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CANONICAL JORDAN FORM FOR QUADRATIC MATRICES
(SECOND ORDER)

Mihaela COJOCNEAN, Mirela ALEXĂ, Mihaela HES,FELEAN şi Laura

ERCULESCU

1. PRELIMINARY NOTIONS

Let A = (aij)i,j∈1,2 ∈ M2(C). We denote by Spec(A) the set of eigen-

values of A, that is, the roots of the equation∣∣∣∣ a11 − x a12
a21 a22 − x

∣∣∣∣ = 0

The eigenvalues of the matrix are the complex numbers c for which

the system {
(a11 − c)x+ a12y = 0

a21x+ (a22 − c) y = 0

are nonzero solutions, that is, complex numbers c for which there exists

a nonzero vector v ∈ M2,1(C) such that Av = cv.

Proposition 1.1.

Let A ∈ M2(C), A ̸= O2 be a nilpotent matrix. Then there exists an

invertible matrix S ∈ M2(C) such that A = S−1

(
0 0

1 0

)
S.

Proof. Since A is a nilpotent matrix, we deduce that detA = TrA = 0.

Let A =

(
a b

c d

)
with a+ d = 0 and ad− bc = 0.

If c = 0, it follows that a = d = 0 and b ̸= 0. We consider S =(
0 1
1
b

0

)
∈ GL2(C). In this case, it is easily verified that SAS−1 =(

0 0

1 0

)
, from which we obtain the required relation.
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If c ̸= 0, we consider S =

(
1 −a

c

0 1
c

)
∈ GL2(C). Again, it is verified

that SAS−1 =

(
0 0

1 0

)
.

□

Proposition 1.2.

Let A ∈ M2(C) with Spec(A) = {λ}, A ̸= λI2, where λ ∈ C. Then

there exists S ∈ GL2(C) such that A = S−1

(
λ 0

1 λ

)
S.

Proof. Clearly, A− λI2 ̸= O2.

First, we show that A−λI2 is a nilpotent matrix. Let α be an eigenvalue

of A − λI2. It follows that there exists v ∈ M2,1(C), v ̸=
(
0
0

)
such that

(A− λI2)v = αv. Then Av = (λ+ α)v. From this, we deduce

that λ+ α ∈ Spec(A), so α = 0. Since the eigenvalues of A− λI2 are all

zero, it follows that A− λI2 is a nilpotent matrix.

□

Using Proposition 1.1, we find that there exists S ∈ GL2(C) such that

A− λI2 = S−1

(
0 0

1 0

)
S, which implies that A = S−1

(
λ 0

1 λ

)
S.

Definition 1.1.

Under the assumptions of the proposition, the matrix

(
λ 0

1 λ

)
rep-

resents the Jordan form of A.

Proposition 1.3.

Let A ∈ M2(C) with Spec(A) = {λ1, λ2}, where λ1, λ2 ∈ C are distinct.

Then there exists S ∈ GL2(C) such that A = S−1

(
λ1 0

0 λ2

)
S.

Proof. Since λi ∈ C is an eigenvalue of A for each i ∈ {1, 2}, it follows
that there exists vi ∈ M2,1(C), vi ̸=

(
0
0

)
such that Avi = λivi for each

i ∈ {1, 2}. (1)
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Let v1 =
(
x1

x2

)
and v2 =

(
y1
y2

)
, and consider T =

(
x1 y1
x2 y2

)
. We show

that T is an invertible matrix.

Assume by contradiction that detT = 0. Then the columns of T are

proportional, so there exists c ∈ C such that v2 = cv1. Therefore, Av2 =

cAv1. From this, it follows that λ2v2 = cλ1v1, so λ2cv1 = cλ1v1. Thus,

we obtain (λ1 − λ2)cv1 =
(
0
0

)
.

But λ1 ̸= λ2 and v1 ̸=
(
0
0

)
. It follows that c = 0, so v2 =

(
0
0

)
, a

contradiction.

Let S = T−1. We verify that AT = T

(
λ1 0

1 λ2

)
. Consider A =(

a b

c d

)
, and we have

AT =

(
ax1 + bx2 ay1 + by2
cx1 + dx2 cy1 + dy2

)
=

(
λ1x1 λ2y1
λ1x2 λ2y2

)
= T

(
λ1 0

0 λ2

)

(the penultimate equality follows from (1)). Thus, A = S−1

(
λ 0

1 λ

)
S.

□

Definition 1.2.

Under the assumptions of Proposition 1.3, the matrix

(
λ1 0

1 λ2

)
rep-

resents the Jordan canonical form of A.

2. JORDAN CANONICAL FORM FOR SQUARE MATRICES (OF ORDER N)

Theorem 2.1. (Schur’s unitary triangularization theorem)

Let A ∈ Mn(C) be a matrix with eigenvalues λ1, λ2, . . . , λn. Then

there exists a unitary matrix U ∈ Mn(C) such that the matrix U∗AU is

upper triangular, with λ1, λ2, . . . , λn on the main diagonal.

If A ∈ Mn(R) and all the eigenvalues of A are real, then there exists an

orthogonal matrix U ∈ Mn(R) such that the matrix U tAU has the above

property.

Theorem 2.2. (simultaneous triangularization theorem)
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Let A,B ∈ Mn(C) such that AB = BA. Then there exists a unitary

matrix U ∈ Mn(C) such that the matrices U∗AU and U∗BU are both

upper triangular.

Moreover, if F ⊂ Mn(C) is a commutative family (i.e., a family with

the property that any two of its matrices commute), then there exists a

unitary matrix U ∈ Mn(C) such that U∗AU is upper triangular, for any

A ∈ F .

Definition 2.1.

Let m ∈ N. A Jordan block of order m is any upper triangular matrix

in Mm(C), of the form:

Jm(λ) =



λ 1 0 0 . . . 0 0

0 λ 1 0 . . . 0 0

0 0 λ 1 . . . 0 0

. . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . λ 1

0 0 0 0 . . . 0 λ


.

A Jordan matrix is called any block matrix J ∈ Mn(C), of the form:

J =


Jn1(λ1) 0 . . . 0

0 Jn2(λ2) . . . 0

. . . . . . . . . . . .

0 0 . . . Jnk
(λk)


where Jni

(λi) are Jordan blocks, and n1 + n2 + . . . + nk = n. The

orders ni of the Jordan blocks, as well as the values λi, are not necessarily

distinct.

Theorem 2.3. (Jordan canonical form theorem)

For any A ∈ MnC, there exists an invertible matrix S ∈ MnC such

that

S−1AS =


Jn1(λ1) 0 . . . 0

0 Jn2(λ2) . . . 0

. . . . . . . . . . . .

0 0 . . . Jnk
(λk)

 =: JA
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The matrix JA is called the Jordan matrix (or Jordan canonical form)

of A. It is unique, up to a permutation of the diagonal blocks. The num-

bers λ1, λ2, . . . , λk are the eigenvalues of A, and they are not necessarily

distinct.

If A ∈ Mn(R) and all eigenvalues of A are real, then the similarity

matrix S can be chosen from Mn(R).

Note: LetA ∈ Mn(C) be a matrix with distinct eigenvalues λ1, λ2, . . . , λm

with algebraic multiplicities s1, s2, . . . , sm ∈ N. Then the characteristic

polynomial of A has the form:

pA(t) = (t− λ1)
s1 · . . . · (t− λm)

sm .

According to Frobenius’ theorem, the minimal polynomial of A has

the form:

mA(t) = (t− λ1)
r1 · . . . · (t− λm)

rm ,

where r1, r2, . . . , rm ∈ N such that 1 ≤ ri ≤ si for all i ∈ {1, 2, . . . ,m}.
The relationship between the Jordan matrix JA and the two polynomials

is summarized below:

• The total number k of Jordan blocks (counting the

repeated appearances of the same block) represents

the number of linearly independent eigenvectors of A;

• The number of Jordan blocks corresponding to an

eigenvalue λi represents the geometric multiplicity of

the eigenvalue λi, i.e., the dimension of the eigenspace

of eigenvectors associated with λi, x ∈ Cn | Ax = λix;

• The sum of the orders of the Jordan blocks corre-

sponding to an eigenvalue λi represents the algebraic

multiplicity si of the eigenvalue λi, i.e., the power of

the factor (t− λi) in the factorization of the charac-

teristic polynomial pA;

• The order of the largest Jordan block corresponding

to an eigenvalue λi represents the power ri of the fac-

tor (t− λi) in the factorization of the minimal poly-

nomial mA.
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An immediate, but important consequence in applications of the last

remark is:

Theorem 2.4.

If A ∈ Mn(C) and f ∈ C[X] is a polynomial with only simple roots

such that f(A) = On, then A is diagonalizable.

Applications: Problem 2.1.

Let A ∈ M2(C) such that det(A2 + A + I2) = det(A2 − A + I2) = 3.

Prove that:

A2 · (A2 + I2) = 2I2.

(National Mathematics Olympiad, county phase, 2016)

Solution. If A is of the form αI2, we get (α
2+α+1)2 = (α2−α+1)2 = 3.

Since (α2 + α+ 1)2 − (α2 − α+ 1)2 = 0, it follows that α(α2 + 1) = 0, so

α ∈ {0, i,−i}. None of these values satisfy the equations.

If A has a single eigenvalue λ and A ̸= λI2, then there exists S such

that

A = S−1

(
0 0

1 0

)
S.

From det(A2 + A+ I2) = det(A2 − A+ I2) = 3, it follows that

det

(
S−1

(
λ2 + λ+ 1 0

2λ+ 1 λ2 + λ+ 1

)
S

)
=

= det

(
S−1

(
λ2 − λ+ 1 0

2λ− 1 λ2 − λ+ 1

)
S

)
= 3,

from which it follows that (λ2 + λ+1)2 = (λ2 − λ+1)2 = 3, for which

we have seen that there are no solutions.

If A has two distinct eigenvalues λ1, λ2, then there exists S ∈ GL2(C)
such that

A = S−1

(
λ1 0

1 λ2

)
S.

From det(A2 + A+ I2) = det(A2 − A+ I2) = 3, it follows that
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det

(
S−1

(
λ2
1 + λ1 + 1 0

0 λ2
2 + λ2 + 1

)
S

)
=

= det

(
S−1

(
λ2
1 − λ1 + 1 0

0 λ2
2 − λ2 + 1

)
S

)
= 3,

and we have that

(2) (λ2
1 + λ1 + 1)(λ2

2 + λ2 + 1) = (λ2
1 − λ1 + 1)(λ2

2 − λ2 + 1) = 3

By performing the multiplications and simplifying the like terms, we

obtain

(λ1 + λ2)(λ1λ2 + 1) = 0.

From this, it follows that λ2 = −λ1 or λ1λ2 = −1.

If λ2 = −λ1, then (2) becomes λ4
1 + λ2

1 = λ4
2 + λ2

2 = 2.

If λ1λ2 = −1, it follows that λ2 = − 1
λ1
. Substituting into (2) gives

λ2
1 +

1
λ2
1
= 2.

Thus,
(
λ1 − 1

λ1

)2

= 0, therefore λ2
1 = 1 and we obtain λ4

1+λ2
1 = λ4

2+λ2
2 =

2.

Thus, λ4
1 + λ2

1 = λ4
2 + λ2

2 = 2 which leads to A2(A2 + I2) =

= S−1

(
λ2
1 0

0 λ2
2

)(
λ2
1 + 1 0

0 λ2
2 + 1

)
S = 2I2.

Problem 2.2.

Let A ∈ M2(C) be a matrix that satisfies the conditions det(A2014 −
I2) = det(A2014 + I2) and det(A2016 − I2) = det(A2016 + I2).

Prove that det(An − I2) = det(An + I2), for any non-zero natural

number n.

(National Mathematics Olympiad, national phase, 2016)

Solution. If A is of the form αI2, it immediately follows that α = 0, so

A = O2. In this case, it is easy to verify that det(An−I2) = det(An+I2),

for any non-zero natural number n.

If A has a single eigenvalue λ and A ̸= λI2, then there exists S such

that
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A = S−1

(
0 0

1 0

)
S.

From det(A2014 − I2) = det(A2014 + I2), it follows that

det

(
S−1

(
λ2014 − 1 0

2014λ2013 λ2014 − 1

)
S

)
=

det

(
S−1

(
λ2014 + 1 0

2014λ2013 λ2014 + 1

)
S

)
,

from which it follows that (λ2014− 1)2 = (λ2014+1)2. Thus, we deduce

that λ = 0.

Therefore, (λn − 1)2 = (λn + 1)2, for any non-zero natural number n.

Thus, det(An − I2) = det(An + I2), for any non-zero natural number n.

If A has two distinct eigenvalues λ1, λ2, then there exists S ∈ GL2(C)
such that

A = S−1

(
λ1 0

1 λ2

)
S.

From det(A2014 − I2) = det(A2014 + I2), it follows that

det

(
S−1

(
λ2014
1 − 1 0

0 λ2014
2 − 1

)
S

)
=

det

(
S−1

(
λ2014
1 + 1 0

0 λ2014
2 + 1

)
S

)
,

and then we have

(λ2014
1 − 1)(λ2014

2 − 1) = (λ2014
1 + 1)(λ2014

2 + 1).

We deduce that λ2014
1 + λ2014

2 = 0.

Similarly, we obtain that λ2016
1 + λ2016

2 = 0. If λ1, λ2 are non-zero, then

λ2
1 = λ2

2, from which it follows that λ1 = λ2 = 0, which contradicts

λ1 ̸= λ2.

Problem 2.3.

Let A,B ∈ M2(R) be nilpotent matrices, different from the zero ma-

trix, such that AB = BA. Prove that:

a) AB = O2;

b) There exists α ∈ R \ {0} such that A = αB.
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(D. Mihet,, L. Duican Competition, 2011/2)

Solution. a) Since the matrices A and B are nilpotent, all their eigenval-

ues are zero. Applying the simultaneous triangularization theorem (The-

orem 2.2), we deduce that there exists an orthogonal matrix U ∈ M2R
such that the matrices T1 := U tAU and T2 := U tBU are upper trian-

gular. Furthermore, the earlier observation about the eigenvalues shows

that T1 and T2 are of the form T1 =

(
0 a

0 0

)
, and T2 =

(
0 b

0 0

)
,

where a, b ∈ R \ {0} (since A and B are non-zero).

Since T1T2 = O2, it follows that AB = UT1T2U
t = O2.

b) We have A = UT1U
t and B = UT2U

t. Let α = a
b
. Then, T1 = αT2,

so A = αB.

Problem 2.4.

Let A,B ∈ Mn(C) be matrices with the property that AB = BA.

Prove that if there exists a natural number k ≥ 1 such that Bk = On,

then det(A+B) = det(A).

Solution. Since AB = BA, by the simultaneous triangularization theo-

rem (Theorem 2.2), there exists a unitary matrix U ∈ Mn(C) such that

the matrices T1 := U∗AU and T2 := U∗BU are both upper triangular.

Since A and T1 are similar, it follows that T1 has the same eigenvalues as

A (in some order). Similarly, T2 has the eigenvalues of B on its diagonal.

But since B is nilpotent, it has all its eigenvalues equal to zero, so T2 has

zeros on its diagonal. We have

A+B = UT1 + T2U
∗,

so det(A + B) = det(T1 + T2). Since the matrix T1 + T2 is upper

triangular, det(T1+T2) is the product of the diagonal elements of T1+T2,

which is exactly the product of the eigenvalues of A, i.e., det(A).

Therefore, det(A+B) = det(A).

Problem 2.5.

Let A ∈ Mn(C) and λ ∈ C be an eigenvalue of the matrix An,

and let v be a corresponding eigenvector. Prove that if the vectors

v, Av,A2v, . . . , An−1v are linearly independent, then An = λIn.

(T. Lalescu Competition, National Phase, 2013)
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Solution. Let pA(t) := det(tIn − A) = tn + an−1t
n−1 + · · · + a1t + a0

be the characteristic polynomial of A. By the Cayley-Hamilton theorem,

we have

(3) An + an−1A
n−1 + · · ·+ a1A+ a0In = On

Multiplying this relation by v on the right and using the fact that

Anv = λv, we obtain

an−1A
n−1v + · · ·+ a1Av + a0v + λv = On.

Since v,Av,A2v, . . . , An−1v are linearly independent, it follows that

an−1 = · · · = a1 = 0, and a0 = −λ. Substituting into relation (3), we

deduce that

An = λIn.
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