
DIDACTICA MATHEMATICA, Vol. 42 (2024) , pp. 87–98

APPLICATIONS OF WEIERSTRASS’ FACTORIZATION THEOREM

Diana Zaha

Abstract. In this paper, I want to give a quick overview of Weierstrass’ Factor-
ization Theorem for complex functions, explain its importance, and then present
some of the most important applications of the theorem: writing the trigono-
metric functions as infinite products, solving the Basel problem, proving Wallis’
Formula and justifying one of the definitions of the Riemann Zeta Function.
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1. INTRODUCTION OF THE WEIERSTRASS’ FACTORIZATION THEOREM

To understand Weierstrass’ Factorization Theorem, we first have to touch
on the definition and properties of functions of infinite products of function.

Definition 1. If {fn}∞n=1 is a sequence of continuous functions that have

complex values, defined in an open set D ⊂ C, then f =
∏∞

n=1 fn is said to be

compactly convergent in D if for all compact sets K ⊂ D there exists an

N ∈ N such that
{∏d

n=N fn

}∞

d=1
converges uniformly on K to a non-vanishing

function g as d → ∞, so f = f1 · f2 · . . . · fN · g on K.

This definition can be found in Zakeri [9, Definition 8.13, p. 233] and Kohr,
Mocanu [5, Definition 7.2.2, p. 240]. Following the definition, they list the
following properties as well:

Theorem 1. If {fn}∞n=1 is a sequence of continuous functions that have

complex values, defined on D such that
∞∑
n=1

|fn − 1| converges compactly in

D, then the following are true

(1) The infinite product f =
∞∏
n=1

fn converges compactly in D.

(2) f(p) = 0 ⇐⇒ ∃ n ∈ N such that fn(p) = 0

(3) f =
∞∏

n=N

fn → 1 compactly in D as N → ∞
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(4) If all fn are not identically zero, then we also have the logarithmic

differentiation as
f ′

f
=

∞∑
n=1

f ′
n

fn
in D.

According to the fundamental theorem of algebra, every non-constant poly-
nomial P has a unique factorization of the form

P (z) = Czm
k∏

n=1

(
1− z

zn

)
where C ̸= 0 is a constant, m ≥ 0 is an integer, and z1, . . . , zk are the non-
zero roots of P, repeated according to their multiplicity. Note that if two
polynomials have the same roots of the same multiplicities they will agree up
to a multiplicative constant.

Now, we wonder if it is possible to find such a factorization for entire
functions. The answer is Yes! due to Weierstrass.

Let {an}∞n=1 be a sequence of complex values in a subset D with no accu-
mulation point in D, with the possibility of a point being repeated a finite
number of times.

Taking into account the properties of complex-valued infinite products, if

it is possible to find analytic functions gn(z) on D, with no zeros in D such

that
∑∞

n=1 |(z − an)gn(z) − 1| converges compactly on subsets of D, then

f(z) =
∏∞

n=1(z − an)gn(z) is analytic and has zeros only at {an}∞n=1.

The easiest way to make sure that gn(z) is never zero is to use the expo-
nential function in combination with an analytic function h(z), to get gn(z) =

ehn(z). The functions gn(z) we need were introduced by Weierstrass.

Definition 2. The entire functions Ed defined for d ∈ N as:

Ed(z) =


1− z if d = 0

(1− z) exp

(
d∑

n=1

zn

n

)
if d > 0 , where exp(x) = ez

are called the Weierstrass’ elementary factors

This definition appears in Zakery [9, p. 236], as well as in Conway [1, p. 168].
They are also part of Kohr, Mocanu [5, Lemma 7.2.14, p. 247]. All these
sources immediately continue with the following remarks:

• The elementary factors have only a simple zero, that is z = 1 so
Ed(1) = 0.

• The function Ed(z/a) has a zero only at z = a and no other zero.

• If |z| ≤ 1 then, the larger d is, the closer Ed(z) is to 1. Also note that
Ed(0) = 1.
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Theorem 2. Weierstrass’ factorization theorem from 1876

If the function f is an entire function, non-identically zero whose zeros we can

arrange in a sequence of the form {zn}∞n=1 so that each zero appears as many

times as its multiplicity m ≥ 0, and if {dn}∞n=1 is any sequence of non-negative

integers such that

∞∑
n=1

(
r

|zn|

)dn+1

is convergent ∀ r ≥ 0 , then

we can give the function f the following factorization:

f(z) = eg(z) · zm ·
∞∏
n=1

Edn

(
z

zn

)
where g ∈ H(C).

This theorem appears along with its full proof in Zakery [9, Theorem 8.24,
p. 239], as well as in Conway [1, Theorem 5.14, p. 170] and in Kohr, Mocanu
[5, Theorem 7.2.19, p. 251]. In all these sources, the necessary partial results
are presented together with their proof, building up to a shorter overall proof
of the factorization theorem itself.

Remark 1. From the theorem, we observe that:

• To create a zero of order m at z = 0, all we have to do is multiply the
infinite product by zm

• The necessary convergence of the sum can be achieved if dn ≥ n − 1,
but choosing dn to be as small as possible gives us an advantage since
the elementary factors will be smaller.

2. FACTORIZATION OF THE COMPLEX

TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS

Using the consequence of Weierstrass’s Factorization Theorem 2 we can
rewrite the sine function as an infinite product. This is a powerful tool that
allows us to give an infinite product form to all the other trigonometric func-
tions, and hyperbolic functions as well. It is also an important part of proving
Wallis’s formula and solving the Basel problem.

Being such an important proof for further results, the proof of the infinite
form of the sinus is given in a detailed form in Conway [1, p. 174–175], and
in a blueprint form in Kohr, Mocanu [4, Example 7.2.21, p. 251]. Following
their approach, I wanted to provide an extended proof that elaborates more
on each step of the process. The rest of the results are given as exercises for
the reader in Conway [1, p. 176] and in Kohr, Mocanu [4, p. 253].
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(1) sin(πz) = πz
∞∏
n=1

(
1− z2

n2

)
First, we must identify the zeros of sin(πz) using its complex form :

sin(πz) = 0 ⇔ eiπz − e−iπz

2i
= 0 ⇔ eiπz − 1

eiπz
= 0 ⇔ e2iπz = 1

Now by applying Euler’s Formula we have cos(2πz) + i sin(2πz) = 1.
This equality holds for all points in Z = {. . . ,−2,−1, 0, 1, 2, . . . }, so
the zeros are all the integers, and their multiplicity, m, is 1.

We notice that sin(πz) ∈ H(C), and is not identically zero. Also,
we can arrange its zeros in the sequence zn = n and zn ̸= 0 for n ∈ Z∗,
with lim

n→∞
|zn| = ∞ . By picking dn = 1, a sequence of non-negative

integers, we have that
∞∑

n=−∞
n ̸=0

(
r

zn

)dn+1

=
∞∑

n=−∞
n̸=0

( r
n

)2
=

−∞∑
n=−1

( r
n

)2
+

∞∑
n=1

( r
n

)2

= 2 ·
∞∑
n=1

( r
n

)2
< ∞

thus, this series is convergent for all r > 0.
So, we have checked all the requirements needed to apply the Weier-

strass Factorization Theorem 2. It says that there exists a factorization
of sin(πz) with the following form, for a function g(z) ∈ H(C):

sin(πz) = eg(z) · zm ·
∞∏

n=−∞
n̸=0

Edn

(
z

zn

)

= eg(z) · z
∞∏

n=−∞
n̸=0

E1

( z
n

)
= eg(z) · z

∞∏
n=−∞
n̸=0

(
1− z

n

)
· e

z
n

then we can rearrange and regroup the terms like this:

= eg(z)z . . .
(
1 +

z

2

)
e−

z
2

(
1 +

z

1

)
e−

z
1

(
1 -

z

1

)
e

z
1

(
1 -

z

2

)
e

z
2 . . .

= eg(z)z
(
1 +

z

1

)(
1− z

1

)(
1 +

z

2

)(
1− z

2

)
. . .

= eg(z)z

(
1− z2

12

)(
1− z2

22

)
. . .

= eg(z)z

∞∏
n=1

(
1− z2

n2

)
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Now the problem is identifying the function g(z) or rather eg(z).
Comparing two forms of the same differentiation will help us. First,
we replace this new form in logarithmic differentiation and apply the

rule for product differentiation in the upper half by doing sin(πz)′

sin(πz) =

=

(
eg(z)

)′
z

∞∏
n=1

(
1− z2

n2

)
eg(z)z

∞∏
n=1

(
1− z2

n2

) +

eg(z)z′
∞∏

n=1

(
1− z2

n2

)
eg(z)z

∞∏
n=1

(
1− z2

n2

) +

eg(z)z

(
∞∏

n=1

(
1− z2

n2

))′

eg(z)z

∞∏
n=1

(
1− z2

n2

)

=
eg(z) (g(z))′

eg(z)
+

1

z
+

(
∞∏

n=1

(
1− z2

n2

))′

∞∏
n=1

(
1− z2

n2

) = g(z)′ +
1

z
+

(
∞∏

n=1

(
1− z2

n2

))′

∞∏
n=1

(
1− z2

n2

)
We are going to work separately on the last fraction, using a tech-

nique similar one would use to prove the Logarithmic Differentiation
for an infinite product:

(
∞∏

n=1

(
1− z2

n2

))′

∞∏
n=1

(
1− z2

n2

) =

(
1− z2

12

)′

·
∞∏

n=2

(
1− z2

n2

)
∞∏

n=1

(
1− z2

n2

) +

(
1− z2

22

)′

·
∞∏

n=1
n ̸=2

(
1− z2

n2

)
∞∏

n=1

(
1− z2

n2

) + . . .

=

(
1− z2

12

)′

(
1− z2

12

) +

(
1− z2

22

)′

(
1− z2

22

) + . . . =

∞∑
n=1

(
1− z2

n2

)′

(
1− z2

n2

)

=

∞∑
n=1

(
n2 − z2

)′
(n2 − z2)

=

∞∑
n=1

2z

z2 − n2

Replacing in the relation before we have:

sin(πz)′

sin(πz)
= g(z)′ +

1

z
+

∞∑
n=1

2z

z2 − n2

On the other hand, using the identity given in the Theorem from [6,
page 327] by Remmert, we can determine the nature of g(z) like so:

sin(πz)′

sin(πz)
=

π cos(πz)

sin(πz)
= π ctg(πz) =

1

z
+

∞∑
n=1

2z

z2 − n2

By matching coefficients, we see that g(z)′ is equal to 0, so g(z) is
constant. Let’s set g(z) = c for a constant c, and replace it in the



92 D. Zaha

factorization.

sin(πz) = ecz
∞∏
n=1

(
1− z2

n2

)
next we are going to divide both sides by πz, and then apply the limit
for z → 0 in both sides:

sin(πz)

πz
=

ec

π

∞∏
n=1

(
1− z2

n2

)

lim
z→0

sin(πz)

πz
= lim

z→0

ec

π

∞∏
n=1

(
1− z2

n2

)
the limit on the left-hand side tends to 1 as z → 0 and all z from the
right hand side vanish leaving behind the following:

1 =
ec

π
· 1 ⇒ ec = π

Finally, we replace ec = π in the factorization and thus, obtain a
very useful relation for the results that follow:

sin(πz) = πz

∞∏
n=1

(
1− z2

n2

)

(2) cos(πz) =
∞∏
n=1

(
1− 4z2

(2n− 1)2

)
Using the trigonometric formula for sin(2x) we determine a form of

cos(x) that only depends on sin(x) like:

sin(2x) = 2 sin(x) cos(x) ⇒ cos(x) =
sin(2x)

2 sin(x)

Since the Identity Theorem states that given D ⊂ C a domain
and f, g ∈ H(D), if the set {z ∈ D : f(z) = g(z)} has at least one
limit point in D, then f = g everywhere in D, the above formula
holds for complex numbers.

Now we replace each sinus with its corresponding form according to
the proven formula for sin(πz)

cos(πz) =
sin(2πz)

2 sin(πz)
=

2πz ·
∞∏
n=1

(
1− (2z)2

n2

)
2 · πz ·

∞∏
n=1

(
1− z2

n2

) =

∞∏
n=1

(
1− 4z2

n2

)
∞∏
n=1

(
1− z2

n2

)
Now we are going to split the numerator by even and odd n:
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cos(πz) =

∞∏
n=1

(
1− 4z2

n2

)
∞∏

n=1

(
1− z2

n2

) =

∞∏
n=1

(
1− 4z2

(2n)2

)
·

∞∏
n=1

(
1− 4z2

(2n− 1)2

)
∞∏

n=1

(
1− z2

n2

)

=

∞∏
n=1

(
1− 4z2

4n2

)
·

∞∏
n=1

(
1− 4z2

(2n− 1)2

)
∞∏

n=1

(
1− z2

n2

)

=

∞∏
n=1

(
1− 4z2

(2n− 1)2

)

(3) sinh(z) = z ·
∞∏
n=1

(
1 +

z2

n2π2

)
For this and the next proof, we are going to use the connection

between sinh(z) and sin(z)

sinh(z) =
ez − e−z

2
= i · e

−i2z − e−(−i2z)

2i
= −i · e

i·(iz) − e−i·(iz)

2i

= −i · sin(iz) = −i · sin
(
π · iz

π

)
and just apply the formula provided at sin(πz):

= −i · π · iz
π

·
∞∏
n=1

(
1−

(
iz
π

)2
n2

)
= z ·

∞∏
n=1

(
1− i2z2

π2n2

)

= z ·
∞∏
n=1

(
1 +

z2

n2π2

)

(4) cosh(z) = z ·
∞∏
n=1

(
1 +

4z2

(2n− 1)2π2

)
Just like in the previous example, we establish the connection cosh(z)

and cos(z) :

cosh(z) =
ez + e−z

2
=

e−i2z + e−(−i2z)

2
=

ei(iz) + e−i(iz)

2

= cos(iz) = cos

(
π · iz

π

)
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and just apply the product formula for cos(πz) :

=

∞∏
n=1

(
1−

4
(
iz
π

)2
(2n− 1)2

)
=

∞∏
n=1

(
1− 4i2z2

(2n− 1)2π2

)

=

∞∏
n=1

(
1 +

4z2

(2n− 1)2π2

)

3. WALLIS’ FORMULA

In 1656, John Wallis published this product formula for π:√
π

2
=

∞∏
n=1

2n√
(2n− 1)(2n+ 1)

= lim
n→∞

2 · 4 · 6 . . . 2n
1 · 3 · 5 . . . (2n− 1)

· 1√
2n+ 1

Proof. Using the formula for sin(πz) we have:

sin(z) = sin(π · z
π
) = π · z

π

∞∏
n=1

(
1−

(
z
π

)2
n2

)
= z

∞∏
n=1

(
1− z2

n2π2

)
Now we replace z with

π

2
and since sin

(π
2

)
= 1:

sin
(π
2

)
=

π

2
·

∞∏
n=1

(
1−

(
π
2

)2
n2π2

)
=

π

2
·

∞∏
n=1

(
1− 1

4n2

)
= 1 ⇒

∞∏
n=1

(
1− 1

4n2

)
=

2

π
⇒

∞∏
n=1

(
4n2 − 1

4n2

)
=

2

π

⇒ π

2
=

∞∏
n=1

(2n)2

(2n− 1)(2n+ 1)

Now we apply the square root on both sides:√
π

2
=

∞∏
n=1

2n√
(2n− 1)(2n+ 1)

= lim
n→∞

2 · 4 · 6 . . . 2n
√
2− 1 ·

√
2 + 1 ·

√
2 · 2− 1 ·

√
2 · 2 + 1 . . .

√
(2n− 1)(2n+ 1)

= lim
n→∞

2 · 4 · 6 . . . 2n√
1 ·

√
3 ·

√
3 ·

√
5 . . .

√
2n− 1 ·

√
2n+ 1

= lim
n→∞

2 · 4 · 6 . . . 2n
1 · 3 · 5 . . . (2n− 1)

· 1√
2n+ 1

□
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4. THE BASEL PROBLEM

Proposed by Pietro Mengoli in the year 1650, the Basel Problem was solved
by Euler more than 80 years later, in 1734. The problem is named after the
Swiss city of Basel, where Euler was born. Heavily debated in the beginning,
it withstood the test of time, gathering a plethora of equivalent proofs.

I decided to present here the proof that made Euler famous. It is important
to mention, that his version of the proof was not considered rigorous at the
time because it involved proving the product form of sin(πz), which was made
rigorous only do to Weierstrass’s factorization Theorem 2, almost 150 years
later.

The problem posed was determining the sum of the inverses of the squares of
all natural numbers:

∞∑
n=1

1

n2
=

1

12
+

1

22
+

1

32
+ . . .

Proof. First, we take the infinite product form of sin(z) and try to open the
parenthesis, one by one, and then we observe an interesting pattern

sin(z) = z

∞∏
n=1

(
1− z2

n2π2

)
= z

(
1− z3

π2

) ∞∏
n=2

(
1− z2

n2π2

)

=

(
z − z3

π2

) ∞∏
n=2

(
1− z2

n2π2

)
=

(
z -

z3

π2

)(
1 -

z2

22π2

) ∞∏
n=3

(
1 -

z2

n2π2

)

=

(
z -

(
1

π2
+

1

(2π)2

)
z3 +

z5

π2(2π)2

) ∞∏
n=3

(
1 -

z2

n2π2

)

=

(
z −

(
1

π2
+

1

(2π)2

)
z3 +

z5

π2(2π)2

)(
1− z2

(3π)2

) ∞∏
n=4

(
1− z2

n2π2

)
=

(
z-

(
1

π2
+

1

(2π)2
+

1

(3π)2

)
z3+

((
1

π2
+

1

(2π)2

)
1

(3π)2
+

1

π2(2π)2

)
z5-

z7

π2(2π)2(3π)2

)
·

∞∏
n=4

(
1-

z2

n2π2

)
. . .

If we continue to do this process we can see that the first 2 terms would
look like this, and we could also factor out both z3 and π2:

= z −
(

1

π2
+

1

(2π)2
+

1

(3π)2
+ . . .

)
z3 + . . . = z − z3 ·

∞∑
n=1

1

n2π2
+ . . .

= z − z3

π2
·

∞∑
n=1

1

n2
+ . . .
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The coefficient of z3 contains exactly the sum that we need. Now, Euler
thought of another form of sin(z) that involves a z3, its Taylor expansion

sin(z) =
∞∑
n=0

(−1)n

(2n+ 1)!
z2n+1 = z − z3

3!
+

z5

5!
− z7

7!
+ · · ·

Since the 2 forms of sin(z) are equivalent, we can match coefficients, and
by doing the following computations we obtain our answer:

− z3

π2
·

∞∑
n=1

1

n2
= −z3

3!
⇒ 1

π2
·

∞∑
n=1

1

n2
=

1

6
⇒

∞∑
n=1

1

n2
=

π2

6

□

Euler used this method in his paper [2, ”Various Observations about Infinite
Series”] to calculate even more values for what will be presented in the next
section as the Riemann Zeta function.

5. RIEMANN ZETA FUNCTION CONNECTION TO PRIME NUMBERS

I would like to start this section by touching, albeit briefly on the monumen-
tal paper [8, On the Number of Primes Less Than a Given Magnitude]
by Bernard Riemann, published in the November 1859 edition of the Monthly
reports of the Royal Prussian Academy of Sciences in Berlin.

As the name of the paper suggests, Riemann was focused on analytical
methods to count primes. He started his paper by observing, a connection to
the prime numbers in the form given at Theorem 4 This was possible only due
to the following relation given to us by Euler 1737:

Theorem 3.
∞∑
n=1

1

na
=

∏
p prime

(
1

1− 1
pa

)
for a ∈ N \ {0, 1}

Proof. Euler proved this affirmation using an algorithm called the Sieve of
Eratosthenes. It is a pretty intuitive algorithm that allows us to filter the
prime numbers. The process requires iterating through all the numbers up to
any given limit, and upon encountering a prime number, eliminating all its
multiples.

By repeating this procedure, we are left with only prime numbers, because
if a number were composed, it would have already been eliminated from the
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set. Let:
∞∑
n=1

1

na
= 1 +

1

2a
+

1

3a
+

1

4a
+ . . .

Now we multiply both sides by 1
2a and because this series is convergent we can

rearrange the terms, then do a subtraction:

1

2a

∞∑
n=1

1

na
=

1

2a
+

1

4a
+

1

8a
+ . . .

⇒
∞∑
n=1

1

na
− 1

2a

∞∑
n=1

1

na
= 1 +

1

3a
+

1

5a
+

1

7a
+ . . .

We observe that all terms that had a multiple of 2 at the denominator disap-
peared. Let’s group the terms on the left-hand side and repeat the procedure
for 1

3a : (
1− 1

2a

) ∞∑
n=1

1

na
= 1 +

1

3a
+

1

5a
+

1

7a
+ . . .

⇒ 1

3a

(
1− 1

2a

) ∞∑
n=1

1

na
=

1

3a
+

1

9a
+

1

15a
+ . . .

⇒
∞∑

n=1

1

na
− 1

3a

(
1− 1

2a

) ∞∑
n=1

1

na
= 1 +

1

5a
+

1

7a
+ . . .

Again, all the terms with a multiple of 3 at the denominator vanished. If we
continue this process an infinite amount of times we get to the result:

. . .

(
1− 1

7a

)(
1− 1

5a

)(
1− 1

3a

)(
1− 1

2a

) ∞∑
n=1

1

na
= 1

⇒
∞∑

n=1

1

na
=

1(
1− 1

2a

)(
1− 1

3a

)(
1− 1

5a

)(
1− 1

7a

)
. . .

⇒
∞∑

n=1

1

na
=

∏
p prime

(
1

1− 1
pa

)
for a ∈ N \ {0, 1}

□

We see that if we choose to replace a, with a complex number z whose real
part is strictly greater than 1, in the left-hand side we retrieve the definition
of the Zeta function, in its analytic form. Thus, Riemann said:

Theorem 4.
∞∑
n=1

1

nz
=

∏
p prime

(
1

1− p−z

)
for z ∈ D = {z : Re(z) > 1}
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This infinite product form of the Riemann Zeta function would still not
be possible without the Theorem 2 this is why I decided to include it in this
paper.

The main takeaway from this paper is that the most general case of Weier-
strass’ Factorization Theorem is a powerful statement, as it allows us to craft
specific functions that have zeros along a chosen sequence of numbers. Still, it
comes with some restrictions we have to fulfill. One such requirement imposes
our chosen sequence to have no limit points in the domain. Otherwise, we risk
crafting a null function, which is a trivial case instead of a meaningful one.

Since its apparition in 1876, the Weierstrass’ Factorization Theorem and
its consequence gathered a tremendous amount of applications one of which
is linked to one of the unsolved problems of the millennium, the Riemann
Hypothesis.
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