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PHASE PLANE ANALYSIS OF THE MOTION IN THE

SCHWARZSCHILD FIELD

Ana-Maria Retegan

Abstract. The Schwarzschild orbital dynamics are summarised in the setting of
phase plane analysis, thus lessening the algebraic calculations whilst emphasising
the physics. The standard results are presented. A dimensionless parameter
which involves the angular momentum is defined and varied. Based on these
variations, the exact phase plane is analysed. Also, there is an emphasis put on
the separatrix structure of this phase plane.
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1. INTRODUCTION

In Modern Physics, the problem of dynamics in Schwarzschild field is of fun-
damental importance since the Schwarzschild solution, introduced in 1916, is
considered the exact one to the Einstein field equation due to its direct testa-
bility. The solution is believed to be flawless and has successfully passed the
test which put General Relativity to the rank of the true relativistic theory of
gravitational field. In this paper, we take a look at the general relativistic or-
bits in Schwarzschild field and analyse them through a phase plane technique.
This standard approach of nonlinear analysis applied to Schwarzschild orbital
dynamics has also been discussed in Dean’s work (see [2]) and also in Ander-
son and Walsh’s work (see [5]). The first section of this paper presents how
the general relativistic equations of motions are obtained, while the second
one develops the phase plane analysis. Section three presents an exact gen-
eral relativistic phase plane and a discussion about the Schwarzschild orbital
dynamics takes place.

2. GENERAL RELATIVISTIC ORBITS

For a rigorous introduction to General Relativity and an exhibition of how
the Schwarzshild solution is derived, the reader is encouraged to see [1]. Con-
sider a large object with mass M and another object with rest mass m0 which
orbits around it. The general relativistic equation of motion arises from the
Schwarzschild line element:

(1) ds2 = c2Λdt2 − Λ−1dr2 − r2dΩ2

where Λ = 1− rs
r , dΩ2 = dθ2 + sin2 θdϕ2 and rs is the Schwarzschild radius:

rs =
2MG

c2
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The Lagrangian appears as a constant of motion:

(2) L =
1

2
(
ds

dτ
)2 =

1

2
m0c

2

where τ represents the proper time.
In the particular case when the orbit is bound to the equatorial plane (θ = π

2 ),
then:

(3) L =
1

2
m0c

2Λt2τ −
1

2
m0Λ

−1r2τ −
1

2
m0r

2ϕ2
τ

where tτ = dt
dτ , etc.

The Euler-Lagrange equations generate two constraints of motion:

(4)

{
∂L
∂t + d

dτ ( ∂L∂tτ ) = 0
∂L
∂t = 0

=⇒ ∂L

∂tτ
= E = m0c

2Λtτ

(5)

{
∂L
∂ϕ + d

dτ ( ∂L∂ϕτ ) = 0
∂L
∂ϕ = 0

=⇒ ∂L

∂ϕτ
= J = m0r

2ϕτ

where E represents the energy that is necessary for an observer situated at in-
finity to put m0 in orbit around M and J is the system’s angular momentum.
In order do eliminate tτ and ϕτ from (3), we use (4) and (5) and after rear-
ranging the terms, we obtain:

L =
1

2
(m0c

2Λ
E2

m2
0c

4Λ2
−m0Λ

−1r2τ −m0r
2 J2

m2
0r

4
)

Since L = 1
2m0c

2, we obtain:

(6) (
rτ
c

)2 = (
dr

ds
)2 = Ê2 − (1 +

J2

m2
0c

2r2
)Λ

where Ê = E
m0c2

is the total energy per unit rest energy.

Since r = r(ϕ), then rτ = dr
dϕϕτ which allows the expansion of (6) in terms of

J . In order to reduce the degree of equation (6) in r, we make the variable
change u = rs

r and, after simplifications, it becomes:

(7) (
du

dϕ
)2 = 2σÊ2 − (2σ + u2)Λ

where

(8) σ =
1

2
(
m0crs
J

)2 = 2(
GMm0

cJ
)2

By differentiating equation (7) with respect to ϕ:

(9)
d2u

dϕ2
= σ +

3

2
u2 − u
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Equation (9) is a nonlinear, second-order, inhomogenous differential equation.
In order to perform its phase plane analysis, by defining the new variables
x = u and y = du

dϕ , we convert it to a system of two first order equations:

(10)

{
ẋ = f1(x, y) = y

ẏ = f2(x, y) = 3
2x

2 − x+ σ

where ẋ = dx
dϕ and ẏ = dy

dϕ .

The system (10) will be analysed from the viewpoint of the phase plane anal-
ysis technique. For an introduction on this procedure, see [3].

3. PHASE PLANE ANALYSIS

We solve ẋ = ẏ = 0 simultaneously for x and y. The solution gives us the
equilibrium points of (10):

(11)
−→
x∗ = (

1 +
√

1− 6σ

3
, 0),

−→
y∗ = (

1−
√

1− 6σ

3
, 0)

Alternatively, if y is expressed in terms of x using (7):

(12) ẋ(= y) = ±[2σÊ2 − (2σ + x2)(1− x)]
1
2

We solve ẋ = ẏ = 0 simultaneously, but this time for Ê2 and x, we obtain the
matching energies at each equilibrium point:

(13)


Ê2

1 − 1 = 2σ[1−4σ−(1−6σ)
1
2 ]

[(1−6σ)
1
2−1]3

Ê2
2 − 1 = 2σ[−1+4σ−(1−6σ)

1
2 ]

[(1−6σ)
1
2−1]3

In order to find the nature of the equilibrium points (11), a linear stability
analysis is performed. This involves performing a series expansion of equation
(10), in an arbitrary equilibrium point, in the small parameters: δx = x− x∗
and δy = y − y∗. Since the second order terms can be overlooked, we obtain
a first order linear system, which yields the matrix form:

(14) δẋ ≈ A |x=x∗ δx

where δẋ =

(
δẋ
δẏ

)
, A =

(
∂xf1 ∂yf1
∂xf2 ∂yf2

)
and δx =

(
δx
δy

)
. Then A =(

0 1
3x− 1 0

)
.

The solution of equation (14) is an exponential. By classifying the eigenvalues
of A, we can analyse its stability at each equilibrium point. We solve the
characteristic polynomial

λ2 − trλ+ ∆ = 0

where tr is the trace of A and ∆ is the determinant of A. The eigenvalues are
λ1,2 = 1

2(tr ±
√
tr2 − 4∆).
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Fig. 3.1 – Eigenvalue classification

When A is evaluated in the equilibrium points (11), the following classifi-
cation arises:

(15) A |−→x ∗=

(
0 1√

1− 6σ 0

)
=⇒ tr = 0; ∆ = −

√
1− 6σ

which makes −→x ∗ a saddle point.

(16) A |−→y ∗=

(
0 1

−
√

1− 6σ 0

)
=⇒ tr = 0; ∆ =

√
1− 6σ

which makes −→y ∗ a centre.

Fig. 3.2 – The phase portrait

The above figure shows the phase plane trajectories of the exponential so-
lution of equation (14) about each equilibrium point (11).
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Remark 1. Newtonian theory does not foresee the saddle node equilibrium
point which is present in the phase portrait. This point appears because of
an unstable orbital radius which originates from the r−3 term of the effective
potential. To learn more on this subject see [4].
The effective potential is derived from relation (7):

(17) V̂ 2
eff = (1 +

x2

2σ
)(1− x)

It is due to this, that there exist orbital effects which are not part of Newtonian
theory.

4. AN EXACT PHASE PLANE

The previous section only offers local information about the general rela-
tivistic orbits and neglects the hyperbolic, the parabolic or the orbits in the
vicinity of the event horizon. However, this shortcoming can be overcome
if an exact phase plane is constructed. This will offer global features of the
Schwarzschild orbital dynamics. To see more on this, consult [2].

Consider the level curves obtained by taking the ratio dy
dx from (10):

(18)
dy

dx
=

(32x
2 − x+ σ)

y
.

By integrating, a conserved quantity is obtained:

y2 = β + x3 − x2 + 2σx

where β is a constant that can be obtained by comparison with (7):

β = 2σ(Ê2 − 1)

Thus, equation (18) is equivalent to:

(19) Ê2 − 1 =
(y2 + x2 − x3)

2σ
− x

Consider the effective potential V 2
eff given in (17) and let σ = 1

9 . For various

values of the potential energy per unit rest energy, Ê, the following phase
plane portrait arises:
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Fig. 4.3 – An exact phase plane for σ = 1
9

The level curves, marked with blue, represent exact solutions for the system
(10) for various initial conditions and energies.
For σ the random value 1

9 has been assigned. It is useful then to see the exact
interval in which σ can move and how values in this interval can affect quali-
tatively the solutions.
Two critical values for σ occur. One when considering the two equilibrium
points given in (11). In this case, σ ≤ 1

6 , because, otherwise, no real equilib-

rium points would exist. The second one appears when solving Ê2 − 1 = 0.
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Here, σ = 1
8 .

Based on the following values for σ:

(20) 0 < σ <
1

8
, σ =

1

8
,

1

8
< σ <

1

6
, σ =

1

6
, σ >

1

6

qualitative distinct orbits exist.
By placing an upper bound on σ we can deduce the existence of stable or
unstable orbits for either equilibrium points in the phase plane. Thus, when
σ > 1

6 , as seen from (11), no real equilibria exists for any given energy or
angular momentum because the angular momentum isn’t sufficient for m0 to
preserve an orbit and it just falls into M . Accordingly, V̂ 2

eff has no extrema.

Thus 1
6 represents an upper bound for σ.

Remark 2. Solving the equation ∂xV̂
2
eff = 0 for x gives the localization of

the stable and unstable orbits.
We have that V̂ 2

eff = (1 + x2

2σ )(1− x), thus

∂xV̂
2
eff = −3x2

2σ
+
x

σ
− 1

Making this equation equal zero yields

3x2 − 2x+ 2σ = 0

for which the discriminant is ∆ = 4− 24σ.
Since σ ≤ 1

6 , implies ∆ ≥ 0.
Suppose that ∆ > 0 thus, the equation yields only real roots,

x1,2 =
1±
√

1− 6σ

3

which will give the minima and the maxima of the effective potential. Since
x = rs

r , we obtain that there exist two radii for circular orbits instead of only
the one of the Newtonian case:

r1,2 =
3rs

1±
√

1− 6σ

When these values are substituted in the second derivative of the effective
potential

∂2xV̂
2
eff =

1

σ
(1− 3x)

we conclude that the smaller radius of the two represent the stable one, while
the larger, the unstable one.
From a physical standpoint, when a small perturbation occurs at the unstable
circular radius, the particle will immediately fall into or out of the black hole,
while, if this perturbation were to occur at the stable circular radius, it will
cause only small radial oscillations.
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When σ = 1
6 , then ∆ = 0 and x1,2 = 1

3 , thus the stable and unstable radii
will correspond at r1,2 = 3rs. As a consequence, a bifurcation point appears

in the graph of V̂ 2
eff − 1.

Fig. 4.4 – The Schwarzschild effective potential

In order to understand the significance of the other values which appear in
(20) the separatrix structure of (19) has to be analysed.

Definition 1. The separatrix is the boundary separating two modes of
behaviour in a differential equation.

The primary use of the separatrix is to represent graphic the critical rela-
tionship between the angular momentum and the energy of the system at the
unstable orbital radius.
Let σ be given. The critical energy corresponding to the unstable orbit is
obtained from Ê2

1 of (11):

Ê2
1 − 1 =

2σ[1− 4σ − (1− 6σ)
1
2 ]

[(1− 6σ)
1
2 − 1]3

In Figure ??, for σ ∈ {16 ,
1
7 ,

1
8 ,

1
9}, the energies are computed and marked

with horizontal lines. Substituting the obtained values into (19), we plot the
separatrices of (20).
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Fig. 4.5 – Separatrices for selected values of σ

We observe that, when 0 < σ < 1
6 these separatrices have divided the phase

plane into four regions of motion.
As the above figure illustrates, depending on the values of angular momentum,
separatrices are summarised as distinct unstable orbits:

(1) 0 < σ < 1
8 =⇒ unstable hyperbolic

(2) σ = 1
8 =⇒ unstable parabolic

(3) 1
8 < σ < 1

6 =⇒ unstable elliptic

It is also noted that, for 0 < σ < 1
8 , hyperbolic, parabolic and elliptic orbits are

possible before reaching the unstable hyperbolic orbit, whilst for 1
8 ≤ σ < 1

6
only elliptic orbits can occur before the unstable one.
When σ = 1

6 a bifurcation occurs. This means that the phase plane’s topolog-
ical structure morphs as the two equilibrium points travel together, coalesce
into one equilibrium point which will disappear from the phase plane as σ
takes values greater than 1

6 . It is due to this fact that the Schwarzschild
orbital dynamics can be approached as a conservative two dimensional bifur-
cation phenomena, namely a saddle-centre bifurcation phenomena.
If σ ≤ 0, then, on one hand, no physical interpretation can be attributed to σ,
since (5) asks for positive values of σ. On the other hand, the two equilibrium
points change stability at σ = 0 which yields another bifurcation before the
saddle-centre one.
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