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A CONVERGENCE THEOREM AND ITS APPLICATION

CONCERNING RIEMANN’S ZETA FUNCTION

Marius Costandin

Abstract. The present text presents the Euler-McLaurin integral formula along
with its demonstration and a new convergence criterion for a certain type of
complex number series. An asyptotic development for Riemann’s Zeta function
is derived, using the Euler-McLaurin integral formula and the new presented
convergence criterion
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1. EULER-MACLAURIN FORMULA

1.1. Bernoulli polynomials. Bernoulli polynomialsBn(x) for n ∈ {0, 1, 2, ...}
are defined recurrently with B0(x) = 1 and Bn(x) satisfying

(1) B′n(x) = nBn−1(x);

and

(2)

∫ 1

0
Bn(x)dx = 0;

for all n ∈ {1, 2, 3, ...}.

Example 1. For n = 1 one can compute B′1(x) = 1⇒ B1(x) = x+c. From

here
∫ 1
0 (x+ c)dx = 1

2 + c = 0⇒ c = −1
2 , so B1(x) = x− 1

2 .

Lemma 1. For n > 1 the Bernoulli polynomials satisfy Bn(1) = Bn(0).

Proof. Let n be a natural number n > 1. Then from (2) one has
∫ 0
1 nBn−1(x)dx =

0 so
∫ 0
1 B

′
n(x)dx = 0. Therefore Bn(1)−Bn(0) = 0. �

Definition 1 (Bernoulli number). For all n ∈ {0, 1, 2, ...} the Bernoulli
number Bn is defined as Bn = Bn(1).

Definition 2 (Periodic Bernoulli polynomials). For all n ∈ {0, 1, 2, ...} the
periodic Bernoulli polynomial Pn(x) is defined as Pn(x) = Bn(x− [x]), where
[x] denotes the integer part of x not greater then x.

1.2. The Euler-MacLaurin formula. The following theorem is a particular
case of Euler-McLaurin integral formula, for functions defined on positive real
semiaxis and infinitly derivable.
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Theorem 1 (Euler-McLaurin integral formula). Let f ∈ C∞[0,∞), then
the following relation in true, for n, p ∈ {1, 2, ...}:

n∑
k=1

f(k) =

∫ n

0
f(x)dx+

f(n)− f(0)

2

+

p∑
k=2

(−1)k
Bk
k!

[
f (k−1)(n)− f (k−1)(0)

]
+

(−1)(p+1)

p!

∫ n

0
f (p)(x)Pp(x)dx(3)

Proof. The proof follows somehow [1]. Let k ∈ N. Then

(4)

∫ k+1

k
f(x)dx =

∫ k+1

k
f(x)P0(x)dx

and using equation (1) for P1(x), the following relation is true

(5)

∫ k+1

k
f(x)P0(x)dx =

1

1

∫ k+1

k
f(x)P ′1(x)dx

Integrating by parts one obtains the following

(6)

∫ k+1

k
f(x)dx = f(x)P1(x)|k+1

k −
∫ k+1

k
f ′(x)P1(x)dx

∫ k+1

k
f(x)dx = f(k + 1)P1(k + 1)− f(k)P1(k)−

−
∫ k+1

k
f ′(x)P1(x)dx(7)

∫ k+1

k
f(x)dx = f(k + 1)B1(1)− f(k)B1(0)−

−
∫ k+1

k
f ′(x)P1(x)dx(8)

Using the above derivation, the integral from 0 to n can be expressed in the
following way: ∫ n

0
f(x)dx =

n−1∑
k=0

∫ k+1

k
f(x)dx

=

n−1∑
k=0

[f(k + 1)B1(1)− f(k)B1(0)]−

−
∫ n

0
f ′(x)P1(x)dx;(9)
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Therefore ∫ n

0
f(x)dx =

n−1∑
k=0

[f(k + 1) + f(k)]B1(1)−

−
∫ n

0
f ′(x)P1(x)dx(10)

The expresion (10) can be further modified:∫ n

0
f(x)dx = [f(0) + f(n)]B1(1) + 2

n−1∑
k=1

f(k)B1(1)−

−
∫ n

0
f ′(x)P1(x)dx(11)

∫ n

0
f(x)dx = [f(0)− f(n)]B1(1) + 2

n∑
k=1

f(k)B1(1)−

−
∫ n

0
f ′(x)P1(x)dx(12)

2B1(1)

n∑
k=1

f(k) =

∫ n

0
f(x)dx+ [f(n)− f(0)]B1(1)+

+

∫ n

0
f ′(x)P1(x)dx(13)

Using the above Bernoulli number definition, Equation (13) is rewritten as

n∑
k=1

f(k) =

∫ n

0
f(x)dx+

[f(n)− f(0)]

2
+

+

∫ n

0
f ′(x)P1(x)dx(14)

Let us evaluate
∫ k+1
k f ′(x)P1(x)dx :

(15)

∫ k+1

k
f ′(x)P1(x)dx =

∫ k+1

k
f ′(x)

P ′2(x)

2
dx

because P ′2(x) = B′2(x − [x]) = 2B1(x − [x]) = 2P1(x). Integrating again by
parts one can obtain:

(16)

∫ k+1

k
f ′(x)P1(x)dx = f ′(x)

P2(x)

2

∣∣∣∣k+1

k

−
∫ k+1

k
f ′′(x)

P2(x)

2
dx
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k
f ′(x)P1(x)dx =

[
f ′(k + 1)− f ′(k)

] B2(1)

2
−

− 1

2

∫ k+1

k
f ′′(x)P2(x)dx(17)

Hence again ∫ n

0
f ′(x)P1(x)dx =

n−1∑
k=0

∫ k+1

k
f ′(x)P1(x)dx

=
B1(1)

2

n−1∑
k=0

[
f ′(k + 1)− f ′(k)

]
−

− 1

2

∫ n

0
f ′′(x)P2(x)dx(18)

∫ n

0
f ′(x)P1(x)dx =

B2

2

[
f ′(n)− f ′(0)

]
− 1

2

∫ n

0
f ′′(x)P2(x)dx(19)

Replacing Equation (19) in Equation (14) one obtains
n∑
k=1

f(k) =

∫ n

0
f(x)dx+

f(n)− f(0)

2
+

+
B2

2

[
f ′(n)− f ′(0)

]
− 1

2

∫ n

0
f ′′(x)P2(x)dx(20)

Let us now evaluate
∫ k+1
k f ′′(x)P2(x)dx:∫ k+1

k
f ′′(x)P2(x)dx =

∫ k+1

k
f ′′(x)

P ′3(x)

3
dx

= f ′′(x)
P3(x)

3

∣∣∣∣k+1

k

−
∫ k+1

k
f ′′′(x)

P3(x)

3
dx

=
B3

3

[
f ′′(k + 1)− f ′′(k)]

]
−

− 1

3

∫ k+1

k
f ′′′(x)P3(x)dx(21)

Therefore

(22)

∫ n

0
f ′′(x)P2(x)dx =

B3

3

[
f ′′(n)− f ′′(0)

]
− 1

3

∫ n

0
f ′′′(x)P3(x)dx

n∑
k=1

f(k) =

∫ n

0
f(x)dx+

f(n)− f(0)

2
+
B2

2

[
f ′(n)− f ′(0)

]
−

− 1

2

[
B3

3

[
f ′′(n)− f ′′(0)

]
− 1

3

∫ n

0
f ′′′(x)P3(x)dx

]
(23)
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The reader can see now that the process can be repeated, so after p steps the
following relation holds:

n∑
k=1

f(k) =

∫ n

0
f(x)dx+

f(n)− f(0)

2

+

p∑
k=2

(−1)k
Bk
k!

[
f (k−1)(n)− f (k−1)(0)

]
+

(−1)(p+1)

p!

∫ n

0
f (p)(x)Pp(x)dx(24)

which ends the demostration. �

Example 2. Let f(x) = 1
(1+x)s with x ∈ R+ and s > 1. Then

∫ n
0 f(x)dx =

(n+1)1−s

1−s − 1
1−s and f (k)(x) = (−1)k

∏k−1
p=0(s+ p) 1

(1+x)k+s . Applying the Theo-

rem 1 one obtains:
n∑
k=1

1

(1 + k)s
=

(n+ 1)−s+1

−s+ 1
− 1

−s+ 1
+

(1 + n)−s − 1

2

−
m∑
k=2

Bk
k!

k−2∏
p=0

(s+ p)

[
1

(n+ 1)s+k−1
− 1

]

− 1

m!

∫ n

0

m−1∏
p=0

(s+ p)
1

(1 + x)s+m
Pm(x)dx(25)

The last term in Equation(25) is the remainder term, it shall be denoted Rm,n,
where m denotes how many derivatives are considered and n is the upper limit
of the integral or the sum.

1.3. A convergence criterion. In this subsection a convergence criterion for
some series is enounced and an original proof is given. This convergence
criterion resembles an already known theorem due to Cauchy and MacLaurin,
but the reader will notice differences in demonstration and in formulation of
it. First the known theorem, see [2]

Theorem 2 (Cauchy, MacLaurin). If f(x) is positive, continuous, and tends
monototonically to 0, then an Euler constant γf , which is defined below, exists

(26) γf = lim
n→∞

(
i=n∑
i=1

f(i)−
∫ n

1
f(x)dx

)
Proof. The theorem and the proof follows closely the presentation from [2].

The continuity of f guarantees the existence of the integral
∫ n
1 f(x)dx for

n ∈ 1, 2, .... Since f is decreasing, the maximum and minimum of f over a
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closed interval is known:

inf
x∈[k,k+1]

f(x) = f(k + 1)(27)

sup
x∈[k,k+1]

f(x) = f(k),(28)

therefore the following inequatity holds:

(29) f(k + 1) ≤
∫ k+1

k
f(x)dx ≤ f(k)

and summing form k = 1 to n− 1, one obtains

(30)

n∑
k=2

f(k) ≤
∫ n

1
f(x)dx ≤

n−1∑
k=1

f(k)

Substracting
∑n

k=1 f(k) from both sides in Equation (30)

(31) −f(1) ≤
∫ n

1
f(x)dx−

n∑
k=1

f(k) ≤ −f(n)

and after multiplying with −1

(32) f(1) ≥
n∑
k=1

f(k)−
∫ n

1
f(x)dx ≥ f(n) ≥ 0

The sequence sn =
∑n

k=1 f(k)−
∫ n
1 f(x)dx is therefore bounded and

(33) sn+1 − sn = f(n+ 1)−
∫ n+1

n
f(x)dx ≤ 0

monotonically decreasing, so it has a limit. �

The almost novel convergence criterion this paper presents is enounced be-
low:

Theorem 3. Let f : R→ R be a function at least two times derivable with
|f ′′| monotonically decreasing with

∑n
k=1 |f ′′(k)| convergent for n→∞. Then

the sequence un = (
∑n

k=1 f
′(k)− f(n)) is also convergent.

Proof. Let ε > 0, we shall prove ∃nε ∈ N such that ∀n,m > nε one has
|un − um| < ε meaning that (un) is a Cauchy sequence. Because R is a com-
plete space, that will make (un) convergent. Let us evaluate |un − um|, pre-
suming n > m:

|un − um| =

∣∣∣∣∣
n∑
k=1

f ′(k)− f(n)−
m∑
k=1

f ′(k) + f(m)

∣∣∣∣∣
=

∣∣∣∣∣
n∑

k=m+1

f ′(k)−
n∑

k=m+1

(f(k)− f(k − 1))

∣∣∣∣∣(34)
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Using the Lagrange’s mean value theorem ∃ck such that f(k) − f(k − 1) =
f ′(ck) (k − (k − 1)) = f ′(ck), hence

|un − um| =

∣∣∣∣∣
n∑

k=m+1

(
f ′(k)− f ′(ck)

)∣∣∣∣∣(35)

where ck ∈ (k − 1, k). Using again the Lagrange mean value theorem ∃dk ∈
(ck, k) such that f ′(k)− f ′(ck) = f ′′(dk) (k − ck).

|un − um| ≤
n∑

k=m+1

∣∣f ′(k)− f ′(ck)
∣∣

≤
n∑

k=m+1

∣∣f ′′(dk)∣∣ ≤ n∑
k=m+1

∣∣f ′′(k − 1)
∣∣(36)

since |f ′′| is monotonically decreasing. The above sum is the rest of a conver-
gent series. This ends the demonstration. �

Remark 1. The Theorem 2 give similar results with Theorem3, if instead
of f one considers f ′.

Remark 2. Theorem 2 asks for the function to be positive, monotonically
decresing to zero, whereas Theorem 3 asks for the second derivative to be
monotonically decreasing and

∑n
k=1 |f ′′(k)| to be convergent which implies

it’s convergence to zero. Note that it not necesary to be positive.

The Theorem 3 can be genreralised for the following case:

Theorem 4. Let f : R → C be a double differentiable function with |f ′′|
monotonically decreasing and

∑n
k=1 |f ′′(k)| is a convergent real series. Then

un = (
∑n

k=1 f
′(k)− f(n)) is a convergent sequence.

Proof. Let ε > 0, we shall prove ∃nε ∈ N such that ∀n,m > nε one has
|un − um| < ε meaning that (un) is a Cauchy sequence. Because C is a com-
plete space, that will make (un) convergent. Let us evaluate |un − um|, pre-
suming n > m:

|un − um| =

∣∣∣∣∣
n∑
k=1

f ′(k)− f(n)−
m∑
k=1

f ′(k) + f(m)

∣∣∣∣∣
=

∣∣∣∣∣
n∑

k=m+1

f ′(k)−
n∑

k=m+1

(f(k)− f(k − 1))

∣∣∣∣∣
≤

∣∣∣∣∣<
(

n∑
k=m+1

f ′(k)−
n∑

k=m+1

(f(k)− f(k − 1))

)∣∣∣∣∣+
+

∣∣∣∣∣=
(

n∑
k=m+1

f ′(k)−
n∑

k=m+1

(f(k)− f(k − 1))

)∣∣∣∣∣(37)
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Using again Lagrange’s mean value theorem for real and imaginary parts, inde-
pendently, will result in the existence of rk and ik such that < (f(k)− f(k − 1)) =
< (f ′(rk)) and = (f(k)− f(k − 1)) = = (f ′(ik)), therefore

|un − um| ≤
n∑

k=m+1

<
(
f ′(k)− f ′(rk)

)
+

n∑
k=m+1

=
(
f ′(k)− f ′(ik)

)
≤

n∑
k=m+1

∣∣f ′(k)− f ′(rk)
∣∣+

n∑
k=m+1

∣∣f ′(k)− f ′(ik)
∣∣(38)

where rk and ik are in the interval (k − 1, k). Using again the mean value
theorem

|un − um| ≤
n∑

k=m+1

∣∣f ′′(ck)∣∣+
n∑

k=m+1

∣∣f ′′(dk)∣∣
≤

n∑
k=m+1

∣∣f ′′(k − 1)
∣∣+

n∑
k=m+1

∣∣f ′′(k − 1)
∣∣(39)

The above sums are converging to zero, being the rests of convergent series. �

Example 3. Let us apply Theorem 4 for the function of real variable x
and complex values, f(x) = 1

1−s(1 + x)1−s, for x ∈ R+ and s ∈ C with

< (s) > 0. The reader can verify that f ′(x) = 1
(1+x)s and f ′′(x) = −s

(1+x)s+1 ,

therefore f satisfies the condition in Theorem4, hence the sequence Zn(s) =(∑n
k=1

1
(1+k)s −

1
1−s(1 + n)1−s

)
is convergent. For s ∈ C with < (s) > 1 one

has limn→∞
1

1−s(1 + n)1−s = 0, hence limn→∞ Zn(s) = ζ(s) − 1 punctually.
It is important to mention that the convergence is uniform if s ∈ K with K
being a compact subset of the right complex semiplane. Indeed from Equation
(39)

|Zn(s)− Zm(s)| ≤
n∑

k=m+1

∣∣f ′′(k − 1)
∣∣+

n∑
k=m+1

∣∣f ′′(k − 1)
∣∣(40)

with f ′′(x) = −s
(1+x)s+1 so

|Zn(s)− Zm(s)| ≤ 2 |s|
n∑

k=m+1

∣∣∣∣ 1

ks+1

∣∣∣∣(41)

Because s ∈ Kand K is compact, ∃M ∈ R+ with |s| < M∀s ∈ K, and ∃s0 ∈ K
such that

∣∣ 1
ks+1

∣∣ ≤ ∣∣ 1
ks0+1

∣∣∀s ∈ K, therefore ∀s ∈ K

|Zn(s)− Zm(s)| ≤ 2M
n∑

k=m+1

∣∣∣∣ 1

ks0+1

∣∣∣∣(42)

hence Zn converges uniformly in K. Moreover Zn(s) is an holomorfic function
which converges unifromly on every compact subset of the right complex plane,
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so using Weierstrass’s theorem, it’s limit is a holomorfic function, which has
the same values with ζ(s) − 1 on the interval (1,∞). Using the holomofic
functions zeros theorem one obtains that the two function are identical for
s ∈ C with < (s) > 1. But ∃ limn→∞ Zn(s) = Z(s) for s ∈ (C) with < (s) > 0
and s 6= 1, so 1 +Z(s) ≡ ζ(s), being it’s analytical continuation on s ∈ C with
< (s) > 0 and s 6= 1. Therefore

(43) lim
n→∞

(
n∑
k=1

1

(k + 1)s
− 1

1− s
(1 + n)1−s

)
= ζ(s)− 1

(44) lim
n→∞

(
n+1∑
k=2

1

(k)s
− 1

1− s
(1 + n)1−s

)
= ζ(s)− 1

(45) lim
n→∞

(
n+1∑
k=1

1

ks
− 1

1− s
(1 + n)1−s

)
= ζ(s)

Example 4. Let us apply Theorem 4 for f(x) = ln(x). Because |ln′′(x)| =
1
x2

and
∑n

k=1
1
k2

is convergent, follows that
∑n

k=1
1
k − ln(n) is also convergent.

It’s limit is γ, the Euler-Mascheroni constant.

2. ASYMPTOTIC EXPANSION FOR ζ(S)

An asymptotic expansion for ζ(s) is given below:

Theorem 5. For s > 1 the following relation holds:

ζ(s) =
1

2
− 1

1− s
+

m∑
k=2

Bk
k!

k−2∏
p=0

(s+ p)−Rm,∞(s)(46)

if ∃ Rm,∞(s) = limn→∞Rm,n(s)

Proof. Using Equation (25) one has:
n∑
k=1

1

(1 + k)s
=

(n+ 1)−s+1

−s+ 1
− 1

−s+ 1
+

(1 + n)−s − 1

2

−
m∑
k=2

Bk
k!

k−2∏
p=0

(s+ p)

[
1

(n+ 1)s+k−1
− 1

]

− 1

m!

∫ n

0

m−1∏
p=0

(s+ p)
1

(1 + x)s+m
Pm(x)dx(47)

From Equation(43) one has:

lim
n→∞

(
n∑
k=1

1

(k + 1)s
− 1

1− s
(1 + n)1−s

)
= ζ(s)− 1(48)
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hence
n∑
k=1

1

(k + 1)s
= Zn(s) +

1

−s+ 1
(1 + n)1−s(49)

Using both equations one can obtain, denoting Rm,n = 1
m!

∫ n
0

∏m−1
p=0 (s +

p) 1
(1+x)s+mPm(x)dx

Zn(s) +
1

−s+ 1
(1 + n)1−s =

(n+ 1)−s+1

−s+ 1
− 1

−s+ 1
+

(1 + n)−s − 1

2

−
m∑
k=2

Bk
k!

k−2∏
p=0

(s+ p)

[
1

(n+ 1)s+k−1
− 1

]
−Rm,n(50)

therefore

Zn(s) = − 1

−s+ 1
+

(1 + n)−s − 1

2

−
m∑
k=2

Bk
k!

k−2∏
p=0

(s+ p)

[
1

(n+ 1)s+k−1
− 1

]
−Rm,n(51)

Letting n → ∞ in Equation (51), because ∃ limn→∞ Zn(s) = ζ(s) − 1 and
∃ limn→∞Rm,n(s) = Rm,∞(s) it follows that ∃

lim
n→∞

m∑
k=2

Bk
k!

k−2∏
p=0

(s+ p)

[
1

(n+ 1)s+k−1
− 1

]

=
m∑
k=2

Bk
k!

k−2∏
p=0

(s+ p)

[
lim
n→∞

1

(n+ 1)s+k−1
− 1

]

= −
m∑
k=2

Bk
k!

k−2∏
p=0

(s+ p)(52)

and

ζ(s)− 1 = lim
n→∞

Zn(s)

= − 1

−s+ 1
− 1

2
+

m∑
k=2

Bk
k!

k−2∏
p=0

(s+ p)−Rm,∞(s)(53)

therefore

ζ(s) =
1

2
− 1

−s+ 1
+

m∑
k=2

Bk
k!

k−2∏
p=0

(s+ p)−Rm,∞(s)(54)
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