

we get

arcsin
u− v√

2(u2 + v2)
= α− arctan

u− v
u+ v

,

and the proof of the above relation is finished.

It is interesting to remark that

A(x, y) =
x+ y

2
=

√
u2 + v2

2
= Q(u, v)

G(x, y) =
√
xy =

u+ v

2
= A(u, v).

Therefore, by using the transformations of Theorem 1, the following

transformations of means will be true:

G→ A, A→ Q, P → T.

Thus, the inequality G < P < A valid for P , will be transformed into

A < T < Q, i.e. relation (5). By using our inequality (2), we get for T

the following results:

3
√
Q2A < T <

A+ 2Q

3
, (6)
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while using (3), we get

T 3 >

(
Q+ A

2

)2

Q. (7)

In fact, the following is true:

Theorem 2. Let 0 < u < v. Then T = T (u, v) is the common limit

of the sequences (un) and (vn) defined by

u0 = A(u, v), v0 = Q(u, v), un+1 =
un + vn

2
, vn+1 =

√
un+1vn.

For al ln ≥ 0 one has un < T < vn and 3
√
v2nun < T <

un + 2vn
3

.
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6.5 The Schwab-Borchardt mean

1. Introduction

The Schwab-Borchardt mean of two numbers x ≥ 0 and y > 0, de-

noted by SB(x, y) ≡ SB, is defined as

SB(x, y) =



SB(x, y) =

√
y2 − x2

arccos(x/y)
, 0 ≤ x < y√

x2 − y2
arccosh(x/y)

, y < x

x, x = y

(1.1)

(see [1, Th. 8.4], [3, (2.3)]). It follows from (1.1) that SB(x, y) is not

symmetric in its arguments and is a homogeneous function of degree 1

in x and y. Using elementary identities for the inverse circular function,

and the inverse hyperbolic function, one can write the first two parts of

formula (1.1) as

SB(x, y) =

√
y2 − x2

arcsin
(√

1− (x/y)2
) =

√
y2 − x2

arctan
(√

(y/x)2 − 1
) , (1.2)

0 ≤ x < y

and

SB(x, y) =

√
x2 − y2

arcsinh
(√

(x/y)2 − 1
) =

√
x2 − y2

arctanh
(√

1− (y/x)2
)

=

√
x2 − y2

ln
(
x+

√
x2 − y2

)
− ln y

, y < x (1.3)

respectively.

The Schwab-Borchardt mean is the iterative mean i.e.,

SB = lim
n→∞

xn = lim
n→∞

yn, (1.4)
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where

x0 = x, y0 = y, xn+1 = (xn + yn)/2, yn+1 =
√
xn+1yn, (1.5)

n = 0, 1, . . . (see [3, (2.3)], [2]). It follows from (1.5) that the member of

two infinite sequences {xn} and {yn} satisfy the following inequalities

x0 < x1 < . . . < xn < . . . < SB < . . . < yn < . . . < y1 < y0 (x < y)

(1.6)

and

y0 < y1 < . . . < yn < . . . < SB < . . . < xn < . . . < x1 < x0 (y < x).

(1.7)

For later use, let us record the invariance formula for the Schwab-

Borchardt mean

SB(x, y) = SB

(
x+ y

2
,

√
x+ y

2
y

)
(1.8)

which follows from (1.5).

This paper deals mostly with the inequalities involving the mean un-

der discussion and is organized as follows. Particular cases of the Schwab-

Borchardt mean are studied in Section 2. They include two means intro-

duced recently by H.-J. Seiffert, the logarithmic mean and a possible new

mean of two variables. The Ky Fan inequalities for these means are also

included. The main results of this paper are contained in Section 3. Lower

and upper bounds for SB, that are stronger than those in (1.6)-(1.7) are

contained in Theorem 3.3. Inequalities involving the Schwab-Borchardt

mean and the Gauss arithmetic-geometric mean are also obtained. Addi-

tional bounds for the mean under discussion are presented in Appendix

1. Inequalities involving numbers xn and yn and those used in Theorem

3.3 are presented in Appendix 2.
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2. Inequalities for the particular means

Before we state and prove the main results of this section let us in-

troduce more notation. Let x ≥ 0 and y > 0. The following function

RC(x, y) =
1

2

∫ ∞
0

(t+ x)−1/2(t+ y)−1dt (2.1)

plays an important role in the theory of special functions (see [5], [7]).

B.C. Carlson [3] has shown that

SB(x, y) = [RC(x2, y2)]−1 (2.2)

(see also [2, (3.21)]). It follows from (2.2) and (2.1) that the mean

SB(x, y) increases with an increase in either x or y.

To this end we will assume that the numbers x and y are positive and

distinct. The symbols A,L,G and H will stand for the arithmetic, loga-

rithmic, geometric, and harmonic mean of x and y, respectively. Recall

that

L(x, y) =
x− y

lnx− ln y
=

x− y

2arctanh

(
x− y
x+ y

) (2.3)

(see, e.g., [4]-[5]). Other means used in the paper include two means

introduced recently by H.-J. Seiffert

P (x, y) =
x− y

2 arcsin

(
x− y
x+ y

) (2.4)

(see [12]) and

T (x, y) =
x− y

2 arctan

(
x− y
x+ y

) (2.5)

(see [13]). For the last two means we have used notation introduced in

[10] and [11]. Several inequalities for the Seiffert means are obtained in
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[8], [10]-[11]. Also, we define a possibly new mean

M(x, y) =
x− y

2arcsinh

(
x− y
x+ y

) . (2.6)

In what follows we will write Q(x, y) ≡ Q for the power mean of order

two of x and y

Q(x, y) =

√
x2 + y2

2
. (2.7)

It is easy to see that the means, L, P, T , and M are the Schwab-Borchardt

means. Use of (1.2) and (1.3) gives

L = SB(A,B), P = SB(G,A),

T = SB(A,Q), M = SB(Q,A).
(2.8)

A comparison result for SB(·, ·) is contained in the following:

Proposition 2.1. Let x > y. Then

SB(x, y) < SB(y, x). (2.9)

Proof. Using the invariance formula (1.8) together with the mono-

tonicity property of the mean SB in its arguments, we obtain

SB(x, y) = SB
(
A,
√
Ay
)
< SB

(
A,
√
Ax
)

= SB(y, x). �

Inequalities connecting means L, P,M , and T with underlying means

G,A, and Q can be established easily using (2.9). We have

G < L < P < A < M < T < Q. (2.10)

For the proof of (2.10) we use monotonicity of the Schwab-Borchardt

mean in its arguments, inequalities G < A < Q, and (2.8) to obtain

G = SB(G,G) < SB(A,G) < SB(G,A) < SB(A,A)

= A < SB(Q,A) < SB(A,Q) < SB(Q,Q) = Q.
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The first three inequalities in (2.10) are known (see [4]-[5], [12], [14])

and the sixth one appears in [13]. (See also [11] for the proof of the last

inequality in (2.10) and its refinements.)

We shall establish now the Ky Fan inequalities involving the first six

means that appear in (2.10). For 0 < x, y ≤ 1

2
, let x′ = 1 − x and

y′ = 1− y. In what follows we will write G′ for G(x′, y′), L′ for L(x′, y′),

etc.

Proposition 2.2. Let 0 < x, y ≤ 1

2
. The following inequalities

G

G′
<
L

L′
<
P

P ′
<
A

A′
<
M

M ′ <
T

T ′
(2.11)

hold true.

Proof. The first inequality in (2.11) is established in [9]. For the proof

of the second one we use (2.3) and (2.4) to obtain

L

P
=

arcsin z

arctanhz
, (2.12)

where z = (x − y)/(x + y). Let z′ = (x′ − y′)/(x′ + y′). One can easily

verify that z and z′ satisfy the following inequalities

0 < |z′| < |z| < 1, zz′ < 0. (2.13)

Let f(z) stand for the function on the right side of (2.12). The following

properties of f(z) will be used in the proof of (2.11). We have: f(z) =

f(−z), f(z) is strictly increasing on (−1, 0) and strictly decreasing on

(0, 1),

max{f(z) : |z| ≤ 1} = f(0) = 1.

Assume that y < x ≤ 1

2
. It follows from (2.13) that 0 < −z′ < z < 1. This

in turn implied that f(−z′) > f(z) or what is the same, L/P < L′/P ′.

One can show that the last inequality is also valid if x < y ≤ 1

2
. This

completes the proof of the second inequality in (2.11). The remaining
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three inequalities in (2.11) can be established in the analogous manner

using the formulas

P

A
=

z

arcsin z
,

A

M
=

arcsinhz

z
,

M

T
=

arctan z

arcsinhz
. (2.14)

They follow from (2.4), (2.6) and (2.5). �

We close this section giving the companion inequalities to the inequal-

ities 3 through 5 in (1.10). We have

π

2
P > A > arcsinhM >

π

4
T. (2.15)

The proof of (2.15) let us note that the functions on the right side of (2.14)

share the properties of the function f(z), used above. In particular, they

attain the global minima at z = ±1. This in turn implies that

P

A
<

2

π
,

A

M
> arcsinh(1),

M

T
>

π

4arcsinh(1)
.

The assertion (2.15) now follows. The first inequality in (2.15) is also

established in [14] by use of different means.

3. Main results

We are in position to present the main results of this paper. Several

inequalities for the mean under discussion are obtained. New inequali-

ties for the particular means discussed in the previous section are also

included.

Our first result reads as follows:

Theorem 3.1. Let x and y be positive and distinct numbers. If x < y,

then

T (x, y) < SB(x, y) (3.1)

and if x > y, then

SB(x, y) < L(x, y). (3.2)
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The following inequalities

SB(y,G) < SB(x, y) < SB(y, A) (3.3)

and

SB(x, y) > H(SB(y, x), y) (3.4)

are valid.

Proof. Let x < y. For the proof of (3.1) we use (1.8), the inequality

xy > x2 and (2.8) to obtain

SB(x, y) = SB

(
A,

√
x+ y

2
y

)
> SB(A,Q) = T (x, y).

Assume now that x > y. Making use of (1.8) and (2.8) together with the

application of the inequality A < x gives

SB(x, y) = SB
(
A,
√
Ay
)
< SB(A,G) = L(x, y).

In order to establish the first inequality in (3.3) we need the following

one

[(t+ x2)(t+ y2)]−1/2 ≤ (t+G2)−1

(see [4]). Multiplying both sides by (1/2)(t+y2)−1/2 and next integrating

from 0 to infinity we obtain, using (2.1),

RC(x2, y2) < RC(y2, G2).

Application of (2.2) to the last inequality gives the desired result. The

second inequality in (3.3) follows from the first one. Substitution y := A

together with (1.8) give

SB
(
A,
√
Ax
)

= SB(y, x) < SB(x,A).

Interchanging x with y in the last inequality we obtain the asserted result.

For the proof of (3.4) we apply the arithmetic mean - geometric mean in

inequality to [(t+ x2)(t+ y2)]−1/2 to obtain

[(t+ x2)(t+ y2)]−1/2 < (1/2)[(t+ x2)−1 + (t+ y2)−1].
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Multiplying both sides by (1/2)(t + y2)−1/2 and next integrating from 0

to infinity, we obtain

RC(x2, y2) <
1

2

[
RC(y2, x2) +

1

y

]
.

Here we have used the identity RC(y2, y2) = 1/y. Application of (2.2) to

the last inequality gives

1

SB(x, y)
<

1

2

[
1

SB(y, x)
+

1

y

]
=

1

H(SB(y, x), y)
.

This completes the proof. �

Corollary 3.2. The following inequalities

T (A,G) < P, T (A,Q) < T, (3.5)

L < L(A,G), M < L(A,Q), (3.6)

L > H(P,G), P > H(L,A), M > H(T,A), T > H(M,Q) (3.7)

hold true.

Proof. Inequalities (3.5) follows from (3.1) and (2.8) by letting

(x, y) := (G,A) and (x, y) := (A,Q). Similarly, (3.6) follows from (3.2).

Putting (x, y) := (A,G) and (x, y) := (Q,A) we obtain the desired result.

Inequalities (3.7) follow from (3.4). The substitutions (x, y) := (A,G),

(x, y) := (G,A), (x, y) := (Q,A), and (x, y) := (A,Q) together with

application of (2.8) give the desired result. �

The first inequality in (3.6) is also established in [8].

Before we state and prove the next result, let us introduce some nota-

tion. In what follows, the symbols α and β will stand for positive numbers

such that α + β = 1. The weighted arithmetic mean and the weighted

geometric mean of xn and yn (see (1.5)) with weights α and β are defined

as

un = αxn + βyn, vn = xαny
β
n, n = 0, 1, . . . (3.8)
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Theorem 3.3. In order for the sequence {un}∞0 ({vn}∞0 ) to be strictly

decreasing (increasing) it suffices that α = 1/3 and β = 2/3. Moreover,

lim
n→∞

un = lim
n→∞

vn = SB(x, y) (3.9)

and the inequalities

(xny
2
n)1/3 < SB(x, y) <

xn + 2yn
3

(3.10)

hold true for all n ≥ 0.

Proof. For the proof of the monotonicity property of the sequence

{un}∞0 we use (3.8), (1.5), and the arithmetic mean - geometric mean

inequality to obtain

un+1 = αxn+1 + βyn+1

= αxn+1 + β(xn+1yn)1/2

< αxn+1 + β
xn+1 + yn

2

=

(
α

2
+
β

4

)
xn +

(
α

2
+

3β

4

)
yn.

In order for the inequality un+1 < un to be satisfied it suffices that(
α

2
+
β

4

)
xn +

(
α

2
+

3β

4

)
yn = αxn + βyn.

This implies that α = 1/3 and β = 2/3. For the proof of the monotonicity

result for the sequence {vn}∞0 we follow the lines introduced above to

obtain

vn+1 = xαn+1y
β
n+1 = xαn+1(xn + yn)β/2

=

(
xn + yn

2

)α+β/2
yβ/2n

> xα/2+β/4n yα/2+3β/4
n = xαny

β
n,
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where the last equality holds provided α = 1/3 and β = 2/3. The asser-

tion (3.9) follows from (3.8) and (1.4). Inequalities (3.10) are the obvious

consequence of (3.9) and the first statement of the theorem. �

Inequalities (3.10) for the Seiffert mean P are obtained in [10].

Corollary 3.4. The following inequality

1

SB(x, y)
<

1

3

(
2

A
+

1

y

)
(3.11)

holds true.

Proof. Use of the first inequality in (3.10) with n = 1 gives

(A2y)1/3 < SB(x, y).

Application of the arithmetic mean - harmonic mean inequality with

weights leads to

1

SB(x, y)
<

(
1

A

)2/3(
1

y

)1/3

<
2

3
· 1

A
+

1

3
· 1

y
=

1

3

(
2

A
+

1

y

)
. �

Inequalities connecting the Schwab-Borchardt mean and the cele-

brated Gauss arithmetic-geometric mean AGM(x, y) ≡ AGM are con-

tained in Theorem 3.5. For the reader’s convenience, let us recall that

the Gauss mean is the iterative mean, i.e.,

AGM = lim
n→∞

an = lim
n→∞

bn,

where the sequences {an}∞0 and {bn}∞0 are defined as

a0 = max(x, y), b0 = min(x, y),

an+1 = (an + bn)/2, bn+1 =
√
anbn

(3.12)

(n ≥ 0). (See, e.g., [1], [5]). Clearly,

b0 < b1 < . . . < bn < . . . < AGM < . . . < an < . . . < a1 < a0, (3.13)
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AGM(·, ·) is a symmetric function in its arguments and

AGM(x, y) = AGM(an, bn) (3.14)

for all n ≥ 0.

For later use, let us record two inequalities. If x > y, then

SB(x, y) < AGM(x, y) (3.15)

and

AGM(x, y) < SB(x, y) (3.16)

provided x < y. Inequality (3.15) follows from

SB(x, y) < L(x, y) < AGM(x, y),

where the first inequality is established in Theorem 3.1 and the second

one is due to Carlson and Vuorinen [6]. Inequality (3.16) follows from

AGM(x, y) < A(x, y) < T (x, y) < SB(x, y).

The first inequality is a special case of (3.13) when n = 1, the second one

appears in [13] and [11], and the last inequality is established earlier (see

(3.1)).

We are in position to prove the following

Theorem 3.5. Let n = 0, 1, . . .. The number SB(an, bn) form a

strictly increasing sequence while SB(bn, an) form a strictly decreasing

sequence. Moreover,

SB(an, bn) < AGM < SB(bn, an). (3.17)

Proof. Using (1.8), (3.13), (3.15) and (3.14) we obtain

SB(an, bn) = SB
(
an+1,

√
an+1bn

)
< SB

(
an+1,

√
anbn

)
= SB(an+1, bn+1) < AGM(an+1, bn+1)

= AGM(x, y).
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Similarly, using (1.8), (3.13), (3.16) and (3.14) one obtains

SB(bn, an) = SB (an+1,
√
an+1an) > SB(bn+1, an+1)

> AGM(bn+1, an+1) = AGM(x, y).

The proof is complete. �

Corollary 3.6. Let the numbers an and bn (n ≥ 1) be the same as in

(3.12). If a0 = A and b0 = G, then

L < L(an, bn) < AGM(x, y) < P (an, bn) < P (3.18)

for all n > 0. Similarly, if a0 = Q and b0 = A, then

M < L(an, bn) < AGM(A,Q) < P (an, bn) < T, n ≥ 0. (3.19)

Proof. Inequalities (3.18) follow immediately from Theorem 3.5 and

from the formulas

SB(a0, b0) = SB(A,G) = L,

SB(an+1, bn+1 = L(an, bn),

SB(b0, a0) = SB(G,A) = P

and

SB(bn+1, an+1) = P (bn, an) = P (an, bn), n ≥ 0.

Since the proof of (3.19) goes along the lines introduced above, it is

omitted. �

Appendix 1. Bounds for the Schwab-Borchardt mean

We shall prove the following:

Proposition A1. If x > y, then

2x2 − y2

2x ln(2x/y)
< SB(x, y) <

2x2 − y2

2x ln(2x/y)− (y2/x) ln 2
. (A1.1)
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Otherwise, if y > x ≥ 0, then

4y3

π(x2 + 2y2)− 4xy
< SB(x, y) ≤ 4y3

π(x2/2 + 2y2)− 4xy
. (A1.2)

Equalities hold in (A1.2) if and only if x = 0.

Proof. Assume that x > y. The following asymptotic expansion

RC(x2, y2) =
1

2x

(
ln

4x2

y2
+

y2

2x2 − y2
ln
θx2

y2

)
, 1 < θ < 4,

in established in [7, Eq. (23)]. Letting above θ = 1 and θ = 4 and next

using (2.2) we obtain inequalities (A1.1). Assume now that y > x ≥ 0.

Then

RC(x2, y2) =
π

2y
− x

y2
+
πx2

4y3
θ,

where y/(x + y) ≤ θ ≤ 1 (see [7, Eq. (22)]). This in conjunction with

(2.2) gives (A1.2). �

It is worth mentioning that the bounds (A1.1) are sharp when x� y

while (A1.2) are sharp if y � x.

Appendix 2. Inequalities connecting sequences (1.5)

and (3.8)

Let the numbers xn and yn (n ≥ 0) be the same as in the Schwab-

Borchardt algorithm (1.5). Further, let un and vn be defined in (3.8) with

α = 1/3 and β = 2/3, i.e.,

un =
xn + 2yn

3
, vn = (xny

2
n)1/3, n ≥ 0.

These numbers have been used in [10, Ths. 1 and 2] to obtain several

inequalities involving the Seiffert mean P and other means.

The following inequalities, which hold true for all n ≥ 0, show that the

numbers un and vn provide sharper bounds for SB than those obtained

from xn and yn. We have

yn < vn and un < xn if y < x
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and

xn < vn and un < yn if x < y.

We shall prove that these inequalities can be improved if x and y belong

to certain cones in the plane.

Proposition A2. Let c =
√

5−2 = 0.236 . . . and assume that x > 0,

y > 0 with x 6= y. If

cx < y < x, (A2.1)

then

yn+1 < vn and un < xn+1 (A2.2)

for all n ≥ 0. Similarly, if

cy < x < y, (A2.3)

then

xn+1 < vn and un < yn+1 (A2.4)

for n = 0, 1, . . ..

Proof of inequalities (A2.2) and (A2.4) is based upon results that are

contained in the following lemmas.

Lemma 1. Let x and y be distinct positive numbers. If cx < y < x,

then
x+ y

2
< (xy2)1/3. (A2.5)

If x < y, then

x+ 2y

3
<

√
x+ y

2
y. (A2.6)

Proof. For the proof of (A2.5) let us consider a quadratic function

p(y) = y2 + 4xy − x2 =
[
y −

(√
5− 2

)
x
] [
x+

(√
5 + 2

)
x
]
.

It follows that p(y) > 0 if cx < y. Inequality p(y) > 0 can be written as

(x− y)2 < 2y(x+ y). Multiplying both sides by x− y > 0 we obtain the
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desired result. In order to establish the inequality (A2.6) let us introduce

a quadratic function

q(y) = y2 + xy − 2x2 = (y − x)(y + 2x).

Clearly q(y) > 0 if x < y. Inequality q(y) > 0 is equivalent to

x2 <
1

2
(xy + y2).

Adding 4xy + 4y2 to both sides of the last inequality we obtain(
x+ 2y

3

)2

<
x+ y

2
y.

Hence, the assertion follows. �

Lemma 2. If cx < y < x, then the following inequalities

cxn < yn < xn (A2.7)

hold true for all n ≥ 0. Similarly, if cy < x < y, then

cyn < xn < yn (A2.8)

for all n ≥ 0.

Proof. The second inequalities in (A2.7) and (A2.8) follows from (1.7)

and (1.6), respectively. For the proof of the first inequalities in (A2.7) and

(A2.8) we will use the mathematical induction on n. There is nothing to

prove when n = 0. Assume that cxn < yn, for some n > 0. Using (1.5),

the inductive assumption and (1.7) we obtain

cxn+1 = c · xn + yn
2

<
yn + cyn

2
=

√
5− 1

2
· yn < yn < yn+1.

Now let cy < x < y. Assume that cyn < xn for some n > 0. Using

(1.5), the arithmetic mean - geometric mean inequality and the inductive
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assumption we obtain

cyn+1 = c
√
xn+1yn < c · xn+1 + yn

2
<

1

2
(cxn+1 + xn)

<
1

2
(cyn + xn) <

1

2
(yn + xn)

= xn+1.

Proof of Proposition A2. For the proof of the first inequality in

(A2.2) we use (A2.7) and (A2.5) to obtain

xn + yn
2

< (xny
2
n)1/3, n ≥ 0. (A2.9)

Making use of (1.5) and (A2.9) we obtain

yn+1 = (xn+1yn)1/2 =

(
xn + yn

2

)1/2

y1/2n < (xny
2
n)1/3 = vn.

The second inequality in (A2.2) can be established as follows. We add to

both sides of yn < xn (see (1.7)) 2xn + 3yn and next divide the resulting

inequality by 6 to obtain the desired result. For the proof of the first

inequality in (A2.4) we use (A2.5) with x replaced by y and y replaced

by x, the inequalities (A2.8) and xn < yn (see (1.6)) to obtain

xn+1 =
xn + yn

2
< (x2nyn)1/3 < (xny

2
n)1/3 = vn.

The second inequality in (A2.4) is obtained with the aid of (A2.8), (A2.6)

and (1.5). We have

un =
xn + 2yn

3
<

√
xn + yn

2
yn = yn+1. �
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6.6 Refinements of the Mitrinović-

Adamović inequality with application

1. Introduction

The famous inequality due to D.D. Adamović and D.S. Mitrinović

(see [2, p. 238]) states that for any x ∈
(
0, π

2

)
one has

sinx

x
> (cosx)

1
3 (1.1)

The Seiffert mean P of two positive variables, (see [5], [6]) is defined by

P (x, y) =
x− y

2 arcsin x−y
x+y

for x 6= y;P (x, x) = x (1.2)

Let

A(x, y) =
x+ y

2
, G(x, y) =

√
xy

denote the arithmetic, resp. geometric means of x and y.

Let

x0 =
√
xy, y0 =

x+ y

2
and

xn+1 =
xn + yn

2
, yn+1 =

√
xn+1yn (n ≥ 0)

be the Pfaff algorithm (see e.g. [3]).

In 2001 the author [3] has proved that for any n ≥ 0 one has

3
√
y2nxn < P <

xn + 2yn
3

(1.3)

Particularly, for n = 0, from (1.3) we get the double inequality

3
√
A2G < P <

G+ 2A

3
, (1.4)

while for n = 1 we get

3

√
A

(
A+G

2

)2

< P <
1

3

(
A+G

2
+ 2

√
A+G

2
· A

)
(1.5)
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In what follows, we will use the above mean inequalities, as well as

certain algebraic inequalities, in order to obtain refinements of the Mitri-

nović-Adamović inequality (1.1). An application to a new and simple

proof of a result from [1] will be offered, too. For mean inequalities and

trigonometric and hyperbolic applications, see also [4].

2. Main results

The main result of this section is contained in the following:

Theorem 2.1. For any x ∈
(
0, π

2

)
one has

sinx

x
>

(
cosx+ 1

2

) 2
3

>
1 +
√

1 + 8 cosx

4
> 3
√

cosx (2.1)

Proof. First remark that

P (1 + sin x, 1− sinx) =
sinx

x

and

A(1 + sin x, 1− sinx) = 1, G(1 + sin x, 1− sinx) = cos x.

Applying the left side of (1.5) we get the first inequality of (2.1).

For the second inequality of (2.1) put u = cosx and
u+ 1

2
= v3

(here 0 < u, v < 1). Then u = 2v3 − 1 and the inequality becomes

(4v2 − 1)
2
> 16v3 − 7 or

P (v) = 2v4 − 2v3 − v2 + 1 > 0 (2.2)

After elementary transformations, P (v) can be written as

P (v) = (v − 1)2(2v2 + 2v + 1),

so (2.2) follows.
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For the proof of the last inequality of (2.1) let again u = cosx and

u = s3. Then we have to prove

4s < 1 +
√

1 + 8s3 or (4s− 1)2 < 1 + 8s3.

This becomes 16s2 − 8s < 8s3 or 2s− 1 < s2, which is (s− 1)2 > 0, so it

is true. �

Remark 1. Clearly, by (1.3), the first inequality of (2.1) can be

further improved (e.g. by selecting n = 2, etc.), and in fact infinitively

many improvement are obtainable (as the sequence (y2nxn) is strictly

increasing, see [3]).

3. An application

In what follows, we will apply the following part of inequality (2.1):

sinx

x
>

1 +
√

1 + 8 cosx

4
(3.1)

In 2015 (see [1]) B. Bhayo, R. Klén and the author have proved the

following result:

Theorem 3.1. The best constants α and β such that

cosx+ α− 1

α
<

sinx

x
<

cosx+ β − 1

β
(3.2)

for any x ∈
(

0,
π

2

)
are α =

π

π − 2
and β = 3.

The proof of this result in [1] is based on certain series expansions

with Bernoulli numbers, and applications of more auxiliary results.

Our aim is to show that (3.1) will offer an easy proof to this theorem.

The inequality
sinx

x
<

cosx+ β − 1

β

may be written also as

β > f(x) =
x− x cosx

x− sinx
.
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We will prove that this function f(x) is strictly decreasing. An immediate

computation gives

(x− sinx)2f ′(x) = − sinx+ sinx cosx+ x cosx+ x2 sinx− x = g(x).

Also,

g′(x) = −2 sin2 x+ x sinx+ x2 cosx = x2(−2r2 + r + cosx),

where

r =
sinx

x
.

Now, the polynomial

P (r) = −2r2 + r + cosx

of variable r has roots
1±
√

1 + 8 cosx

4
. By inequality (3.1) we get

P (r) < 0 for x ∈
(

0,
π

2

)
. Therefore, g′(x) < 0, implying g(x) < g(0) = 0,

so f(x) is indeed strictly decreasing. This implies f(x) > lim
x→0

f(x) = 3,

and also f(x) < f
(π

2

)
=

π

π − 2
, which are the best constants in (3.2).
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6.7 A note on bounds for the Neuman-

Sándor mean using power and identric

means

1. Introduction

For k ∈ R the kth power mean Ap(a, b), Neuman-Sándor Mean

M(a, b) [1] and the identric mean I(a, b) of two positive real numbers

a and b are defined by

Ak(a, b) =

(
ak + bk

2

)1/k

(k 6= 0);A0(a, b) =
√
ab = G(a, b) (1)

M(a, b) =
a− b

2arcsinh
(
(a− b)(a+ b)

)(a 6= b);M(a, a) = a (2)

I(a, b) =
1

e

(
bb/aa

)1/(b−a)
(a 6= b); I(a, a) = a (3)

respectively, where arcsinh(x) = log(x +
√

1 + x2) denotes the inverse

hyperbolic sine function.

While the kth power means and the identric mean have been studied

extensively in the last 30-40 years (see e.g. [2] or [3] for surveys of results),

the Neuman-Sándor mean has been introduced in 2003 [1] and studied

also in 2006 [4], as a particular Schwab-Borchardt mean. In the last 10

years, the Neuman-Sándor mean has been studied by many authors, for

many references, see e.g. the papers [5] and [6], [7].

In 2012 and 2013, independently Z.-H. Yang [5] and Y.-M. Chu, B.-Y.

Long [7] have considered the bounds

Ar < M < A4/3, (4)

where M = M(a, b) for a 6= b, etc; and r =
log 2

log log(3 + 2
√

2)
= 1.244 . . .

Also, the constants r and 4/3 are best possible. Though not mentioned
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explicitly, the upper bound of (4) is due to E. Neuman and J. Sándor.

Indeed, they proved the strong inequalities (see also [7]):

M(a, b) <
2A+Q

3
<
[
He(a2, b2)

]1/2
< A4/3(a, b), (5)

where

He(x, y) =
x+
√
xy + y

3

denotes the Heronian mean and

A = A(a, b) = A1(a, b), Q = Q(a, b) =

(
a2 + b2

2

)1/2

= A2(a, b).

The first inequality of (5) appears in [1], while the second one results

by remarking that

He(a2, b2) =
2a2 + b2

3
=
Q2 + 2A2

3

and the fact that
Q2 + 2A2

3
>

(
2A+Q

3

)2

.

The last inequality of (5) follows by

He(a, b) < A2/3(a, b) (6)

(see [8], [9]) applied to a := a2, b := b2.

We note also that for application purposes, we may choose 1.2 =
6

5
in place of r in (4), so the following bounds (though, the lower bound

slightly weaker) may be stated:

A6/5 < M < A4/3 (7)

In the recent paper [7], M is compared also to the identric mean I,

in the following manner:

1 <
M

I
< c, (8)
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where c =
e

2 log(1 +
√

2)
and M = M(a, b) for a 6= b; etc.

Also, the constants 1 and c in (8) follows from earlier known results.

Also, the optimality of constants follows from the proofs of these known

results.

2. Main results

In [1] it is shown that

1 <
M

A
<

1

arcsinh(1)
=

1

log(1 +
√

2)
, (9)

where M = M(a, b) for a 6= b; etc.

Now, by a result of H. Alzer [10] one has

1 <
A

I
<
e

2
(10)

We note that inequality (10) has been rediscovered many times. See

e.g. the author’s papers [9], [11].

Now, by a simple multiplication of (9) and (10), we get (8).

For the proof of the fact that 1 and c are best possible, we shall use

the proofs of (9) and (10) from [1] resp. [9]. In [1] it is shown that

M

A
=

z

arcsinhz
, where z =

b− a
b+ a

(11)

Let b > a. Then the function

f1(z) =
z

arcsinhz

is strictly increasing in (0, 1). Put
b

a
= x. Then z =

x− 1

x+ 1
is a strictly

increasing function of x > 1. Therefore f1(z), as a composite function,

will be strictly increasing also on x ∈ (1,+∞).

For the proof of (10) in [9] it is shown that

f2(x) =
A(x, 1)

I(x, 1)
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is strictly increasing of x > 1.

Now, remarking that

M(x, 1)

I(x, 1)
= f1

(
z(x)

)
· f2(x) = g(x),

from the above, we get that g(x) is a strictly increasing function, as the

product of two functions having the same property. This gives

lim
x→1

g(x) < g(x) < lim
x→∞

g(x)

As

lim
x→1

g(x) = lim
x→1

f1(z(x)) · lim
x→1

f2(x) = 1

and

lim
x→∞

g(x) = lim
x→∞

f1(z(x)) · lim
x→∞

f2(x) =
1

log(1 +
√

2)
· e

2
= c

we get the optimality of the constants from (8).

We note that the proof of (8) given in [7] is complicated, and based

on subsequent derivatives of functions.
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6.8 A note on a bound of the combination

of arithmetic and harmonic means for

the Seiffert’s mean

1. Introduction

Let a, b > 0 and

A = A(a, b) =
a+ b

2
, G = G(a, b) =

√
ab, H = H(a, b) =

2ab

a+ b

be the classical means representing the arithmetic, geometric and har-

monic means of a and b.

Further, let

P = P (a, b) =
a− b

4arctg

(√
a

b

)
− π

, a 6= b; P (a, a) = a

be the Seiffert mean of a and b. For references of this mean, see the

Bibliography of papers [4], [2], [6].

In paper [4] the author remarked that P can be written as the common

limit of a pair of sequences (an) and (bn), defined recurrently by

a0 =
√
ab, b0 =

a+ b

2
, an+1 =

an + bn
2

, bn+1 =
√
an+1 · bn (n ≥ 0).

Since this algorithm is due to Pfaff (see e.g. [1]), the author suggested

the use of letter ,,P” for this mean.

By using these sequences, the author proved in [4] that

3
√
b2nan < P <

an + 2bn
3

for all ≥ 0. (1)

Particularly, the left side of (1) for n = 0 gives

A
2
3 ·G

1
3 < P, (2)
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which is the left side of inequality (20) in [4].

For n = 1 we get a better lower bound, namely (see (23) in [4])(
A+G

2

) 2
3

· A
1
3 < P. (3)

We note that from (1) we can deduce better-and-better results for

increasing values of n.

2. Main results

In paper [6] it is shown that

A
5
6 ·H

1
6 < P, (4)

which in fact may be considered the main result of the paper.

As H =
G2

A
, it is easy to see that A

5
6 ·H

1
6 = A

2
3 ·G

1
3 , i.e. relation (4)

coincides in fact with (2). The complicated method used by the authors

in [6] should be compared to the natural sequential method from [4].

The authors prove also that
5

6
is the best value of k in

Ak ·H1−k < P, (5)

but this has been remarked also in [2], where a generalization of the

method from [4] to the general Schwab-Borchardt mean was deduced. In

fact one may consider instead the Seiffert mean P, the more general mean

SB(a, b), representing the ,,Schwab-Borchardt” mean (see also [3]).

The Schwab-Borchardt mean of a, b > 0, and denoted by SB =

SB(a, b) is defined by

SB(a, b) =



√
b2 − a2

arccos(a/b)
, if 0 < a < b

√
a2 − b2

arccosh(a/b)
, if b < a

a, if a = b

(6)
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(see e.g. [1]). It follows that SB is not symmetric in its arguments and is a

homogeneous function of degree 1 in a and b. Using elementary identities

for the inverse circular function, and the inverse hyperbolic function, one

can write the first two parts of (6) as

SB(a, b) =

√
b2 − a2

arcsin
(
1− (a/b)2

) =

√
b2 − a2

arctan
(√

(b/a)2 − 1
) , 0 < a < b

(7)

and

SB(a, b) =

√
a2 − b2

arcsinh
(√

(a/b)2 − 1
) =

√
a2 − b2

arctanh
(√

1− (b/a)2
)

=

√
a2 − b2

ln
(
a+
√
a2 − b2

)
− ln b

, if b < a, (8)

respectively.

The Schwab-Borchardt mean is the common limit of the pair of se-

quences (an) and (bn) defined recurrently by

a0 = a, b0 = b, an+1 =
an + bn

2
, bn+1 =

√
an+1 · bn (n ≥ 0)

(see [1]), which means that the mean P is a particular SB-mean, i.e.

P = SB(G,A). (9)

Recall that the logarithmic mean L = L(a, b) of a and b is defined by

L = L(a, b) =
a− b

ln a− ln b
=

a− b

2arctanh

(
a− b
a+ b

) , a 6= b

L(a, a) = a,

so it is immediate that

L = SB(A,G). (10)
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Another Seiffert mean, denoted by T in [5] is

T (a, b) =
a− b

2 arctan

(
a− b
a+ b

) , a 6= b, (11)

as well as a new mean of Neuman and Sándor (see [2], [3]) is

M(a, b) =
a− b

2arcsinh

(
a− b
a+ b

) , a 6= b. (12)

They may be represented also as

T = SB(A,Q) (13)

and

M = SB(Q,A), (14)

where

Q = Q(a, b) =

√
a2 + b2

2

is the power mean of order two of a and b.

In paper [2], among many other properties of SB(a, b), the following

inequalities have been proved:

3
√
b2n · an < SB(a, b) <

an + 2bn
3

for all n ≥ 0. (15)

By relation (9), (15) extends (1) to the case of Schwab-Borchardt

means.

Since here we are interested in inequalities of type (2) (or (3)), we

note that for n = 0, via relations (9), (10), (13), (14), besides (2) we get

the following inequalities:

G
2
3 · A

1
3 < L, (16)

Q
2
3 · A

1
3 < T, (17)
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and

A
2
3 ·Q

1
3 < M (18)

and all these inequalities are optimal, in the sense of (5).

We note that, if we want, the left sides of (16)-(18) can be expressed

also in terms of A and H.
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6.9 The Huygens and Wilker-type

inequalities as inequalities for means

of two arguments

1. Introduction

The famous Wilker inequality for trigonometric functions states that

for any 0 < x < π/2 one has(
sinx

x

)2

+
tanx

x
> 2, (1)

while the Huygens inequality asserts that

2 sinx

x
+

tanx

x
> 3. (2)

Another important inequality, called as the Cusa-Huygens inequality,

says that
sinx

x
<

cosx+ 2

3
, (3)

in the same interval (0, π/2).

The hyperbolic versions of these inequalities are(
sinhx

x

)2

+
tanhx

x
> 2; (4)

2 sinhx

x
+

tanhx

x
> 3; (5)

sinhx

x
<

coshx+ 2

3
, (6)

where in all cases, x 6= 0.

For history of these inequalities, for interconnections between them,

generalizations, etc., see e.g. papers [22], [23], [10].
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Let a, b > 0 be two positive real numbers. The arithmetic, geometric,

logarithmic and identric means of these numbers are defined by

A = A(a, b) =
a+ b

2
, G = G(a, b) =

√
ab, (7)

L = L(a, b) =
a− b

ln a− ln b
(a 6= b);

I = I(a, b) =
1

e
(bb/aa)1/(b−a) (a 6= b) (8)

with L(a, a) = I(a, a) = a.

Let

Ak = Ak(a, b) =

(
ak + bk

2

)1/k

(k 6= 0), A0 = G (9)

be the power mean of order k, and put

Q = Q(a, b) =

√
a2 + b2

2
= A2(a, b). (10)

The Seiffert’s means P and T are defined by

P = P (a, b) =
a− b

2 arcsin

(
a− b
a+ b

) , (11)

T = T (a, b) =
a− b

2 arctan

(
a− b
a+ b

) , (12)

while a new mean M of Neuman and Sándor (see [6], [8]) is

M = M(a, b) =
a− b

2arcsinh

(
a− b
a+ b

) . (13)

For history and many properties of these means we quote e.g. [11],

[13], [6], [8].

The aim of this paper is to show that inequalities of type (1)-(6) are

in fact inequalities for the above stated means. More generally, we will

point out other trigonometric or hyperbolic inequalities, as consequences

of known inequalities for means.
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2. Main results

Theorem 1. For all 0 < a 6= b one has the inequalities

3
√
G2A < L <

2G+ A

3
; (14)

L2A+ LG2 > 2AG2 (15)

and

2LA+ LG > 3AG. (16)

As a corollary, relations (4)-(6) are true.

Proof. The left side of (14) is a well-known inequality, due to Leach

and Sholander (see e.g. [3]), while the right side of (14) is another famous

inequality, due to Pólya-Stegö and Carlson (see [5], [2]).

For the proof of (15), apply the arithmetic mean - geometric mean

inequality

u+ v > 2
√
uv

(u 6= v > 0) for u = L2A and v = LG2. By the left side of (14) we get

L2A+ LG2 > 2
√
L3AG2 > 2

√
(G2A)(AG2) = 2AG2,

and (15) follows.

Similarly, apply the inequality

u+ u+ v > 3
3
√
u2v

(u 6= v > 0) for u = LA, v = LG. Again, by the left side of (14) one has

2LA+ LG > 3 3
√

(L2A2)(LG) > 3 3
√

(G2A)(A2G) = 3AG,

and (16) follows.

Put now a = ex, b = e−x (x > 0) in inequalities (14)-(16). As in this

case one has

A = A(ex, e−x) =
ex + e−x

2
= coshx
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G = G(ex, e−x) = 1

L = L(ex, e−x) =
ex − e−x

2x
=

sinhx

x

which are consequences of the definitions (7)-(8), from (14) we get the

inequalities
3
√

coshx <
sinhx

x
<

coshx+ 2

3
. (17)

The left side of (17) is called also as ”Lazarević’s inequality” (see [5]),

while the right side is exactly the hyperbolic Cusa-Huygens inequality (6)

(18).

By the same method, from (15) and (16) we get the hyperbolic Wilker

inequality (4), and the hyperbolic Huygens inequality (5), respectively.

Remark 1. For any a, b > 0 one can find x > 0 and k > 0 such

that a = exk, b = e−xk. Indeed, for k =
√
ab and x =

1

2
ln(a/b) this

is satisfied. Since all the means A,G,L are homogeneous of order one

(i.e. e.g. L(kt, kp) = kL(t, p)) the set of inequalities (14)-(16) is in fact

equivalent with the set of (4)-(6).

Thus, we could call (15) as the ”Wilker inequality for the means

A,G,L”, while (16) as the ”Huygens inequality for the means A,G,L”,

etc.

The following generalizations of (15) and (16) can be proved in the

same manner:

Theorem 2. For any t > 0 one has

L2tAt + LtG2t > 2AtG2t (18)

and

2LtAt + LtGt > 3AtGt. (19)

These will imply the following generalizations of (4) and (5) (see [9])(
sinhx

x

)2t

+

(
tanhx

x

)t
> 2; (20)
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2

(
sinhx

x

)t
+

(
tanhx

x

)t
> 3. (21)

We now state the following Cusa-Wilker, Wilker and Huygens type

inequalities for the means P,A,G:

Theorem 3. For all 0 < a 6= b one has the inequalities

3
√
A2G < P <

2A+G

3
; (22)

P 2G+ PA2 > 2GA2, (23)

and

2PG+ PA > 3AG. (24)

As a corollary, relations (1)-(3) are true.

Proof. Inequalities (22) are due to Sándor [11].

For the proof of (23) and (24) apply the same method as in the proof

of Theorem 1, but using, instead of the left side of (14), the left side of

(22). Now, for the proof of the second part of this theorem, put

a = 1 + sinx, b = 1− sinx
(
x ∈

(
0,
π

2

))
in inequalities (22)-(24). As one has by (7) and (11)

A = A(1 + sin x, 1− sinx) = 1

G = G(1 + sin x, 1− sinx) = cos x

P = P (1 + sin x, 1− sinx) =
sinx

x
,

from (22) we can deduce relation (3), while (23), resp. (24) imply the

classical Wilker resp. Huygens inequalities (1), (2).

Remark 2. Since for any a, b > 0 one can find x ∈
(

0,
π

2

)
and k > 0

such that

a = (1 + sinx)k, b = (1− sinx)k.
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[Indeed, k =
a+ b

2
, x = arcsin

a− b
a+ b

], by the homogeneity of the means

P,A,G one can state that the set of inequalities (22)-(24) is equivalent

with the set (1)-(3).

Thus, e.g. inequality (23) could be called as the ”classical Wilker

inequality for means”.

Remark 4. Inequalities (14) and (22) can be improved ”infinitely

many times” by the sequential method discovered by Sándor in [16] and

[11]. For generalization, see [6].

The extensions of type (18)-(19) and (20), (21) can be made here,

too, but we omit further details.

We now state the corresponding inequalities for the means T , A and

Q ((25), along with infinitely many improvements appear in [13]).

Theorem 4. For all 0 < a 6= b one has the inequalities

3
√
Q2A < T <

2Q+ A

3
, (25)

T 2A+ TQ2 > 2AQ2 (26)

and

2TA+ TQ > 3AQ. (27)

The corresponding inequalities for the means M , A and Q will be the

following:

Theorem 5. For all 0 < a 6= b one has the following inequalities:

3
√
A2Q < M <

2A+Q

3
; (28)

M2Q+MA2 > 2AQ2; (29)

2MQ+MA > 3QA. (30)

Proof. Inequalities (28) can be found essentially in [6]. Relations (29)

and (30) can be proved in the same manner as in the preceding theorems,

by using in fact the left side of (28).
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Remark 5. For an application, put a = ex, b = e−x in (28). Since

A =
ex + e−x

2
= coshx, Q =

√
e2x + e−2x

2
=
√

cosh(2x)

and

a− b = 2 sinh x,
a− b
a+ b

= tanhx

and by

arcsinh(t) = ln(t+
√
t2 + 1),

we get

M(a, b) =
sinhx

ln(tanhx+
√

1 + tanh2 x)
.

For example, the Wilker inequality (29) will become:

(tanhx)2

ln2(tanhx+
√

1 + tanh2 x)
+

sinhx√
cosh 2x

· 1

ln(tanhx+
√

1 + tanh2 x)
> 2.

(31)

Since
√

cosh 2x =
√

cosh2 x− sinh2 x < coshx, here we have

sinhx√
coshx

> tanhx,

so formula (31) is a little ”stronger” than e.g. the classical form (1).

Finally, we point out e.g. certain hyperbolic inequalities, which will

be the consequences of the various existing inequalities between means

of two arguments.

Theorem 6.

1 <
sinh t

t
< et coth t−1 < cosh t (32)

e(t coth t−1)/2 <
sinh t

t
<

cosh t+ 3 cosh t/3

4
(33)

3
√

cosh t < e(t coth t−1)/2 <
sinh t

t
< L(cosh t, 1) <

(
3
√

cosh t+ 1

2

)3

(34)
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3
√

cosh t <
2 cosh t+ 1

3
< e(t coth t−1)/2 <

sinh t

t

<
cosh t+ 2

3
<

2 cosh t+ 1

3
< et coth t−1 (35)

cosh 2t+ 3 cosh 2t/3

4
< e2t coth t−2 <

2 cosh2 t+ 1

3
(36)

3
√

cosh2 t < P (et, e−t) <
2 cosh t+ 1

3
(37)

2

e
cosh t < et coth t−1 <

2

e
(cosh t+ 1) (38)

2 cosh2 t− 1 < e2t tanh t (39)

4 ln(cosht) > t tanh t+ 3t coth t− 3. (40)

Proof. For the identric mean of (8) one has I(et, e−t) = et coth t−1, so

for the proof of (32) apply the known inequalities (see the references in

[10])

1 < L < I < A. (41)

For the proof of (33) apply

√
G · I < L < A1/3. (42)

The left side of (42) is due to Alzer ([?]), while the right side to T.P. Lin

([4]). As

A1/3(e
t, e−t) =

(
et/3 + e−t/3

2

)3

=
et + e−t + 3(e2t/3 + e−2t/3)

8
,

(33) follows. For the proof of (34) apply

3
√
A ·G2 <

√
I ·G < L < L(A,G) (43)

and L(t, 1) < A1/3(t, 1).
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The first two inequalities of (43) are due to Sándor [15] and Alzer

[1] respectively, while the last one to Neuman and Sándor [7]. Inequality

(35) follows by

3
√
A2 ·G <

√
I ·G < L <

A+ 2G

3
< I (44)

and these can be found in [11].

For inequality (3) apply

A2
2/3 < I2 <

2A2 +G2

3
. (45)

The left side of (45) is due to Stolarsky [21], while the right side of

Sándor-Trif [12].

Inequality (37) follows by (22), while (38) by

2

e
A < I <

2

e
(A+G), (46)

see Neuman-Sándor [7].

Finally, for inequalities (39) and (40) we will use the mean S defined

by S(a, b) = (aa · bb)1/(a+b), and remarking that S(et, e−t) = etanh t, apply

the following inequalities:

2A2 −G2 < S2 (47)

(see Sándor-Raşa [17]), while for the proof of (40) apply the inequality

S < A4/I3 (48)

due to Sándor [14].
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17. J. Sándor, I. Raşa, Inequalities for certain means in two arguments,

Nieuw Arch. Wiskunde, 15(1997), no. 1-2, 51-55.

18. J. Sándor, M. Bencze, On Huygens’ trigonometric inequality,

RGMIA Research Rep. Collection, 8(2005), no. 3, art. 14.

19. H.J. Seiffert, Problem 887, Nieuw Arch. Wisk., 11(1993), no. 4,

176.

20. H.J. Seiffert, Ungleichungen für Elementare Mittelwerte, Arch.

Math. (Basel), 64(1995), no. 2, 129-131.

21. K.B. Stolarsky, The power and generalized logarithmic means,

Amer. Math. Monthly, 87(1980), no. 7, 545-548.

22. J.B. Wilker, Problem E3306, Amer. Math. Monthly, 96(1989), 55.

23. L. Zhu, On Wilker-type inequalities, Math. Ineq. Appl., 10(2007),

no. 4, 727-731.

519



6.10 On Huygens’ inequalities

1. Introduction

The famous Huygens’ trigonometric inequality (see e.g. [3], [14], [7])

states that for all x ∈ (0, π/2) one has

2 sinx+ tanx > 3x. (1.1)

The hyperbolic version of inequality (1.1) has been established re-

cently by E. Neuman and J. Sándor [7]:

2 sinhx+ tanhx > 3x, for x > 0. (1.2)

Let a, b > 0 be two positive real numbers. The logarithmic and iden-

tric means of a and b are defined by

L = L(a, b) :=
b− a

ln b− ln a
fora 6= b; L(a, a) = a,

I = I(a, b) :=
1

e
(bb/aa)1/(b−a) (a 6= b); I(a, a) = a,

(1.3)

respectively. Seiffert’s mean P is defined by

P = P (a, b) :=
a− b

2 arcsin

(
a− b
a+ b

) (a 6= b), P (a, a) = a. (1.4)

Let

A = A(a, b) :=
a+ b

2
, G = G(a, b) =

√
ab,

H = H(a, b) = 2/(1/a+ 1/b)

denote the arithmetic, geometric and harmonic means of a and b, respec-

tively. These means have been also in the focus of many research papers

in the last decades. For a survey of results, see e.g. [8], [10], [12]. In what

follows, we shall assume a 6= b.
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Now, by remarking that letting a = 1 + sinx, b = 1 − sinx, where

x ∈ (0, π/2), in P,G,A we find that

P =
sinx

x
, G = cosx, A = 1, (1.5)

so Huygens’ inequality (1.1) may be written also as

P >
3AG

2G+ A
= 3/

(
2

A
+

1

G

)
= H(A,A,G). (1.6)

Here H(a, b, c) denotes the harmonic mean of the numbers a, b, c:

H(a, b, c) = 3/

(
1

a
+

1

b
+

1

c

)
.

On the other hand, by letting a = ex, b = e−x in L,G,A we find that

L =
sinhx

x
, G = 1, A = coshx, (1.7)

so Huygens’ hyperbolic inequality (1.2) may be written also as

L >
3AG

2A+G
= 3/

(
2

G
+

1

A

)
= H(G,G,A). (1.8)

2. First improvements

Suppose a, b > 0, a 6= b.

Theorem 2.1. One has

P > H(L,A) >
3AG

2G+ A
= H(A,A,G) (2.1)

and

L > H(P,G) >
3AG

2A+G
= H(G,G,A). (2.2)

Proof. The inequalities P > H(L,A) and L > H(P,G) have been

proved in paper [5] (see Corollary 3.2). In fact, stronger relations are

valid, as we will see in what follows.
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Now, the interesting fact is that the second inequality of (2.1), i.e.

2LA

L+ A
>

3AG

2G+ A

becomes, after elementary transformations, exactly inequality (1.8), while

the second inequality of (2.2), i.e.

2PG

P +G
>

3AG

2A+G

becomes inequality (1.6).

Another improvements of (1.6), resp. (1.8) are provided by

Theorem 2.2. One has the inequalities

P >
3
√
A2G >

3AG

2G+ A
(2.3)

and

L >
3
√
G2A >

3AG

2A+G
. (2.4)

Proof. The first inequality of (2.3) is proved in [12], while the first

inequality of (2.8) is a well known inequality due to Leach and Sholan-

der [4] (see [8] for many related references). The second inequalities of

(2.3) and (2.4) are immediate consequences of the arithmetic-geometric

inequality applied for A, A, G and A, G, G, respectively.

Remark 2.1. By (2.3) and (1.5) we can deduce the following im-

provement of the Huygens’ inequality (1.1):

sinx

x
> 3
√

cosx >
3 cosx

2 cosx+ 1
, x ∈ (0, π/2). (2.5)

From (2.1) and (1.5) we get

sinx

x
>

2L∗

L∗ + 1
>

3 cosx

2 cosx+ 1
, x ∈ (0, π/2) (2.5)′

Similarly, by (2.4) and (1.7) we get

sinhx

x
>

3
√

coshx >
3 coshx

2 coshx+ 1
, x > 0. (2.6)
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From (2.2) and (1.7) we get

sinhx

x
>

2P ∗

P ∗ + 1
>

3 coshx

2 coshx+ 1
, x > 0. (2.6)′

Here L∗ = L(1 + sin x, 1− sinx), P ∗ = P (ex, e−x).

We note that the first inequality of (2.5) has been discovered by

Adamović and Mitrinović (see [7]), while the first inequality of (2.6) by

Lazarević (see [7]).

Now, we will prove that inequalities (2.2) of Theorem 2.1 and (2.4)

of Theorem 2.2 may be compared in the following way:

Theorem 2.3. One has

L >
3
√
G2A > H(P,G) >

3AG

2A+G
. (2.7)

Proof. We must prove the second inequality of (2.7). For this purpose,

we will use the inequality (see [12])

P <
2A+G

3
. (2.8)

This implies

G

P
>

3G

G+ 2A
, so

1

2

(
1 +

G

P

)
>

2G+ A

G+ 2A
.

Now, we shall prove that

2G+ A

G+ 2A
>

3

√
G

A
. (2.9)

By letting x =
G

A
∈ (0, 1) inequality (2.9) becomes

2x+ 1

x+ 2
> 3
√
x. (2.10)

Put x = a3, where a ∈ (0, 1). After elementary transformations, inequal-

ity (2.10) becomes (a+ 1)(a− 1)3 < 0, which is true.
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Note. The Referee suggested the following alternative proof: Since

P < (2A + G)/3 and the harmonic mean increases in both variables, it

suffices to prove stronger inequality
3
√
A2G > H((2A + G)/3, G) which

can be written as (2.9).

Remark 2.2. The following refinement of inequalities (2.6)′ is true:

sinhx

x
>

3
√

coshx >
2P ∗

P ∗ + 1
>

3 coshx

2 coshx+ 1
, x > 0. (2.11)

Unfortunately, a similar refinement to (2.7) for the mean P is not pos-

sible, as by numerical examples one can deduce that generally H(L,A)

and
3
√
A2G are not comparable. However, in a particular case, the fol-

lowing result holds true:

Theorem 2.4. Assume that A/G ≥ 4. Then one has

P > H(L,A) >
3
√
A2G >

3AG

2G+ A
. (2.12)

First we prove the following auxiliary result:

Lemma 2.1. For any x ≥ 4 one has

3
√

(x+ 1)2(2 3
√
x− 1) > x

3
√

4. (2.13)

Proof. A computer computation shows that (2.13) is true for x = 4.

Now put x = a3 in (2.13). By taking logarithms, the inequality becomes

f(a) = 2 ln

(
a3 + 1

2

)
− 9 ln a+ 3 ln(2a− 1) > 0.

An easy computation implies

a(2a− 1)(a3 + 1)f ′(a) = 3(a− 1)(a2 + a− 3).

As

3
√

42 +
3
√

4− 3 = 2
3
√

2 + (
3
√

2)2 − 3 = (
3
√

2− 1)(
3
√

2 + 3) > 0,

we get that f ′(a) > 0 for a ≥ 3
√

4. This means that f(a) > f( 3
√

4) > 0,

as the inequality is true for a = 3
√

4.
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Proof of the theorem. We shall apply the inequality

L >
3

√
G

(
A+G

2

)2

, (2.14)

due to the author [11]. This implies

1

2

(
1 +

A

L

)
<

1

2

(
1 + 3

√
4A3

G(A+G)2

)
= N.

By letting x =
A

G
in (2.13) we can deduce

N <
3

√
A

G

so
1

2

(
1 +

A

L

)
<

3

√
A

G
.

This immediately gives H(L,A) >
3
√
A2G.

Remark 2.3. If cos x ≤ 1

4
, x ∈

(
0,
π

2

)
then

sinx

x
>

2L∗

L∗ + 1
> 3
√

cosx >
3 cosx

2 cosx+ 1
, (2.15)

which is a refinement, in this case, of inequality (2.5)′.

3. Further improvements

Theorem 3.1. One has

P >
√
LA >

3
√
A2G >

AG

L
>

3AG

2G+ A
(3.1)

and

L >
√
GP >

3
√
G2A >

AG

P
>

3AG

2A+G
. (3.2)

Proof. The inequalities P >
√
LA and L >

√
GP are proved in [6].

We shall see, that further refinements of these inequalities are true. Now,
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the second inequality of (3.1) follows by the first inequality of (2.3), while

the second inequality of (3.2) follows by the first inequality of (2.4). The

last inequality is in fact an inequality by Carlson [2]. For the inequalities

on
AG

P
we use (2.3) and (2.8).

Remark 3.1. One has

sinx

x
>
√
L∗ > 3

√
cosx >

cosx

L∗
>

3 cosx

2 cosx+ 1
, x ∈ (0, π/2) (3.3)

and

sinhx

x
>
√
P ∗ >

3
√

coshx >
coshx

P ∗
>

3 coshx

2 coshx+ 1
, x > 0 (3.4)

where L∗ and P ∗ are the same as in (2.5)′ and (2.6)′.

Theorem 3.2. One has

P >
√
LA > H(A,L) >

AL

I
>
AG

L
>

3AG

2G+ A
(3.5)

and

L > L · I −G
A− L

>
√
IG >

√
PG >

3
√
G2A >

3AG

2A+G
. (3.6)

Proof. The first two inequalities of (3.5) follow by the first inequality

of (3.1) and the fact that G(x, y) > H(x, y) with x = L, y = A.

Now the inequality H(A,L) >
AL

I
may be written also as

I >
A+ L

2
,

which has been proved in [8] (see also [9]).

Further, by Alzer’s inequality L2 > GI (see [1]) one has

L

I
>
G

L

and by the inequality L <
2G+ A

3
(see [2]) we get

AL

I
>
AG

L
>

3AG

2G+ A
,
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so (3.5) is proved.

The first two inequalities of (3.6) have been proved by the author in

[10]. Since I > P (see [16]) and by (3.2), inequalities (3.6) are completely

proved.

Remark 3.2.

sinx

x
>
√
L∗ >

2L∗

L∗ + 1
>
L∗

I∗
>

cosx

L∗
>

3 cosx

2 cosx+ 1
, x ∈

(
0,
π

2

)
, (3.7)

where I∗ = I(1 + sin x, 1− sinx);

sinhx

x
>

sinhx

x

(
ex cothx−1 − 1

coshx− sinhx/x

)
> e(x cothx−1)/2 >

√
P ∗

>
3
√

coshx >
3 coshx

2 coshx+ 1
. (3.8)

Theorem 3.3. One has

P >
3

√
A

(
A+G

2

)2

>

√
A

(
A+ 2G

3

)
>
√
AL

> H(A,L) >
AL

I
>

3AG

2G+ A
(3.9)

and

L >
3

√
G

(
A+G

2

)2

>
√
IG >

√
G

(
2A+G

3

)

>
√
PG >

3
√
G2A >

3AG

2A+G
. (3.10)

Proof. In (3.9) we have to prove the first three inequalities, the rest

are contained in (3.5).

The first inequality of (3.9) is proved in [12]. For the second inequality,

put A/G = t > 1. By taking logarithms, we have to prove that

g(t) = 4 ln

(
t+ 1

2

)
− 3 ln

(
t+ 2

3

)
− ln t > 0.
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As

g′(t)t(t+ 1)(t+ 2) = 2(t− 1) > 0,

g(t) is strictly increasing, so

g(t) > g(1) = 0.

The third inequality of (3.9) follows by Carlson’s relation

L <
2G+ A

3
.

The first inequality of (3.10) is proved in [11], while the second one

in [15]. The third inequality follows by I >
2A+G

3
(see [9]), while the

fourth one by relation (2.9). The fifth one follows by (2.3).

Remark 3.3. The first three inequalities of (3.9) offer a strong im-

provement of the first inequality of (3.1); and the same is true for (3.10)

and (3.2).

4. New Huygens type inequalities

The main result of this section is contained in

Theorem 4.1. One has

P >
3

√
A

(
A+G

2

)2

>
3A(A+G)

5A+G
>
A(2G+ A)

2A+G
>

3AG

2G+ A
(4.1)

and

L >
3

√
G

(
A+G

2

)2

>
3G(A+G)

5G+ A
>
G(2A+G)

2G+ A
>

3AG

2A+G
. (4.2)

Proof. The first inequalities of (4.1), resp. (4.2) are the first ones in

relations (3.9) resp. (3.10).

Now apply the geometric mean - harmonic mean inequality

3
√
xy2 = 3

√
x · y · y > 3/

(
1

x
+

1

y
+

1

y

)
= 3/

(
1

x
+

2

y

)
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for x = A, y =
A+G

2
in order to deduce the second inequality of (4.1).

The last two inequalities become, after certain transformation,

(A−G)2 > 0.

The proof of (4.2) follows on the same lines, and we omit the details.

Theorem 4.2. For all x ∈ (0, π/2) one has

sinx+ 4 tan
x

2
> 3x. (4.3)

For all x > 0 one has

sinhx+ 4 tanh
x

2
> 3x. (4.4)

Proof. Apply (1.5) for P >
3A(A+G)

5A+G
of (4.1).

As

cosx+ 1 = 2 cos2
x

2
and sinx = 2 sin

x

2
cos

x

2
,

we get inequality (4.3). A similar argument applied to (4.4), by an ap-

plication of (4.2) and the formulae

coshx+ 1 = 2 cosh2 x

2
and sinhx = 2 sinh

x

2
cosh

x

2
.

Remarks 4.1. By (4.1), inequality (4.3) is a refinement of the clas-

sical Huygens inequality (1.1):

2 sinx+ tanx > sinx+ 4 tan
x

2
> 3x. (4.3)′

Similarly, (4.4) is a refinement of the hyperbolic Huygens inequality

(1.2):

2 sinhx+ tanhx > sinhx+ 4 tanh
x

2
> 3x. (4.4)′

We will call (4.3) as the second Huygens inequality, while (4.4)

as the second hyperbolic Huygens inequality.

In fact, by (4.1) and (4.2) refinements of these inequalities may be

stated, too.
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The inequality P >
A(2G+ A)

2A+G
gives

sinx

x
>

2 cosx+ 1

cosx+ 2
,

or written equivalently:

sinx

x
+

3

cosx+ 2
> 2, x ∈

(
0,
π

2

)
. (4.5)
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6.11 New refinements of the Huygens and

Wilker hyperbolic and trigonometric

inequalities

1. Introduction

The famous Huygens, resp. Wilker trigonometric inequalities can be

stated as follows: For any x ∈
(

0,
π

2

)
one has

2 sinx+ tanx > 3x, (1.1)

resp. (
sinx

x

)2

+
tanx

x
> 2. (1.2)

Their hyperbolic variants are: For any x > 0 hold

2 sinhx+ tanhx > 3x, (1.3)(
sinhx

x

)2

+
tanhx

x
> 2. (1.4)

Clearly, (1.4) hold also for x > 0, so it holds for any x 6= 0. In what

follows, we shall assume in all inequalities x > 0 (or 0 < x <
π

2
in

trigonometric inequalities).

For references, connections, extensions and history of these inequali-

ties we quote the recent paper [5].

In what follows, by using the theory of means of two arguments, we

will offer refinements of (1.1) or (1.3), as well as (1.2) or (1.4).

2. Means of two arguments

Let a, b be positive real numbers. The logarithmic mean and the

identric mean of a and b are defined by

L = L(a, b) =
a− b

ln a− ln b
, for a 6= b, L(a, a) = a (2.1)
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and

I = I(a, b) =
1

e
(aa/bb)1/(a−b), for a 6= b, I(a, a) = a. (2.2)

The Seiffert mean P is defined by

P = P (a, b) =
a− b

2 arcsin

(
a− b
a+ b

) , for a 6= b, P (a, a) = a. (2.3)

Let

A = A(a, b) =
a+ b

2
, G = G(a, b) =

√
ab, H = H(a, b) =

2ab

a+ b

denote the classical arithmetic, geometric, and harmonic means of a and

b.

There exist many inequalities related to these means. We quote e.g.

[1] for L and I, while [2] for the mean P . Recently, E. Neuman and the

author [3] have shown that all these means are the particular cases of the

so-called ”Schwab-Borchardt mean” (see also [4]).

In what follows, we will use two inequalities which appear in [3] (see

Corollary 3.2 of that paper), namely:

L > H(P,G), (2.4)

and

P > H(L,A). (2.5)

Our method will be based on the remark that

sinhx

x
= L(ex, e−x), x 6= 0 (2.6)

which follows by (2.1), as well as

sinx

x
= P (1 + cos x, 1− cosx), x ∈

(
0,
π

2

)
(2.7)

which may be obtained by definition (2.3).
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Note also that

G(ex, e−x) = 1, A(ex, e−x) = cosh x (2.8)

and

G(1 + sin x, 1− sinx) = cos x, A(1 + sin x, 1− sinx) = 1. (2.9)

3. Main result

Theorem 3.1. Define

P ∗ = P (ex, e−x), X∗ =
2 sinhx

P ∗
.

Then for any x > 0 one has

tanhx+ x > X∗ > 4x− 2 sinhx (3.1)

and (
sinhx

x

)2

+
tanhx

x
> k2 − 2k + 3, (3.2)

where k =
X∗

2x
.

Proof. Writing inequality (2.4) for L = L(ex, e−x), etc., and using

(2.6) and (2.8), we get:

sinhx

x
>

2P ∗

P ∗ + 1
. (3.3)

Similarly, for (2.5), we get:

P ∗ >
2 sinhx coshx

sinhx+ x coshx
. (3.4)

By (3.4) and (3.3) we can write that

tanhx+ x =
sinhx+ x coshx

coshx
>

2 sinhx

P ∗
> 4x− 2 sinhx,
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so (3.1) follows.

Now,
X∗

x
= 2 · sinhx

x · P ∗
= 2 · L

P
(ex, e−x) < 2

by the known inequality (see e.g. [2])

L < P. (3.5)

By the right side of (3.1) one has

sinhx

x
> 2− X∗

2x
= 2− k > 0. (3.6)

From the left side of (3.1) we get

tanhx

x
>
X∗

x
− 1 = 2k − 1. (3.7)

Thus, by (3.6) and (3.7) we can write(
sinhx

x

)2

+
tanhx

x
> (2− k)2 + 2k − 1 = k2 − 2k + 3 > 2

by (k − 1)2 > 0. In fact, k =
L

P
(ex, e−x) < 1, so there is strict inequality

also in the last inequality.

In case of trigonometric functions, the Huygens inequality is refined

in the same manner, but in case of Wilker’s inequality the things are

slightly distinct. �

Theorem 3.2. Define

L∗ = L(1 + sin x, 1− sinx) and X∗∗ =
2 sinx

L∗

for x ∈
(

0,
π

2

)
.

Then one has the inequalities

tanx+ x > X∗∗ > 4x− 2 sinx (3.8)
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and (
sinx

x

)2

+
tanx

x
>

 (k∗)2 − 2k∗ + 3, if k∗ ≤ 2

2k∗ − 1, if k∗ > 2
> 2 (3.9)

where k∗ =
X∗∗

2x
.

Proof. Applying inequality (2.4) for L = L(1 + sinx, 1− sinx) = L∗,

by (2.7) and (2.9) we get

L∗ >
2 sinx cosx

sinx+ x cosx
. (3.10)

From (2.5) we get
sinx

x
>

2L∗

L∗ + 1
. (3.11)

Thus,

tanx+ x =
sinx+ cosx

cosx
>

2 sinx

L∗
> 4x− 2 sinx

by (3.10) and (3.11) respectively. This gives relation (3.8), which refines

(1.1).

Now, by the right side of (3.8) we can write

sinx

x
> 2− sinx

x · L∗
= 2− k∗.

Since

k∗ =
P

L
(1 + sin x, 1− sinx) > 1,

and the upper bound of k∗ is +∞ as x → π

2
, clearly 2 − k∗ > 0 is not

true.

i) If 2−k∗ ≥ 0, then as in the proof of Theorem 3.1, we get from (3.8)(
sinx

x

)2

+
tanx

x
> (2− k∗)2 + 2k∗ − 1 = (k∗)2 − 2k∗ + 3 > 2.

ii) If 2− k∗ < 0, then we use only

(
sinx

x

)2

> 0. Thus(
sinx

x

)2

+
tanx

x
>

tanx

x
> 2k∗ − 1.
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In this case 2k∗ − 1 > 3 > 2.

Thus, in any case, inequality (3.9) holds true, so a refinement of the

trigonometric Wilker inequality (1.2) is valid. �
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6.12 On two new means of two variables

1. Introduction

Let a, b be two positive numbers. The logarithmic and identric means

of a and b b are defined by

L = L(a, b) =
a− b

ln a− ln b
(a 6= b), L(a, a) = a;

I = I(a, b) =
1

e
(bb/aa)1/(b−a) (a 6= b), I(a, a) = a.

(1.1)

The Seiffert mean P is defined by

P = P (a, b) =
b− a

2 arcsin
b− a
a+ b

(a 6= b), P (a, a) = a. (1.2)

Let

A = A(a, b) =
a+ b

2
, G = G(a, b) =

√
ab and H = H(a, b) =

2ab

a+ b

denote the classical arithmetic, geometric, resp. harmonic means of a and

b. There exist many papers which study properties of these means. We

quote e.g. [1], [2] for the identric and logarithmic means, and [3] for the

mean P .

The means L, I and P are particular cases of the ”Schwab-Borchardt

mean”, see [4], [5] for details. The means of two arguments have impor-

tant applications also in number- theoretical problems. For example, the

solution of certain conjectures on prime numbers in paper [11] is based

on the logarithmic mean L.

The aim of this paper is the study of two new means, which we shall

denote by X = X(a, b) and Y = Y (a, b), defined as follows:

X = A · e
G
P
−1, (1.3)

resp.

Y = G · e
L
A
−1. (1.4)
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Clearly X(a, a) = Y (a, a) = a, but we will be mainly interested for

properties of these means for a 6= b.

2. Main results

Lemma 2.1. The function f(t) = te
1
t
−1, t > 1 is strictly increasing.

For all t > 0, t 6= 0 one has f(t) > 1. For 0 < t < 1, f is strictly

decreasing. As a corollary, for all t > 0, t 6= 1 one has

1− 1

t
< ln t < t− 1. (2.1)

Proof. As ln f(t) = ln t+
1

t
− 1, we get

f ′(t)

f(t)
=
t− 1

t2
,

so t0 = 1 will be a minimum point of f(t), implying f(t) ≥ f(1) = 1, for

any t > 0, with equality only for t = 1. By taking logarithm, the left side

of (2.1) follows. Putting 1/t in place of t, the left side of (2.1) implies the

right side inequality. �

Theorem 2.1. For a 6= b one has

G <
A ·G
P

< X <
A · P

2P −G
< P. (2.2)

Proof. Applying (2.1) for t =
X

A
(6= 1, as G 6= P for a 6= b), and by

taking into account of (1.3) we get the middle inequalities of (2.2). As it

is well known that (see [3])

A+G

2
< P < A, (2.3)

the first inequality of (2.3) implies the last one of (2.2), while the second

inequality of (2.3) implies the first one of (2.2).

In a similar manner, the following is true:
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Theorem 2.2. For a 6= b one has

H <
L ·G
A

< Y <
G · A

2A− L
< G. (2.4)

Proof. Applying (2.1) for t =
Y

G
by (1.4) we can deduce the second

and third inequalities of (2.4). Since H =
G2

A
, the first and last inequality

of (2.4) follows by the known inequalities (see e.g. [1] for references)

G < L < A. (2.5)

�

The second inequality of (2.2) can be strongly improved, as follows:

Theorem 2.3. For a 6= b one has

1 <
L2

G · I
<
L

G
· e

G
L
−1 <

X · P
A ·G

. (2.6)

Proof. As L < P (due to Seiffert; see [3] for references) and

f

(
P

G

)
= X · P

A ·G
, (2.7)

where f is defined in Lemma 2.1, and by taking into account of the

inequality (see [1])
L

I
< e

G
L
−1, (2.8)

by the monotonicity of f one has

f

(
P

G

)
=
L

G
· e

G
L
−1 >

L

G
· L
I

=
L2

G · I
. (2.9)

By an inequality of Alzer (see [1] for references) one has

L2 > G · I, (2.10)

thus all inequalities of (2.6) are established.

The following estimates improve the left side of (2.4):
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Theorem 2.4. For a 6= b,

H <
G2

I
<
L ·G
A

<
G · (A+ L)

3A− L
< Y. (2.11)

Proof. Since H =
G2

A
, the first inequality of (2.11) follows by the

known inequality I < A (see [1] for references). The second inequality

of (2.11) follows by another known result of Alzer (see [1] for references,

and [3] for improvements)

A ·G < L · I. (2.12)

Finally, to prove the last inequality of Y , remark that the logarithmic

mean of Y and G is

L(Y,G) =
Y −G
lnY/G

=
(G− Y )A

A− L
. (2.13)

Now, by the right side of (2.5) applied to a = Y , b = G we have

L(Y,G) < (Y +G)/2,

so

2A(G− Y ) < (A− L)(Y +G),

which after some transformations gives the desired inequality. �

Similarly to (2.11) we can state:

Theorem 2.5.
A ·G
P

<
A(P +G)

3P −G
< X. (2.14)

Proof. L(X,A) = (X − A) logX/A =
(A−X)P

P −G
<
X + A

2
, so after

simple computations we get the second inequality of (2.14). The first

inequality becomes

(P −G)2 > 0. �

A connection between the two means X and Y is provided by:
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Theorem 2.6. For a 6= b,

A2 · Y < P · L ·X. (2.15)

Proof. By using the inequality (see [3])

A

L
<
P

G
, (2.16)

and remarking that

f

(
A

L

)
=

A

L ·G
· Y, (2.17)

by the monotonicity of f one has

f

(
A

L

)
< f

(
P

G

)
,

so by (2.7) and (2.17) we can deduce inequality (2.15). �

Remark 2.1. By the known identity (see [1], [2])

I

G
= e

A
L
−1 (2.18)

and the above methods one can deduce the following inequalities (for

a 6= b):

1 <
L · I
A ·G

<
G

P
· e

P
G
−1. (2.19)

Indeed, as

f

(
L

A

)
=
L

A
· e

A
L
−1 =

L · I
A ·G

> 1

we reobtain inequality (2.12). On the other hand, by (2.16) we can write,

as 1 >
L

A
>
G

P
that f

(
L

A

)
< f

(
G

P

)
i.e. the complete inequality (2.19)

is established.

Theorem 2.7. For a 6= b

X < A

[
1

e
+

(
1− 1

e

)
G

P

]
(2.20)
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and

Y < G

[
1

e
+

(
1− 1

e

)
L

A

]
. (2.21)

Proof. The following auxiliary result will be used:

Lemma 2.2. For the function f of Lemma 2.1, for any t > 1 one

has

f(t) <
1

e
(t+ e− 1) (2.22)

and

f(t) <
1

e

(
t+

1

2t
+ e− 3

2

)
<

1

e
(t+ e− 1). (2.23)

Proof. By the series expansion of ex and by t > 1, we have

f(t) =
1

e

(
t+ 1 +

1

2t
+

1

3!t2
+

1

4!t3
+ . . .

)
=

1

e

(
t+

1

1!
+

1

2!
+ . . .

)
=

1

e
(t+ e− 1),

so (2.22) follows.

Similarly,

f(t) =
1

e

(
t+ 1 +

1

2t
+

1

3!t2
+

1

4!t3
+ . . .

)

<
1

e

[
t+ 1 +

1

2t
+ e−

(
1 +

1

1!
+

1

2!

)]
=

1

e

(
t+

1

2t
+ e− 3

2

)
,

so (2.23) follows as well.

Now, (2.20) follows by (2.22) and (2.7), while (2.21) by (2.23) and

(2.17). �

Theorem 2.8. For a 6= b one has

P 2 > A ·X (2.24)

Proof. Let x ∈
(

0,
π

2

)
. In the recent paper [7] we have proved the

following trigonometric inequality:

ln
x

sinx
<

sinx− cosx

2 sinx
. (2.25)
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Remark that by (1.2) one has

P (1 + sin x, 1− sinx) =
sinx

x
,

A(1 + sin x, 1− sinx) = 1, G(1 + sin x, 1− sinx) = cos x,

so (2.24) may be rewritten also as

P 2(1 + sin x, 1− sinx) > A(1 + sin x, 1− sinx) ·X(1 + sin x, 1− sinx).

(2.26)

For any a, b > 0 one can find x ∈
(

0,
π

2

)
and k > 0 such that

a = (1 + sinx)k, b = (1− sinx)k.

Indeed, let k =
a+ b

2
and x = arcsin

a− b
a+ b

.

Since the means P , A and X are homogeneous of order one, by mul-

tiplying (2.26) by k, we get the general inequality (2.24). �

Corollary 2.1.

P 3 >
A2L2

I
> A2G. (2.27)

Proof. By (2.6) of Theorem 2.3 and (2.24) one has

L2A

I · P
< X <

P 2

A
, (2.28)

so we get P 3 >
A2L2

I
> A2G by inequality (2.10). �

Remark 2.2. Inequality (2.27) offers an improvement of

P 3 > A2G (2.29)

from paper [3]. We note that further improvements, in terms of A and G

can be deduced by the ”sequential method” of [3]. For any application of

(2.29), put a = 1 + sinx, b = 1− sinx in (2.29) to deduce

sinx

x
> 3
√

cosx, x ∈
(

0,
π

2

)
, (2.30)
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which is called also the Mitrinović-Adamović inequality (see [6]).

Since (see [3])

P <
2A+G

3
, (2.31)

by the above method we can deduce

sinx

x
<

cosx+ 2

3
, (2.32)

called also as the Cusa-Huygens inequality. For details on such trigono-

metric or related hyperbolic inequalities, see [6].

Theorem 2.9. One has the inequalities

P 2 >
3

√
A2

(
A+G

2

)4

> A ·X, (2.33)

Proof. The first inequality of (2.33) appeared in our paper [3]. For

the second inequality, consider the application

f(x) = ln
cosx+ 1

2
− 3

4
(x cotx− 1).

An easy computation gives

4(sinx)2(cosx+ 1)f ′(x) = 3x+ 3x cosx− (sinx)3

− 3 sinx− 3 sinx cosx = g(x).

Here

g′(x) = 3 sinx · h(x),

where

h(x) = 2 sinx− x− sinx cosx.

One has

h′(x) = 2(cos x)(1− cosx) > 0,

so h(x) > h(0) = 0. This in turn gives g(x) > g(0) implying f ′(x) > 0.

Therefore, f(x) > f(0) = 0 for x ∈
(

0,
π

2

)
. This proves the second

inequality of (2.33). �
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Remark 2.3. From the second inequality of (2.14) it is immediate

that the following weaker inequality holds:

X >
2G+ A

3
, (2.34)

This follows by P < (2A+G)/3 (See [3]). Since L < (2G+A)/2, we get

X >
2G+ A

3
> L, (2.35)

so we can deduce by (2.33) a chain of inequalities for P, which improves

a result from our paper [8].

Theorem 2.10. One has

X > A+G− P, (2.36)

Proof. By using the notations from the proof of Theorem 2.8, and

by taking logarithms, the inequality becomes

f(x) = x cotx− 1− ln(1 + cos x− sinx/x)) > 0

After elementary computations one finds that the sign of derivative of f

depends on the sign of the function

g(x) =
x

sinx
+ (sinx)2 − (x2) cosx− x2.

To prove that g(x) > 0 we have to show that

F (x) = x sinx+ (sinx)2 − (x2)(cosx)− x2 > 0.

We get

F ′(x) = sinx− x cosx+ 2 sinx cosx+ x2 cosx− 2x

and

F ′′(x) = 3x sinx+ x2 cosx− 4(sinx)2.
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We will prove that

F ′′(x) > 0, or equivalently 4t2 − t− cosx < 0,

where t = sin x/x. By solving the above quadratic inequality, and by

taking into account of the Cusa-Huygens inequality t < (2 +u)/3, where

u = cosx, we have to prove the following relation

(2 + u)/3 < [3 +
√

9 + 16u]/8.

Or after some computations, with (2u + 1)(u − 1) < 0, which is true.

Since F ′′(x) > 0, we get F ′(x) > F ′(0) = 0, so F (x) > F (0) = 0. The

function f being strictly increasing, the result follows, as f(0+) = 0. �

Remark 2.4. Inequality (2.36) is slightly stronger than the right side

of (2.14). Indeed, after some transformations, this becomes

3P 2 − 2P · (A+ 2G) + 2AG+G2 < 0.

Resolving this quadratic inequality, this becomes

[3P − (2A+G)](P −G) < 0,

which is true by G < P < (2A+G)/3.

Theorem 2.11.

P ·X <

(
A+G

2

)2

, (2.37)

Proof. It is immediate that we have to prove the following inequality

f(x) = ln(x/ sinx)− 2 ln[2/(1 + cos x)]− (x cotx− 1) > 0.

After computations we get that the sign of f ′(x) depends on the sign of

g(x) = (sin x)(1 + cos x)(sinx− x cosx)− (x sinx cosx)(1 + cos x)

= (x2)(1 + cos x) + 2x(sinx)3.
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By

1 = cos x = 2[cos(x/2)]2

and

sinx = 2 sin(x/2) cos(x/2)

we can write

g(x) = 2[cos(x/2)]2h(x),

where

h(x) = (sinx)2 − 2x sinx cosx+ x2 + 8x cos(x/2)[sin(x/2)]3.

We can deduce

h′(x)/4[sin(x/2)]2 = 7x[cos(x/2)]2 + 2 sin(x/2) cos(x/2)− x[sin(x/2)]2.

As cos(x/2) > sin(x/2), we get h′(x) > 0. Thus we have h(x) > h(0) = 0,

so g(x) > 0 and finally, f ′(x) > 0. The result follows by the remark that

f(x) > f(0+) = 0. �

Remark 2.5. Relation (2.37) combine with the weaker inequality of

(2.14) shows that,
√

(P · X) lies between the geometric and arithmetic

means of A and G.

Remark 2.6. In a recent paper, B. Bhayo and the author [9] have

proved the following counterpart of relation (2.24):

Theorem 2.12. The following inequality holds true:

P < (Xc) · (A1−c), where c = ln(π/2), (2.38)

Remark 2.7. An earlier version of this work appeared in the last

paragraph of the arXiv paper [10].
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18. J. Sándor, V.E.S. Szabó, On certain means, Prep. No. 21/1994,

Math. Inst. Hungar. Acad. Sci., Budapest, 1994.

19. J. Sándor, On certain inequalities for means II, J. Math. Anal.

Appl., 199(1996), 629-635 [MR 97b:26023].

20. J. Sándor, On an exponential inequality (Romanian), Lucr. Semin.

Did. Mat., 10(1994), 113-118.

21. J. Sándor, On refinements of certain inequalities for means, Arch.

Math. (Brno), 32(1995), 279-281 [MR 97c:26028].

552



22. J. Sándor, On the theorem of finite increments (Hungarian), Mat.

Lapok, 10/1994, 361-362.

23. J. Sándor, On means generated by derivatives of functions, In-

tern. J. Math. Educ. Sci. Techn., 28(1997), no. 1, 146-148 [Zbl.

0885.26014].

24. J. Sándor, Gh. Toader, Some general means, Czechoslovak Math.

J., 49(124)(1999), no. 1, 53-62 [MR 2000a:26022].
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I. Raşa II.8(2), II.14, II.17, II.18,

II.19, III.4, III.11, IV.7, V.1,

V.2, V.4, V.5(2), V.7, V.8(2),

VI.9

A.W. Roberts II.9, IV.3

J. Rooin II.10, IV.7

R.A. Rosenbaum I.12

S. Ruscheweyh V.7

H. Ruskeepää II.17
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