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A GENERALIZATION OF THE CIRCULANT MATRIX,

AND THE IRREDUCIBILITY OF THE POLYNOMIAL Xn − a

Andrei MĂRCUŞ şi Paul Răzvan ŢAPOŞ

Abstract. We study in an elementary way the irreducibility over Q of the poly-
nomial Xn − a ∈ Q[X], by using the properties of an n× n matrix with rational
entries associated to a polynomial of degree less that n.
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1. INTRODUCTION

One of the often encountered exercises in high school exams is the following:

Prove that if a, b, c are rational numbers such that a+ b 3
√

2 + c 3
√

4 = 0,
then a = b = c = 0.

A usual elementary argument leads to the equality

a3 + 2b3 + 4c3 + 6abc = 0.

Note that the left hand side is just the determinant of the matrix a b c
2c a b
2b 2c a

 ,

which we denote here by C2(a, b, c), and we regard it as a modification of the
cyclic matrix C(a, b, c).

In this paper, to a polynomial f of degree < n and a rational number a we
associate an n × n matrix Ca(f), and we investigate the connection between
detCa(f) and the irreducibility of the polynomial Xn − a ∈ Q[X].

Readers familiar with the theory of field extensions (see [4, Chapters 5, 6])
may recognize that we are talking about the field norm NQ( n√a)/Q(f( n

√
a)) (see

[4, Section 6.5]). But our approach intends to be as elementary as possible,
being inspired by Toma Albu’s papers [1, 2, 3].We obtain the properties of the
matrix Ca(f) by using the properties of the cyclic matrix C(f).

The paper is organized as follows. In Section 2 we recall some basic facts
about simple extensions of the field Q of rational numbers, in the form we
need them. For any other unexplained notions we refer to [5]. In Section 3 we
introduce the matrix Ca(f), we calculate its characteristic polynomial, and we
obtain a matrix representation over Q of the field Q( n

√
a). Finally, in Section

4 we discuss the irreducibility over Q of the polynomial Xn − a, in terms of
the determinant of Ca(f).
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2. PRELIMINARIES ON FIELD EXTENSIONS

Definition 1. A polynomial is called irreducible over the fieldK if it cannot
be expressed as a product of lower degree polynomials with coefficients in K.

Definition 2. Let K be a subfield of L. The dimension of the vector space
L over K is called the degree of the field extension K ≤ L, and it is denoted
by [L : K].

Let n ≥ 1, let f = a0 + a1X + a2X
2 + . . . + an−1X

n−1 + Xn ∈ Q[X], and
let α ∈ C a root of f. Denote by

Q(α) = {b0 + b1α+ b2α
2 + . . .+ bn−1α

n−1 | bi ∈ Q, i = 0, . . . , n− 1}
the Q-vector space generated by the set {1, α, α2, . . . , αn−1}.

The following result is well-known, but we include a complete proof, for
convenience.

Proposition 1. The following statements are equivalent:

(i) f is irreducible over Q;
(ii) g ∈ Q[X], g(α) = 0 =⇒ f | g;

(iii) the quotient ring Q[X]/(f) is a field;
(iv) the quotient ring Q[X]/(f) is an integral domain;
(v) 1, α, α2, . . . , αn−1 are linearly independent over Q.
(vi) α is not a root of a non-zero polynomial of degree less than n.

In this case

a) Q(α) is a subfield of C;
b) Q[X]/(f) ' Q(α).

Proof. (i) =⇒ (ii) Suppose by contradiction that f - g. Since f is irre-
ducible, we have that the greatest common divisor of f and g is 1. There-
fore, there exist u, v ∈ Q[X] such that fu + gv = 1. Hence 1 = f(α)u(α) +
g(α)v(α) = 0 · u(α) + 0 · v(α) = 0, contradiction.

(ii) =⇒ (i) Suppose by contradiction that f is reducible over Q. Then there
exist f1, f2 ∈ Q[X], such that f1, f2 6= 0, deg(f1) <deg(f), deg(f2) <deg(f)
and f = f1f2. Thus, f(α) = f1(α)f2(α) = 0, which means that f1(α) = 0 or
f2(α) = 0. Assume, without loss of generality, that f1(α) = 0. Then f | f1,
which means that deg(f) ≤ deg(f1), contradiction.

(i) =⇒ (iii) For any g ∈ Q[X], we use the notation ĝ = g + (f), hence
ĝ ∈ Q[X]/(f). Let ĝ ∈ Q[X]/(f), ĝ 6= 0̂. Then g ∈ Q[X] is a polynomial
which is not divisible by f. Since f is irreducible and f - g, we have that the
greatest common divisor of f and g is 1. Then there exist u, v ∈ Q[X] such

that fu + gv = 1. Since fu ∈ (f), we have f̂u = 0̂ and ĝ · v̂ = ĝv = 1̂, which
shows that ĝ is invertible, thus Q[X]/(f) is a field.

(iii) =⇒ (i) Assume that f is not irreducible. If f = f1f2, where f1 and f2
are non-constant polynomials, then deg(f1) < deg(f) and deg(f2) < deg(f),

so f1 and f2 are not multiples of f , and therefore f̂1 6= 0̂ and f̂2 6= 0̂. However,
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f̂1f̂2 = f̂1f2 = f̂ = 0̂. Therefore, Q[X]/(f) has a zero divisor hence is not a
field.

(iii) =⇒ (iv) is obvious.

(iv) =⇒ (iii) Q[X]/(f) is a Q-algebra with basis {1̂, X̂, X̂2, . . . , X̂n−1}. Let
a ∈ Q[X]/(f), a 6= 0. We define the function

F : Q[X]/(f)→ Q[X]/(f), F (x) = ax.

Let x, y ∈ Q[X]/(f) such that F (x) = F (y). Therefore, ax = ay and
a(x − y) = 0. But, we are in an integral domain and a 6= 0, hence x − y = 0.
Thus F is injective. Moreover, dim(Q[X]/(f))< ∞, so F is a bijection. We
conclude that there exists b ∈ Q[X]/(f) such that F (b) = 1, so b is the inverse
of a. It follows that Q[X]/(f) is a field.

(ii) =⇒ (v) Let b0, b1, . . . , bn−1 ∈ Q such that

b0 + b1α+ b2α
2 + . . .+ bn−1α

n−1 = 0.

We define the polynomial

g = b0 + b1X + b2X
2 + . . .+ bn−1X

n−1 ∈ Q[X].

Therefore, g(α) = 0 and, using ii), we have that f | g.However, deg (g)<deg(f)
and this implies that g = 0, hence b0 = . . . = bn−1 = 0 and 1, α, α2, . . . , αn−1

are linearly independent over Q.
(v) =⇒ (i) Suppose that f is not irreducible. Then there exists f1, f2 ∈ Q[X]

such that deg(f1) ≤ n − 1, deg(f2) ≤ n − 1, f1 is irreducible, f1(α) = 0 and
f = f1f2. Let k be the degree of f1, where k ≤ n− 1. Therefore we may write

f1 = bkX
k + bk−1X

k−1 + . . .+ b1X + b0,

where bk 6= 0. Since f1(α) = 0, we conclude that 1, α, . . . , αn−1, αn are linearly
dependent over Q.

(v) ⇐⇒ (vi) is obvious.
a) We have that Q(α) ⊂ C and 0, 1 ∈ Q(α). Let

u = b0 + b1α+ b2α
2 + . . .+ bn−1α

n−1 ∈ Q(α),

v = c0 + c1α+ c2α
2 + . . .+ cn−1α

n−1 ∈ Q(α).

Clearly, u− v ∈ Q(α). Let

g = b0 + b1X + b2X
2 + . . .+ bn−1X

n−1 ∈ Q[X],

h = c0 + c1X + c2X
2 + . . .+ cn−1X

n−1 ∈ Q[X].

Hence, uv = g(α)h(α) = (gh)(α). But there exists q, r ∈ Q[X], deg(r)<deg(f)
such that gh = fq + r. Thus,

uv = gh(α) = fq(α) + r(α) = r(α) ∈ Q(α),

because deg(r)≤ n− 1.
Now, if u 6= 0, then g(α) 6= 0. But f is irreducible, so the greatest common

divisor of f and g is 1 and, therefore, there exist z, w ∈ Q[X] such that
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fz + gw = 1. Thus, f(α)z(α) + g(α)w(α) = 1 and u · w(α) = 1, which means
that u is invertible in Q(α), hence Q(α) is a field.

b) Let ϕ : Q[X] → Q(α), ϕ(g) = g(α) for all g ∈ Q[X]. Then Im(ϕ) =
{g(α) | g ∈ Q[X]} = Q(α), and Ker(ϕ) = {g ∈ Q[X] | g(α) = 0} = (f). By
the first isomorphism theorem we have that Q[X]/(f) ' Q(α). �

Definition 3. The polynomial f satisfying one of the equivalent statements
of Proposition 1 is unique and is called the minimal polynomial of α.

3. A GENERALIZATION OF THE CIRCULANT MATRIX

Let n ≥ 1. We fix the polynomial

f = a0 + a1X + a2X
2 + . . .+ an−1X

n−1 ∈ Q[X].

We also fix the element a ∈ Q∗, and let α ∈ C such that αn = a..
By using the element a and the coefficients of f , we define the matrix

Ca(f) = Ca(a0, a1, . . . , an−1) :=



a0 a1 a2 . . . an−2 an−1
aan−1 a0 a1 . . . an−3 an−2
aan−2 aan−1 a0 . . . an−4 an−3

...
...

...
. . .

...
...

aa2 aa3 aa4 . . . a0 a1
aa1 aa2 aa3 . . . aan−1 a0


belonging to Mn(Q). In this section we study the properties of Ca(f).

Observe that in the particular case a = 1, we obtain the circulant matrix

C(f) = C(a0, a1, . . . , an−1)

of elements a0, a1, . . . , an−1. The following result is well-known (and note that
it is valid for any complex coefficients). Denote by

ω = cos
2π

n
+ i sin

2π

n

a primitive n-th root of unity.

Lemma 1. The determinant of the circulant matrix is given by

detC(a0, a1, . . . , an−1) =
n−1∏
j=0

f(ωj).

The next result shows that the calculation of detCa(f) reduces to the de-
terminant of a circulant matrix.

Lemma 2. We have

detC(a0, a1α, . . . , an−1α
n−1) = detCa(a0, a1, . . . , an−1).
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Proof. By using elementary row and column trasformations, we have that

detC(a0, a1α, . . . , an−1α
n−1)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1α a2α
2 . . . an−1α

n−1

an−1α
n−1 a0 a1α . . . an−2α

n−2

an−2α
n−2 an−1α

n−1 a0 . . . an−3α
n−3

...
...

...
. . .

...
a2α

2 a3α
3 a4α

4 . . . a1α
a1α a2α

2 a3α
3 . . . a0

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

1

α · · ·αn−1

∣∣∣∣∣∣∣∣∣∣∣

a0 a1α a2α
2 . . . an−1α

n−1

αan−1α
n−1 αa0 αa1α . . . αan−2α

n−2

α2an−2α
n−2 α2an−1α

n−1 α2a0 . . . α2an−3α
n−3

...
...

...
. . .

...
αn−1a1α αn−1a2α

2 αn−1a3α
3 . . . αn−1a0

∣∣∣∣∣∣∣∣∣∣∣

=
1

α · · ·αn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1α a2α
2 . . . an−2α

n−2 an−1α
n−1

an−1a a0α a1α
2 . . . an−3α

n−2 an−2α
n−1

an−2a aan−1α a0α
2 . . . an−4α

n−2 an−3α
n−1

...
...

...
. . .

...
...

a2a aa3α aa4α
2 . . . a0α

n−2 a1α
n−1

a1a aa2α aa3α
2 . . . aan−1α

n−2 a0α
n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

=
α · α2 · . . . · αn−1

α · α2 · . . . · αn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 a2 . . . an−2 an−1
aan−1 a0 a1 . . . an−3 an−2
aan−2 aan−1 a0 . . . an−4 an−3

...
...

...
. . .

...
...

aa2 aa3 aa4 . . . a0 a1
aa1 aa2 aa3 . . . aan−1 a0

∣∣∣∣∣∣∣∣∣∣∣∣∣
= detCa(a0, a1, . . . , an−1),

so the statement is proved. �

Remark 1. By the above lemma we get that detC(a0, a1α, . . . , an−1α
n−1) ∈

Q, even if α does not necessarily belong to Q.

Corollary 1. We have that

detC(a0, a1α, . . . , an−1α
n−1) =

n−1∏
j=0

g(ωj),

where

g(X) = f(αX) = a0 + a1αX + a2α
2X2 + . . .+ an−1α

n−1Xn−1 ∈ C[X].

Next we want to discuss some other properties of the matrix Ca(f).
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Proposition 2. 1) Ca(a0, a1, . . . , an−1) and C(a0, αa1, . . . , α
n−1an−1) have

the same characteristic polynomial.
2) The characteristic polynomial of Ca(f) is given by

PCa(f)(X) =

n−1∏
j=0

(X − f(αωj)).

Proof. We have that

PCa(X) = det(XIn − Ca(a0, a1, . . . , an−1))

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

X − a0 −a1 −a2 . . . −an−2 −an−1
−aan−1 X − a0 −a1 . . . −an−3 −an−2
−aan−2 −aan−1 X − a0 . . . −an−4 −an−3

...
...

...
. . .

...
...

−aa2 −aa3 −aa4 . . . X − a0 −a1
−aa1 −aa2 −aa3 . . . −aan−1 X − a0

∣∣∣∣∣∣∣∣∣∣∣∣∣
= detCa(X − a0,−a1,−a2, . . . ,−an−1)
= detC(X − a0,−a1α,−a2α2, . . . ,−an−1αn−1)

=

∣∣∣∣∣∣∣∣∣∣∣

X − a0 −a1α −a2α2 . . . −an−1αn−1
−an−1αn−1 X − a0 −a1α . . . −an−2αn−2
−an−2αn−2 −an−1αn−1 X − a0 . . . −an−3αn−3

...
...

...
. . .

...
−a1α −a2α2 −a3α3 . . . X − a0

∣∣∣∣∣∣∣∣∣∣∣
= PC(a0,a1α,...,αn−1an−1)(X).

2) We have that

PCa(f)(X) = PC(a0,a1α,...,αn−1an−1)(X)

= det(XIn − C(a0, a1α, . . . , α
n−1an−1))

= detC(X − a0,−a1α,−a2α2, . . . ,−an−1αn−1).

By Lemma 1, we have that

detC(X − a0,−a1α,−a2α2, . . . ,−an−1αn−1) =
n−1∏
j=0

g(ωj),

where g(Y ) = X − a0 − a1αY − a2α2Y 2 − . . .− an−1αn−1Y n−1. Therefore,

g(ωj) = X − f(αωj),

and the statement follows. �
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We now consider the matrix Ma = (mij) ∈ Mn(Q), where mi,i+1 = 1 for
all i = 1, . . . , n− 1, mn,1 = a, and mij = 0 otherwise. This means that

Ma :=



0 1 0 0 . . . 0 0
0 0 1 0 . . . 0 0
0 0 0 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 0 1
a 0 0 0 . . . 0 0



is just the companion matrix of the polynomial Xn − a.

Theorem 1. The following statements hold:
1) Ca(f) = f(Ma).
2) Mn

a = aIn, and Xn − a is the minimal polynomial of Ma.

Proof. 1) We compute the powers of Ma. We find that

M2
a :=



0 0 1 0 . . . 0 0
0 0 0 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 0 1
a 0 0 0 . . . 0 0
0 a 0 0 . . . 0 0


,

and then

M3
a :=



0 0 0 1 . . . 0 0
0 0 0 0 . . . 0 0
...

...
...

...
. . .

...
...

a 0 0 0 . . . 0 0
0 a 0 0 . . . 0 0
0 0 a 0 . . . 0 0


.

Similarly, for all k ∈ {1, . . . , n−1}, we have that Mk
a = (mij), where mi,i+k = 1

for all i = 1, . . . , n−k, mn−k+i,i = a for all i = 1, . . . , k, and mi,j = 0 otherwise.
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Now,

Ca(f) =



a0 a1 a2 . . . an−2 an−1
aan−1 a0 a1 . . . an−3 an−2
aan−2 aan−1 a0 . . . an−4 an−3

...
...

...
. . .

...
...

aa2 aa3 aa4 . . . a0 a1
aa1 aa2 aa3 . . . aan−1 a0



=



a0 0 0 0 . . . 0 0
0 a0 0 0 . . . 0 0
0 0 a0 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . a0 0
a 0 0 0 . . . 0 a0


+



0 a1 0 0 . . . 0 0
0 0 a1 0 . . . 0 0
0 0 0 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 0 a1
aa1 0 0 0 . . . 0 0



+



0 0 a2 0 . . . 0 0
0 0 0 a2 . . . 0 0
0 0 0 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 0 a2
aa2 0 0 0 . . . 0 0
0 aa2 0 0 . . . 0 0



+ . . .+



0 0 0 0 . . . 0 an−1
aan−1 0 0 0 . . . 0 0

0 aan−1 0 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 0 0
0 0 0 0 . . . 0 0
0 0 0 0 . . . aan−1 0


= a0In + a1Ma + a2M

2
a + . . .+ an−1M

n−1
a = f(Ma).

2) We similarly compute that

Mn
a = Mn−1

a ·Ma =



a 0 0 0 . . . 0 0
0 a 0 0 . . . 0 0
0 0 a 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 0 0
0 0 0 0 . . . a 0
0 0 0 0 . . . 0 a


= aIn.

These calculations show that Xn − a is the minimal polynomial of Ma. �



A generalization of the circulant matrix 53

Proposition 3. Let n ∈ N∗ and a ∈ Q. Let Qn[X] denote the Q-vector
space comprising the polynomials with degree smaller than n and f, g ∈ Qn[X].
Then:

a) Ca(f) + Ca(g) = Ca(f + g);
b) Ca(f) · Ca(g) = Ca(fg mod (Xn − a)).
More precisely, the correspondence f 7→ Ca(f) induces an injective homo-

morphism of Q-algebras

Q[X]/(Xn − a)→Mn(Q).

Proof. Let
Φ : Qn[X]→Mn(Q), Φ(f) = Ca(f).

Then Φ is a Q-linear map. Moreover, using Theorem 1, we have that

Ca(f) = f(Ma) =⇒ Φ(fg) = (fg)(Ma) = f(Ma)g(Ma) = Φ(f)Φ(g).

Therefore, Φ is an algebra homomorphism.
Due to the fact that Xn − a is the minimal polynomial of Ma, we must

have that Ker Φ = (Xn − a). Moreover, Q[X]/(Xn − a) can be identified
with Qn[X], regarded as Q-vector spaces. We conclude that Φ is an injective
homomorphism, hence statements a) and b) hold. �

4. THE IRREDUCIBILITY OF THE POLYNOMIAL Xn − a

We keep the notations of the preceding section. Next, we want to discuss
the irreducibility of the polynomial Xn− a over Q, with the aid of the matrix
Ca(f). It turns out that we need to work in the subfield Q(ω) of C, generated
by Q and the primitive n-th root of unity ω. Recall that [Q(ω) : Q] = ϕ(n),
where ϕ is Euler’s totient function.

Theorem 2. Assume that Xn−a is irreducible over Q if and only if Xn−a
is irreducible over Q(ω). The following statements are equivalent:

(1) Xn − a is irreducible over Q.
(2) For all a0, a1, . . . , an−1 ∈ Q, detCa(a0, a1, . . . , an−1) = 0 =⇒ ai = 0

for all i = 0, . . . , n− 1.

Proof. “(1) ⇒ (2) Assume that Xn − a is irreducible over Q. Then, by
assumption, Xn − a is irreducible over Q(ω). Let α ∈ C be a root of Xn − a.
By using Lemma 1 and Lemma 2, we have that

0 = det Ca(a0, a1, . . . , an−1)

= det C(a0, a1α, . . . , an−1α
n−1)

=
n−1∏
j=0

(a0 + a1αω
j + a2α

2ω2j + . . .+ an−1α
n−1ω(n−1)j).

Therefore, there exists j ∈ {0, 1, . . . , n− 1} such that

a0 + a1αω
j + a2α

2ω2j + . . .+ an−1α
n−1ω(n−1)·j = 0.
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Since 1, α, . . . , αn−1 are linearly independent over Q(ω), we conclude that

a0 = a1 = . . . = an−1 = 0.

“(2) ⇒ (1)” We argue by contradiction. Assume that Xn − a is reducible
over Q. Then 1, α, . . . , αn−1 are linearly dependent over Q, so there exist
a0, a1, . . . , an−1 ∈ Q, not all zero, such that

n−1∑
k=0

akα
k = 0.

By Corollary 1, we find that det Ca(a0, a1, . . . , an−1) = 0, but we also know
that a0, a1, . . . , an−1 are not all zero, contradiction. �

The assumption of the theorem is satisfied when n is a prime number.

Proposition 4. Let p be a prime number, a ∈ Q∗ and α ∈ C such that
αp = a. Then

Xp − a is irreducible over Q ⇐⇒ Xp − a is irreducible over Q(ω).

Proof. “⇒” We argue by contradiction. Assume that Xp − a is reducible
over Q(ω). Hence, there exist non-constant polynomials g, h ∈ Q(ω)[X] such
that deg (f), deg (g) < p and

Xp − a = g · h.
Let 1 ≤ r ≤ p− 1 be the degree of g. Therefore,

Xp − a =

p−1∏
k=0

(X − ωkα) = gh = (Xr + . . .+ ωlαr)(Xp−r + . . .+ ωsαp−r),

for some l, s ∈ N. Since g, h ∈ Q(ω)[X], we have that αr, αp−r ∈ Q(ω). Let d
be the greatest common divisor of r and p− r. Thus, there are u, v ∈ Z such
that d = r · u+ (p− r) · v. Moreover,

αd = αr·u+(p−r)·v = (αr)u · (αp−r)v.
Since αr, αp−r ∈ Q(ω), we find that αd ∈ Q(ω). Also, d | r and d | p− r, hence
d | r + p − r = p. Due to the fact that r < p, d | r and d | p, we must have
d = 1. Therefore, αd = α ∈ Q(ω) and, because Q(ω) is a field, we conclude
that

Q(α) ≤ Q(ω).

Thus,

[Q(ω) : Q] = [Q(ω) : Q(α)] · [Q(α) : Q].

But we know that

[Q(ω) : Q] = ϕ(p) = p− 1 and [Q(α) : Q] = p,

hence p | p− 1, contradiction.
The converse is obvious, since Q ≤ Q(ω). �
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Exemple 1. Let n = 6 and f = X6 + 3. Then f is irreducible over Q, but
f is reducible over Q(ω) = Q(i

√
3), because

f = X6 + 3 = (X3 + i
√

3)(X3 − i
√

3) = (X3 + 2ω − 1)(X3 − 2ω + 1).

We will discuss the irreducibility over Q(ω) of the polynomial Xn − a in a
subsequent paper.
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