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ALGEBRAIC METHODS FOR SOLVING GEOMETRY PROBLEMS:

APPLICATIONS OF MATRIX DETERMINANTS AND QUATERNIONS

Ioana-Maria Fălădău and Virgilius-Aurelian Minut, ă

Abstract. This article explores the application of quaternions in elementary
three dimensional geometry, emphasizing their utility in geometric rotations.
We begin with a review of determinant formulas for the areas of triangles and
the volumes of parallelepipeds and tetrahedrons. Subsequently, we introduce
quaternions and provide an algorithm that showcases their effectiveness in per-
forming geometric rotations. The final section presents practical applications,
including the proof of the volume formula for a regular tetrahedron using quater-
nion rotations and determinants, as well as a similar approach for an irregular
tetrahedron. The article is framed within a didactical context, highlighting the
potential of using quaternions as a pedagogical tool in geometric problem-solving.
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1. INTRODUCTION

In the Romanian educational system, high school students are familiarized
with using algebraic methods in order to compute certain geometric charac-
teristics. As an example in two dimensional Euclidean geometry, they use
determinants to compute the area of a triangle (see, for example [1, Elemente
de calcul matriceal s, i sisteme de ecuat, ii liniare III.2.3.]).

Proposition 1 (Area of a triangle in two dimensions). Consider a Carte-
sian system of coordinates in two dimensions Oxy. If we know the coordinates
of the vertices of a triangle ABC: A(xA, yA), B(xB, yB) andC(xC , yC),

then the area of △ABC is given by

A△ABC =
1

2
· |

∣∣∣∣∣∣
xA yA 1
xB yB 1
xC yC 1

∣∣∣∣∣∣ |.
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Given that high school students have also studied three dimensional Eu-
clidean geometry (in the last year of middle school) and two dimensional vec-
tor geometry (in the first year of high school) one can easily present as an
extracurricular lesson similar formulas for three dimensional Euclidean geom-
etry. Such a lesson is listed in Section 2.

In the final year of high school, Romanian students may encounter while
studying examples of skew fields, the notion of quaternions (see, for example,
[3, pp. 148–149]). While doing so, it is pointed out to them that quater-
nions can play a big role in three dimensional geometry problem-solving, yet
no examples are given in this direction, even as an extracurricular lesson.
The motivation behind this appears to be that quaternions are most useful
in describing three dimensional rotations, yet in the Romanian high school
geometry problem ecosystem there seems to be a lack of such problems. In
order to address this issue, at least as an extracurricular lesson of geometri-
cal applications of quaternions, in Section 3 we review the main tools needed
to deal with such constructions, while in the last section (Section 4) we will
present two geometrical applications which link together both the presented
determinant-based formulas and the tools provided by quaternions discussed
in this paper.

2. APPLICATIONS OF DETERMINANTS IN THREE DIMENSIONAL GEOMETRY

In order to present our selected applications, we need to introduce a few
definitions, where we follow in our description [2, p. 23].

Consider a Cartesian system of coordinates in three dimensions Oxyz.
A location vector is a vector whose initial point is anchored at the origin
O(0, 0, 0). If the terminal point is P (xP , yP , zP ), then our location vector is
#    »

OP , whose coordinates are also (xP , yP , zP ). Moreover, given an additional

point P ′(xP ′ , yP ′ , zP ′), for a free vector
#     »

PP ′, given that
#     »

PP ′ =
#     »

OP ′− #    »

OP , we

consider the coordinates of
#     »

PP ′ to be
#     »

PP ′(xP ′ − xP , yP ′ − yP , zP ′ − zP ).

Furthermore, note that its length is given by:

| #    »

PP | =
√

(xP ′ − xP )2 + (yP ′ − yP )2 + (zP ′ − zP )2.

For vectors #»v 1(x1, y1, z1) = x1 · i⃗+ y1 · j⃗+ z1 · k⃗, #»v 2(x2, y2, z2) = x2 · i⃗+ y2 ·
j⃗ + z2 · k⃗ and #»v 3(x3, y3, z3) = x3 · i⃗ + y3 · j⃗ + z3 · k⃗, where i⃗, j⃗ and k⃗ are the
versors of the Cartesian system; we consider their dot product:

#»v 1 · #»v 2 = x1x2 + y1y2 + z1z2,

their cross product:

#»v 1 × #»v 2 =

∣∣∣∣∣∣
i⃗ j⃗ k⃗
x1 y1 z1
x2 y2 z2

∣∣∣∣∣∣ ,
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and their box product:

[ #»v 1,
#»v 2,

#»v 3] = ( #»v 1 × #»v 2) · #»v 3 =

∣∣∣∣∣∣
x1 y1 z1
x2 y2 z2
x3 y3 z3

∣∣∣∣∣∣ .
Given these notions, we can introduce a formula, similarly to Proposition

1, that gives the area of a triangle in three dimensions (see, for example, [2,
p. 62]).

Proposition 2 (Area of a triangle in three dimensions). If A(xA, yA, zA),
B(xB, yB, zB) and C(xC , yC , zC) are the vertices of △ABC,

then the area of △ABC is given by

A△ABC =
1

2
· | #    »

CA× #    »

CB| = 1

2
· |

∣∣∣∣∣∣
i⃗ j⃗ k⃗

xA − xC yA − yC zA − zC
xB − xC yB − yC zB − zC

∣∣∣∣∣∣ |.
Furthermore, we can move to formulas for volume, where we will start with

the formula for the volume of a parallelepiped.

Proposition 3 (Volume of a parallelepiped). The volume of a parallelepi-
ped spanned by vectors #»v 1(x1, y1, z1),

#»v 2(x2, y2, z2) and
#»v 3(x3, y3, z3)

is given by

V = |[ #»v 1,
#»v 2,

#»v 3]| = |

∣∣∣∣∣∣
x1 y1 z1
x2 y2 z2
x3 y3 z3

∣∣∣∣∣∣ |.
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From this formula, one can easily deduce (see, for example, [2, pp. 65–68])
the formula for the volume of a tetrahedron.

Corollary 1 (Volume of a tetrahedron). If A(xA, yA, zA), B(xB, yB, zB),
C(xC , yC , zC) and V (xV , yV , zV ) are the vertices of a tetrahedron V ABC,

then the volume of the tetrahedron V ABC is given by

VV ABC =
1

6
· |[ #    »

V A,
#    »

V B,
#    »

V C]| = 1

6
· |

∣∣∣∣∣∣
xA − xV yA − yV zA − zV
xB − xV yB − yV zB − zV
xC − xV yC − yV zC − zV

∣∣∣∣∣∣ |,
or equivalently

VV ABC =
1

6
· |

∣∣∣∣∣∣∣∣
xA yA zA 1
xB yB zB 1
xC yC zC 1
xV yV zV 1

∣∣∣∣∣∣∣∣ |.
3. THE GEOMETRY OF QUATERNIONS

We know that complex numbers can be identified with points in a two di-
mensional plane (pairs of real numbers), or, even better, they can be identified
with the location vector with the terminal point in that respective point; and
that the operations we defined between said numbers have thus clear geometric
interpretations: complex number addition corresponds to vector translation,
and complex number multiplication corresponds to vector rotation in a two
dimensional plane. From this idea, another question immediately arises: is it
possible to describe three dimensional space and its isometries with triplets of
real numbers?

This question has intrigued Irish mathematician William Rowan Hamilton
for many years. As he initially tried to extend complex numbers from having
one real part and one imaginary part to having one real part and two imaginary
parts, he was unable to answer this question positively. In fact, later on,
Frobenius even proved that this was not mathematically possible. This did
not stop Hamilton in his mission to algebraically describe three dimensional
space; it only just forced him to move from using triplets of real numbers to
quadruplets, and so in 1843, quaternions were first described.
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Today, the set of quaternions, denoted as H in honor of mathematician
William Rowan Hamilton, contains numbers with one real part and three
imaginary parts and has the form:

H = {a+ bi+ cj + dk | a, b, c, d ∈ R, i2 = j2 = k2 = ijk = −1}.

Quaternions take their name from the Latin word quaternio, which means
“fourfold”. In addition to the fact that

(1) i2 = j2 = k2 = ijk = −1,

another defining property is that quaternion multiplication is not commuta-
tive, but rather exhibits a different property called anticommutativity, i.e.
from (1) one can easily prove the following:

ij = −ji = k, ik = −ki = j, jk = −kj = i.

This property was one of the obstacles that Hamilton had to accept. The
operation of multiplication between quaternions can be summarized in the
following table.

· 1 i j k

1 1 i j k
i i −1 k −j
j j −k −1 i
k k j −i −1

Table 1 – The multiplication table for quaternions

Additionally, this table can be easily visualized in the following figure (Fig-
ure 3.1), where the product of two quaternions in the order indicated by the
arrows will result in the third quaternion with a positive sign, and in the re-
verse direction of the arrows, it will result in the same quaternion but with a
negative sign.

Fig. 3.1 – The multiplication of quaternions

3.1. Operations with quaternions. From an algebraic perspective (see for
example [4, Chapter 5]), the operations between quaternions are naturally
defined: addition is performed component-wise, while multiplication is carried
out by expanding brackets, using Table 1 and then collecting the terms.
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Therefore, if q1, q2 ∈ H, where q1 = a1 + b1i+ c1j + d1k and q2 = a2 + b2i+
c2j + d2k, then we have

• addition: q1 + q2 = (a1 + a2) + (b1 + b2)i+ (c1 + c2)j + (d1 + d2)k

•multiplication: q1 · q2 = (a1a2 − b1b2 − c1c2 − d1d2)
+i(a1b2 + b1a2) + j(a1c2 + c1a2)
+k(a1d2 + d1a2) + ij(b1c2 − c1b2)
+ik(b1d2 − d1b2) + jk(c1d2 − d1c2)

= (a1a2 − b1b2 − c1c2 − d1d2)
+i(a1b2 + b1a2 + c1d2 − d1c2)
+j(a1c2 + c1a2 + d1b2 − b1d2)
+k(a1d2 + d1a2 + b1c2 − c1b2).

Moreover, if q = a+ bi+ cj + dk ∈ H and λ ∈ R, we have

• scalar multiplication: λ(a+ bi+ cj + dk) = λa+ (λb)i+ (λc)j + (λd)k

• the conjugate of a quaternion: q = a− bi− cj − dk

• the modulus of a quaternion: |q| =
√
q · q =

√
a2 + b2 + c2 + d2

• the inverse of a nonzero quaternion: q−1 =
q

|q|2
=

a− bi− cj − dk

a2 + b2 + c2 + d2

Definition 1. A quaternion is called a unit quaternion if and only if its
modulus is equal to 1.

Remark 1. If q is a unit quaternion, then |q| = 1 and q−1 =
q

|1|2
= q.

3.2. Rotations with quaternions. We present below an algorithm to rotate
a point P (a, b, c) around a vector v = (vx, vy, vz) by a given angle θ, thus
obtaining the point

P ′ = rotθ,v P.

For an overview of the proof of this algorithm, we refer the reader to [4, 5.15].

Step 1: If the vector v is not a unit vector, we normalize it.

v ← v

|v|
.

Step 2: We calculate a so-called rotation quaternion using the formula

q = cos

(
θ

2

)
+ sin

(
θ

2

)
· (ivx + jvy + kvz).
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It is worth noting that q is a unit quaternion. Indeed

|q| = cos2
(
θ

2

)
+ sin2

(
θ

2

)
· v2x + sin2

(
θ

2

)
· v2y + sin2

(
θ

2

)
· v2z

= cos2
(
θ

2

)
+ sin2

(
θ

2

)
·
(
v2x + v2y + v2z

)
= cos2

(
θ

2

)
+ sin2

(
θ

2

)
· 1

= cos2
(
θ

2

)
+ sin2

(
θ

2

)
= 1.

As a consequence

q−1 = q = cos

(
θ

2

)
− sin

(
θ

2

)
· (ivx + jvy + kvz).

Step 3: We convert the point we want to rotate into a quaternion by adding
an additional component which will represent the real part of the quaternion.
We choose it to be 0, and the three coordinates of the point will become the
imaginary components of the quaternion. Here, the point P (a, b, c) will have
the corresponding quaternion:

p = (0, a, b, c).

This is a so-called pure quaternion (see [4, p. 114]).

Step 4: We perform the rotation via two multiplications, either one of the
following ones:

• for an active rotation (when the point is rotated relative to the coor-
dinate system):

p′ = q−1 · p · q;

• for a passive rotation (when the coordinate system is rotated relative
to the point):

p′ = q · p · q−1.

Step 5: We extract the new coordinates, obtained after the rotation, from
the quaternion p′, i.e. the quaternion p′ obtained after the rotation will contain
four coordinates, like any other quaternion, where the first will be 0 (i.e. a
pure quaternion), and the other three will be the coordinates of the point P ′

obtained from P by rotating it by an angle θ around the vector v:

p′ = (0, a′, b′, c′)⇒ P ′(a′, b′, c′).
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4. APPLICATIONS

As a first application for the described methods, we will prove the formula
for the volume of a regular tetrahedron.

Theorem 1 (Volume of a regular tetrahedron). If V ABC is a regular tetra-
hedron with edge length l, then its volume is given by the following formula:

VV ABC =
l3
√
2

12
.

Proof. We consider the Cartesian coordinate system Oxyz and place the
vertex A at the origin of the system, so A(0, 0, 0). We place the vertex B on
the Ox-axis, so B(l, 0, 0); and the point C is chosen to be in the xOy-plane.

Since AB = l and m(∡BAC) = 60°, using the representation of points with
complex numbers, we obtain the coordinates of vertex C:

C(l · cos 60°, l · sin 60°, 0),

which simplifies to

C

(
l

2
,
l
√
3

2
, 0

)
.
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To represent the apex of the tetrahedron, we perform a rotation of the point
C by an angle of arccos(13) around the edge AB. Thus, the apex is given by

V = rotarccos( 1
3
),OxC.

Applying the described algorithm for rotations using quaternions, we have:

Step 1: We choose as the unit vector (around which the rotation will be
performed) the versor of the Ox-axis, namely:

v = (1, 0, 0).

Step 2: We calculate the rotation quaternion using the formula

q = cos

(
θ

2

)
+ sin

(
θ

2

)
· (ivx + jvy + kvz),

where

θ = arccos

(
1

3

)
.

We know that cos(2x) = cos2(x) − sin2(x) = 2 · cos2(x) − 1, which gives

cos(x) = ±
√

cos(2x)+1
2 . Therefore

cos

(
θ

2

)
=

√
cos(θ) + 1

2
=

√
cos(arccos

(
1
3

)
) + 1

2
=

√
1
3 + 1

2
=

√
4
3

2
=

√
2

3
.

Thus, from the fact that cos2
(
θ
2

)
+ sin2

(
θ
2

)
= 1, we obtain that sin

(
θ
2

)
= 1√

3
.

Since v = (1, 0, 0) we obtain

q =

√
2

3
+

1√
3
· i.

Step 3: We will use quaternions to write the coordinates of the points, and
since a quaternion has four coordinates, we will add an additional coordinate,
0, at the beginning of each point to represent the real part of the quaternion.
Thus, we have the four dimensional coordinates:

A(0, 0, 0, 0), B(0, l, 0, 0) and C(0,
l

2
,
l
√
3

2
, 0).



62 I.-M. Fălădău and V.-A. Minut, ă

Step 4: We will perform an active rotation. We compute:

q−1 =
q

|q|2
=

√
2
3 −

1√
3
· i

12
=

√
2

3
− 1√

3
· i.

Furthermore, we have

v = q−1 ·c·q =

(√
2

3
− 1√

3
· i

)(
0 +

l

2
· i+ l

√
3

2
· j + 0 · k

)(√
2

3
+

1√
3
· i

)
.

Performing the quaternion multiplications, we obtain:

v = 0 +
l

2
· i+ l

√
3

6
· j − l

√
6

3
· k.

Step 5: We have obtained the coordinates of the apex V of the tetrahedron
V ABC, namely

V

(
l

2
,
l
√
3

6
,− l
√
6

3

)
.

Given Corollary 1, the volume of the tetrahedron V ABC is:

VV ABC =
1

6
· |

∣∣∣∣∣∣∣∣
xA yA zA 1
xB yB zB 1
xC yC zC 1
xV yV zV 1

∣∣∣∣∣∣∣∣ | =
1

6
· |

∣∣∣∣∣∣∣∣∣
0 0 0 1
l 0 0 1
l
2

l
√
3

2 0 1

l
2

l
√
3

6 − l
√
6

3 1

∣∣∣∣∣∣∣∣∣ |.
Expanding along the first row, we obtain:

VV ABC =
1

6
· |

∣∣∣∣∣∣∣
l 0 0
l
2

l
√
3

2 0

l
2

l
√
3

6 − l
√
6

3

∣∣∣∣∣∣∣ |.
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Expanding again along the first row, we obtain:

VV ABC =
l

6
· |

∣∣∣∣∣ l
√
3

2 0

l
√
3

6 − l
√
6

3

∣∣∣∣∣ | =
l

6
· | − l2

√
18

6
| =

l

6
· l

23
√
2

6
.

Therefore

VV ABC =
l3
√
2

12
. □

Finally, we provide an exercise which requests the volume of an irregular
tetrahedron.

Problem 1. Let the triangle ABC have side lengths: AB = 5, BC = 7
and CA = 10. By rotating point C in space around the line AB by π

3 radians,
we obtain a point C ′. Determine the volume of the tetrahedron C ′ABC.

Solution:
We consider the same coordinate system as in the previous problem: A is

the origin of the system, hence we have A(0, 0, 0). Given that AB = 5 and
because we want B to be on the Ox-axis, we have B(5, 0, 0). The point C is
chosen to be in the plane Oxy, therefore C(xC , yC , 0).

We know the lengths of all the sides of triangle ABC, therefore, we can
calculate the area of the triangle using Heron’s formula:

A△ABC =
√
p · (p− a) · (p− b) · (p− c),where p =

a+ b+ c

2
.

We have p = BC+AC+AB
2 = 7+10+5

2 = 22
2 = 11, hence

A△ABC =
√
11 · (11− 7) · (11− 10) · (11− 5) =

√
11 · 4 · 1 · 6 =

√
264.

Therefore,

A△ABC = 2
√
66.
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Let CC0⊥AB, with C0 ∈ AB, as in the following figure.

We have

A△ABC =
CC0 ·AB

2
= 2
√
66⇒ CC0 =

2 · A△ABC

AB
=

2 · 2
√
66

5
=

4
√
66

5
,

then

(2) yC =
4
√
66

5
.

In the right triangle ACC0, by the Pythagorean theorem, we have:

AC0 =
√

AC2 − CC2
0 =

√
100− 16 · 66

25
=

√
1444

25
=

38

5
,

therefore

(3) xC =
38

5
.

From (2) and (3), it follows that

C

(
38

5
,
4
√
66

5
, 0

)
.

To find the coordinates of the apex of the tetrahedron, we will perform a
rotation of the point C by an angle of π

3 radians around the edge AB. Thus

C ′ = rotπ
3
,OxC.

Applying the described rotation algorithm using quaternions, we obtain the
following.

Step 1: We choose as the unit vector (around which the rotation will be
performed) the versor of the Ox-axis, namely

v = (1, 0, 0).

Step 2: We compute the rotation quaternion using the formula:

q = cos

(
θ

2

)
+ sin

(
θ

2

)
· (ivx + jvy + kvz),

where

θ =
π

3
.
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We obtain

q =

√
3

2
+

1

2
· (i · 1 + j · 0 + k · 0) =

√
3

2
+

1

2
· i.

Step 3: We use quaternions to write the coordinates of the points, and
since a quaternion has four coordinates, we will add an additional coordinate,
0, at the beginning of each point to represent the real part of the quaternion.
Thus we obtain the following four dimensional coordinates:

A(0, 0, 0, 0), B(0, 5, 0, 0) and C

(
0,

38

5
,
4
√
66

5
, 0

)
.

Step 4: We will perform an active rotation. We calculate

q−1 =
q

|q|2
=

√
3
2 −

1
2 · i

12
=

√
3

2
− 1

2
· i.

Next, we have

v = q−1 · c · q =

(√
3

2
− 1

2
· i

)(
0 +

38

5
· i+ 4

√
66

5
· j + 0 · k

)(√
3

2
+

1

2
· i

)
.

Performing the quaternion multiplications, we obtain:

v = 0 +
38

5
· i+ 2

√
66

5
· j − 6

√
22

5
· k.

Step 5: We have obtained the coordinates of the apex C ′of the tetrahedron
C ′ABC, namely:

C ′

(
38

5
,
2
√
66

5
,−6
√
22

5

)
.

Again, given Corollary 1, the volume of the tetrahedron C ′ABC is

VC′ABC =
1

6
· |

∣∣∣∣∣∣∣∣
xA yA zA 1
xB yB zB 1
xC yC zC 1
x′C y′C z′C 1

∣∣∣∣∣∣∣∣ |

=
1

6
· |

∣∣∣∣∣∣∣∣∣
0 0 0 1
5 0 0 1
38
5

4
√
66
5 0 1

38
5

2
√
66
5 −6

√
22
5 1

∣∣∣∣∣∣∣∣∣ |.
Expanding along the first row, we obtain:

VC′ABC =
1

6
· |

∣∣∣∣∣∣∣
5 0 0
38
5

4
√
66
5 0

38
5

2
√
66
5 −6

√
22
5

∣∣∣∣∣∣∣ |.
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Expanding again along the first row, we obtain:

VC′ABC =
5

6
· |

∣∣∣∣∣ 4
√
66
5 0

2
√
66
5 −6

√
22
5

∣∣∣∣∣ |
=

5

6
· |4
√
66

5
· 6
√
22

5
|.

Therefore, we obtain

VC′ABC =
88
√
3

5
.

□
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