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ON A CONVERGENCE PROBLEM FOR SERIES

Anca GRAD

Abstract. This article presents a complete solution for a difficult problem involving
series of real numbers. In order to finish its study, several theorems concerning the
convergence theory of series are employed. Students attending mathematical competi-
tions and those interesting in deepening their understanding of the subjects are primary
beneficiaries.
We start by pointing out the fact that throughout this article the set of natural
numbers, in accordance to the inductive theory associated to it, starts at 1, namely
0 is not a natural number. Therefore,

N={1,1+1,1+1+1,..}.

For more details on this approach see [1]

1. SERIES OF REAL NUMBERS

Let us recall some basic notions and results on series of real numbers. Having a
sequence of real numbers (z,,),>k, where & € NU {0}, one can generate its so-called
sequence of partial sums, by summing up all the terms of the initial sequence up
to the current index. Thus, for a random n > k € N one has

Sn =Tk + Tpy1 + ... + Ty

An ordered pair of two sequences ((2r,), (Sn))n>k is said to be series of real numbers,

and is denoted by

Z Zn (or simplier Z Zn)-

n>k
If there exists the limit of the sequence of the partial sums, it is said to be the sum
of the series and is denoted by

(oo}

E T, = lim s,.
n—oo

k=1

A series is said to be convergent or divergent, if its sequence of partial sums is con-
vergent, or divergent, respectively. One of the mostly used series in comparison, is the
so-called harmonic series,

1

ne
which is convergent for each o > 1, and divergent for each a < 1. There are several
convergence criteria concerning series of real numbers (for details see [I]) we list here
those needed to understand the problem solved in this article.
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Theorem 1: Consider Y. x, a series of real numbers. If the series is convergent,
then lim,, o x, = 0.

Notice that this theorem is mostly used in practice through contraposition, thus

Corollary 2: Consider Y x,, a series of real numbers. If lim,,_, o T, # 0 then the
series is divergent.

Theorem 3: (First comparison criterion for series with positive terms)
Consider Y x, and >y, two series with positive terms, such that for each n > k,
Ty < Y. If the series >y, is convergent then the series Y x, is convergent and, if
the series Y x, is divergent then the series Y yn is divergent.

Theorem 4: (The consequence of the second comparison criterion for
series with positive terms) Consider > x, and >y, two series with positive
terms, such that there exist the limit

lim % e (0, 00).
n—oo yn
Then the two series have the same nature.

A series of real numbers is said to be absolutely convergent if the series generated
by the absolute values of its general terms, namely > |z,|, is convergent.

Theorem 5: (the connection between absolutely convergent and conver-
gent series) Consider the serie Y x, such that it is absolutely convergent. Then it
is also convergent.

Notice that the converse statement of the theorem above does not hold, namely
there are convergent series which are not necessarily absolutely convergent.

Theorem 6: (the Abel-Dirichlet theorem on series with random terms)
Consider (a,) and (uy) two sequences of real numbers. If the sequence (a,) is de-
creasing and has the limit 0, and if the sequence (uy,) has its sequence of partial sums
bounded, that the series

> unan

18 convergent.

2. PRELIMINARY NOTIONS

2.1. Trigonometric Identities. Let us recall some basic trigonometrical identities

1
(1) sing - sinb = —2<cos(a—|—b) —cos(a—b)),
. 1/ . .
(2) sina - cosb = 3 <s1n(a +b) + sin(a — b)>,
(3) sina — sinb = 2sin <a—b> cos <a—|—b> ,
2 2
(4) 1 — cosa = 2sin” g

Consider k a random natural number, and = € R\{2¢r : t € Z}, from

sin s -sin(k) = 7% (COS ((%;W) o ((21621):v>)
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therefore

(5) sin(kz) =

(2k+1)
cos (Tx)

(2k—1)z
— cos (TT)

—2sin £

2

In order to sum up from 1 to n € N we consider

(¢0)] (

5) —cos(3)

sin(z) =

sin(2z) =

-2

n <
SlIl2

)

cos (%) — cos (%)

sin(nz) =

—2sin £

2

bl

(2n+1)x (2n—1)x
COS (%) — COS (T))

Thus

—2sin £

(2n+1)x ;
cos (%) — cos (%

2

) _ cos (nx + %) — cos (%)

Z sin(kx) =
k=1

—2sin 5 —2sin §
cos(nz) cos £ — sin(nz)sin £ — cos (%) _ cos 5 (cos(nwx) — 1) — sin(nx) sin 5
—2sin 3 —2sin 3

By applying we get

n . . .
Z sin(kz) = —2cos 5 sin? F —sin(nx)sing
= — =
P 2sin 5
3 nT xr 3 nx nr .3 X
. . . sin 22| cos £ sin 2% + cos & sin £
—2cos 5 sin® ¢ — 2sin % cos & sin § 2 < 2 2 2 2)
= — N & = N &
2 sin 5 sin 5

In conclusion

(6) Z sin(kx) =
k=1

2

. . 1
sin & sin <("J§ )”C)

in £
SlIl2

By applying a similar procedure, we cand deduce that

:nax (n+1)z
S1n 2 COS (2

(7) Z cos(kx) =
k=1

inZ
Sln2

Due to the fact that all the functions above are differentiable, we notice that

(i cos(kx)) =
k=1

ionT (n+1)z
Sin 5 COS (2>

/

sin

2
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thus
li
n <sin &E cos (W)) -sin & — (sin 2L cos (("zl)m)> sin’ £
Z ksin(kz) = — .

We will tackle the numerator first:

A = (%cos%cos ("H) ("—;rl) sin % sin ("21)“") -sin £ —
1 cos £ sin % cos ("El)z =
= 2 (cos L cos (”'H)w — sin &% sin LJ;WJ) -sin §—
z (Sin 5 sin (”H)x + cos § cos ("H)x) -sin % =
= ﬂcosm%l)rsmg—%an?cosQ
by using (2)
_ - @nt1)z : (2n+1) 1
A %[Sln 2 4L —sm(%—% — 5 sin % cos BF
= ? (sin ((n+ 1)z ) — sin(nz)) — 2 sin & cos &
= 3 [nsin ((n 4+ 1)z) — nsin(nz) — sin(nz)]
= j[nsin((n+1)z) — (n+ 1) sin(nw)]
Thus we may conclude that
n . .
3 1 _ 1 Q
8) S ksin(ka) = 2 ((nt )Z). (n+ Dsin(nz)
sin® £

2

3. PROBLEM STATEMENT

The main idea being this article is the following problem: Study with discussion
on the real parameter a > 1, the nature of the series

sinl 4+ 2sin2 4 3sin3 4 ... + nsinn
Z no )
n>1
To begin with, we use the following notations, for each n € N

sinl +2sin2+3sin3+ ... +nsinn

Ty =

n(l
Yn =501+ 2sin2+3sind + ... + nsinn
Whit the notation above, we see that the goal is to investigate the nature of the series
S
n>1

By applying basic abstract value properties and the boundaries of the sinus function
we conclude that, for a random n € N and a random a > 1

n 1 . . .
9] < — - (1]sinal + 2|sin s| + ... + n|sinn|) <

n® - n<

I n(n+1) n+l1
ne 2 - 2pa—t’

|zn| =

For each n € N, we denote
n+1

Ina—1 :

Zn 1=
Thus, we can conclude that

9) |Zn| < zn.
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By applying Theorem 4 for the seires >_ z, and the generalized harmonic series, we
conclude that

(10) DY na1_2~

Case 1: a > 3. For a > 3 we have a — 2 > 1, thus the harmonic series is convergent
for such a choice therefore, > z, is convergent. By using @D and Theorem 3, we
conclude that > |z, | is absolutely convergent, therefore, by further going to Theorem
5, we are led to the conclusion that the series Y x,, is also convergent.

Case 2: a € (1,3] In this case, by using we conclude that Y z, is divergent,
which does not deliver any conclusion on our original > x,,. We will employ Theorem
6. From @ applied for z = 1 we obtain that

nsin(n + 1) — (n+ 1) sin(n)

n = 4 sin? %
therefore
_nsin(n+1) —(n+1)sin(n) 1 nsin(n + 1) — (n + 1) sin(n)
= 4ne sin® 1 T asin?l ne

2
We study separately the nature of the series generated by
(n+1)

nCL

2

-sin(n+1) and By :

n
an, ::E-sin(nJrl): -sinn, VnéeN,

na—l

for which we may apply the Abel Dirichlet theorem. To begin with, in the hypothesis
of Theorem 6 consider
1

(11) n = oy and u,:=sin(n+1) VneN.

Due to the fact that a > 1, we conclude that

vneN, a, <apy1 and lim a, =0.
n— o0

Thus, the sequence (a,,) is both decreasing and has the limit 0. Moreover, the relation

@, we get

n n . sin (n;tl) sin (n;r2) .
E Up = E sin(n 4+ 1) = — —sin 1.
k=1 k=1 S g
Thus
sin L;l) sin (”;2) . sin —("gl) sin —(”;“2) , 1
lan| = —7 —sinl| < —7 +[sinl| < —5 +1,
s 5 sin” 5 sin® 5

therefore the sequnce (a,) is bounded. So, from Theorem 6
(12) Z a, 18 a convergent series.

A similar reasoning to the one above may be applied for the series > 3,,. To begin
with, in the hypothesis of Theorem 6 consider

1
(13) a, = nt and wu, :=sin(n+1) VneN.
ne )

Due to the fact that a > 1, we conclude that

VneN, a, <a,,, and lim a;, =0.
n—oo
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Thus, the sequence (a),) is both decreasing and has the limit 0. Moreover, the relation

@, we get

. . 1
i , L sin § sin (TLzL)
g Uy, = g sin(n) = I
k=1 =1 2
Thus
. . 1
, sin ¥ sin (";r ) 1
| = <
n 21 =21
Sin 3 Sin 5

therefore the sequnce (a),) is bounded. So, from Theorem 6

n

(14) Z Bn is a convergent series.

From ([12)) and we conclude that the sequence Y x,, may be written as a
difference of two convergent sequences, namely
1 1
Z 4 sin? % ‘on ond Z 4 sin? % B
becoming thus itself convergent.

Conlusion: The series turns out to be convergent for all a > 1.

This problem was deeply analyzed with the firs year students in Calculus 1, during
the university year 2022-2023. Their interesting in delivering a complete solution
and its use of several convergence results for series was the inspiration in writing this
article. Among the student, Gut Dan-Andrei had the most valuable input on handling
the geometrical identities.

Further studies: As a follow up of the results above, it would be interesting
to study what hapens when a < 1, and also the case when the general function is
generated by the consinus.
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