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APPLICATIONS OF THE GRADIENT DESCENT ALGORITHM
IN OPTIMIZATION

Serghie Lucas

Abstract. This paper explores the applications of the Gradient Descent
Algorithm in various optimization problems. First, we present differ-
ent variants of the Gradient Descent Algorithm. The effectiveness of
these methods is then demonstrated through several practical applications,
showcasing their utility in solving complex problems. The results highlight
the algorithm’s performance in different contexts, offering insights into its
implementation and potential areas for further research.

MSC 2000. 65K05.
Key words. Mathematical optimization, Gradient Descent, Lipschitz func-
tion, Smooth function.

1. GRADIENT DESCENT METHODS

1.1. Classical Method. In this section, we will analyze the well-known
gradient descent method and study its convergent behavior. Similar to
other optimization problems, we will aim to solve

min
x∈S

f(x).

In order to solve this problem we will need to take a closer look at the
objective function f : S → R. Functions are typically abstract and don’t
provide much information on how to be approached.

Definition 1. For any differentiable convex function f with starting

point x1, the basic gradient descent method is defined as follows

xi+1 = xi − ηi∇f(xi) i = 1, 2, ...

The symbol η represents the step size, more often referred to as learning

rate, which can vary with respect to i.

Choosing a good step size is an important part of the gradient descent
algorithm since it assures convergence. There are multiple methods for
choosing step sizes, each having advantages and disadvantages in various
scenarios. We will dive deeper into some of these methods and see how
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they ensure convergence, but it is important to note that the context of
the problem has a great effect on the choice of the appropriate method
therefore the methods presented below might not be the best choice in
every case.

1.2. Gradient Descent applied to Lipschitz Functions. This subsec-
tion explores the application of Gradient Descent to Lipschitz functions,
highlighting the importance of their properties in ensuring a stable and
efficient optimization process.

Theorem 1. Let us consider f : S → R a differentiable, Lipschitz and

convex over the domain function, with D ≥ ||x1 − x∗||2 the upper-bound

of the distance between the initial point and the optimal point. Let us

compute n steps of the projected gradient descend with x1, . . . , xn the

computed values and a step size of η = Dβ√
n
. From this, we get that

f(
1

n

n∑
i=1

xi)− f(x∗) ≤ Dβ√
n

Proof. We begin our proof by bounding the function values f(xi) −

f(x∗)

f(xi)− f(x∗) ≤ ∇f(xi)
T (xi − x∗)

We will work only with the right-hand side which by the update rule is

= 1
η
(xi − yi+1)

T (xi − x∗), we can break it into 1
2η
(||xi − x∗||2 + ||xi −

yi+1||2 − ||yi+1 − x∗||2) = 1
2η
(||xi − x∗||2 − ||yi+1 − x∗||2) + η

2
||∇f(xi)||2.

By the Lipschitz condition ≤ 1
2η
(||xi − x∗||2 − ||yi+1 − x∗||2) + ηβ2

2
≤

1
2η
(||xi − x∗||2 − ||xi+1 − x∗||2) + ηβ2

2

Now we apply the sum to both sides
n∑

i=1

f(xi)− f(x∗) ≤ 1

2η

n∑
i=1

(||xi − x∗||2 − ||xi+1 − x∗||2) + nηβ2

2

By opening the sum and simplifying the repeating terms in the right-

hand side = 1
2η
(||x1 − x∗||2 − ||xn − x∗||2) + nηβ2

2
≤ 1

2η
||x1 − x∗||2 + nηβ2

2
.
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By convexity, we can also say

f(
1

n

n∑
i=1

xi)− f(x∗) ≤ 1

n

n∑
i=1

f(xi)− f(x∗)

Therefore we have

f(
1

n

n∑
i=1

xi)− f(x∗) ≤ D2

2nη
+

nηβ2

2

And finally by setting η = D/β
√
n

f(
1

n

n∑
i=1

xi)− f(x∗) ≤ Dβ√
n

□

This shows that when applied to Lipschitz functions, Gradient Descent
will guarantee that the function value of the average of points computed
will approximate the function value of the optimal point with a maximum
error of Dβ√

n

1.3. Gradient Descent applied to Smooth Functions. This subsec-
tion explores the application of Gradient Descent to Smooth functions.
Building on the previous Lipschitz subsection, the properties of smooth
functions provide more insight and control over the convergence of the
algorithm.

Theorem 2. Let f be a β−smooth function on S ⊆ Rn, then ∀x, y ∈ S

|f(y)− f(x)−∇f(x)T (y − x)| ≤ β

2
||y − x||2

We begin by taking a deeper look at theorem 2. This theorem is very
important since it allows us to choose any value for y. By combining
this theorem with the iterative rule of the gradient descent algorithm we
can choose y = x− 1

β
∇f(x), which proves the fact that the update step

decreases the function proportional to the squared norm of the gradi-
ent, which essentially means that the update step regulates itself as the
function approaches the minimum.

f(y)− f(x) ≤ − 1

2β
||∇f(x)||2
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Another useful property that β − smooth functions bring is that we can
bound the difference between f(x)− f(x∗) by two quadratics.

Theorem 3. Let f : S → R, where S ⊆ Rn be β − smooth, ∀x ∈ S

1

2β
||∇f(x)||2 ≤ f(x)− f(x∗) ≤ β

2
||x− x∗||2

Proof. f(x) ≤ f(x∗) +∇f(x)T (x− x∗) + β
2
||x− x∗||2. By ∇f(x∗) = 0

we are left with f(x)− f(x∗) ≤ β
2
||x− x∗||2 □

Theorem 4. (Co-coercivity)

Let function f : S → R, where S ⊆ Rn to be β − smooth, ∀x, y ∈ S we

have

⟨∇f(x)−∇f(y), x− y⟩ ≥ 1

β
||∇f(x)−∇f(y)||2

Proof. We define the function fx(z) = f(z) − ⟨f(x), z⟩ and similarly

fy(z) = f(z) − ⟨f(y), z⟩. In order to minimize these functions we apply

the gradient with respect to z, and get (in the first equation): ∇fx(z) =

∇f(z) − ∂
∂zi

⟨f(x), z⟩. By opening the dot product we get the following:

∇fx(z) = ∇f(z) − ∂
∂zi

∑i=n
i=1 (f(x)i + zi). Since f(x) is constant when

derivating with respect to z we get that the minimum of f is attained

when: ∇fx(z) = ∇f(z) − ∇f(x) = 0 that is x = z. Equivalently, for

the second equation, we get that the minimum of the function fy(z) is

attained when y = z.

By taking the left-hand side we can break it down into [?]

⟨∇f(x)−∇f(y), y − x⟩ = −⟨∇f(x), x− y⟩ − ⟨∇f(y), x− y⟩

We then add f(y)and− f(x) to both terms

= (f(y)− f(x)− ⟨∇f(x), x− y⟩)− (f(y)− f(x)− ⟨∇f(y), x− y⟩)



Applications of Gradient Descent 81

By taking each term separately we can rewrite them using fx(z) and

fy(z)

(In the case of the first term):

f(y)− f(x)− ⟨∇f(x), x− y⟩ = f(y)− ⟨∇f(x), y⟩ − (f(x)− ⟨∇f(x), x⟩)

= fx(y)− fx(x)

Since fx(x) is the optimal value of f we can use the left inequality of 3 to

get

fx(y)− fx(x) ≥
1

2β
||∇fx(y)||2

Which by ||a− b|| = ||b− a|| can be rewritten as

fx(y)− fx(x) ≥
1

2β
||∇f(y)−∇f(x)||2

Similarly, we can apply the same operations on the second term and get:

fy(x)− fy(y) ≥ 1
2β
||∇f(x)−∇f(y)||2

By adding the two terms we finally get:

⟨∇f(x)−∇f(y), y − x⟩ ≥ 1

β
||∇f(x)−∇f(y)||2

□

Theorem 5. Let f : S → R, where S ⊆ Rn be a β − smooth convex

function. By applying gradient descent with step size η = 1
β
we have

that

f(xi)− f(x∗) ≤ 2β||x1 − x∗||2

i− 1

Proof. First, we need to prove that ||xs − x∗|| is decreasing with s.

||xs+1−x∗||2 = ||xs−
1

β
∇f(xs)−x∗||2 = ⟨xs−

1

β
∇f(xs)−x∗, xs−

1

β
∇f(xs)−x∗⟩

= ||xs − x∗||2 − ⟨xs − x∗,
1

β
∇f(xs)⟩ − ⟨ 1

β
∇f(xs), (xs − x∗)

1

β
∇f(xs)⟩

= ||xs − x∗||2 − 2

β
∇f(xs)

T (xs − x∗) +
1

β2
||∇f(xs)||2
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By 4 and ∇f(x∗) = 0 we have that ∇f(xs)
T (xs − x∗) ≥ 1

β
||∇f(xs)||2

≤ ||xs − x∗||2 − 1

β2
||∇f(xs)||2

And since 1
β2 ||∇f(xs)||2 > 0

||xs+1 − x∗||2 ≤ ||xs − x∗||2

We will use the above facts to finish the proof. By ?? we have

f(xi+1)− f(xi) ≤ − 1

2β
||∇f(xi)||2

By moving the f(xi) to the other side and denoting δi = f(xi) − f(x∗)

we get

δi+1 ≤ δi −
1

2β
||∇f(xi)||2

We will use the following convexity property f(x∗) ≥ f(xs)+∇f(xs)
T (x∗−

xs). By rearranging and applying the norm we get ||f(xs) − f(x∗)|| ≤

|∇f(xs)
T (xs−x∗)|. We can apply the Cauchy-Schwarz inequality on the

modulus to get ||f(xs)−f(x∗)|| ≤ ||∇f(xs)|| ||(xs−x∗)|| which is equiva-

lent to δs ≤ ||∇f(xs)|| ||(xs−x∗)||. By dividing ||(xs−x∗)|| and squaring

we get 1
||(x1−x∗)||2 δ

2
s ≤ ||∇f(xs)||2 (since ||(x1 − x∗)|| ≥ ||(xs − x∗)||)

Now we can replace this in the previous equation and get

δi+1 ≤ δi −
1

2β||(x1 − x∗)||2
δ2s

We denote w = 1
2β||(x1−x∗)||2 and get

δs ≥ wδ2s + δs+1 ⇐⇒ 1

δs+1

≥ w
δs
δs+1

+
1

δs

Since δs > δs+1

=⇒ 1

δs+1

− 1

δs
≥ w
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By applying
∑s=n−1

s=1 and using telescopic cancellation we get

1

δn
≥ 1

δn
− 1

δ1
≥ w(n− 1)

□

This shows that the gradient descent algorithm reaches a faster rate

of convergence when applied to β − smooth functions.

2. APPLICATIONS

The source code for the applications can be found here:
https://github.com/LucasSerghie/Gradient-Descent—Optimization-Analysis.

This section will explore several real-world examples and applications
of Gradient Descent. The following material presents an application fo-
cused on comparing the use of different step-size strategies for Gradient
Descent, representing visually and intuitively the content of the past sec-
tions. The aim is to explore the benefits of applying the algorithm to
functions with β−smooth properties and using the Lipschitz constant for
computing the step size. In order to demonstrate this, we will compute
three different step sizes, each with its own advantages and disadvan-
tages.

As for training sets, we will choose two distinct sets, one artificially
generated and one containing real data representing the admission rate
for various universities. Both of our training sets are linear, such that
gradient descent can be successfully applied to them.

Now that our training data is prepared, we can apply the algorithm
to it. When it comes to computing the Lipschitz constant we have to
compute the maximum variation in gradient over the distance between
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the two corresponding points. This is very hard to compute for all the
points in a function, so my proposal was to create a ”grid” of a limited
number of points for which we would compute the gradient, then com-
pute for each point in the grid the formula with every other point in the
grid, and store the maximum value, which would closely approximate the
Lipschitz constant.

This approximation can be easily understood by the graph below.

As an alternative to the Lipschitz and classical constant step sizes,
we will also compute an updated step size computed with the help of a
backtracking function.
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After computing all three step sizes we can complete the algorithm and
compare the effectiveness of each.
Not surprisingly, the results are similar in both the generated training
data and the real world data when our three different steps are applied.

In the above graph, we can notice the increased effectiveness of the
Lipschitz and updated steps compared to the constant one which does
not even converge since it is limited by the number of iterations the
algorithm is allowed to perform.

Finally, the last graph represents the rate of convergence for each sep-
arate step, which is highlighted by color. We can clearly see the benefits
of using the Lipschitz properties of the function when choosing a step size
against any regular constant step size, as well as the faster convergence of
the adjusted step size as compared to the arbitrary constant one. In con-
clusion, the results we got demonstrated an impact on the effectiveness
of the linear regression algorithm highlighting the importance of step size
in the optimization process.
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