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DIRECTED ANGLES
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Abstract. In this paper we give an expository description of directed angles,
their main properties and investigate some applications to the study of antipar-
allel pairs of lines. We also give proofs of some classical geometry results by
using directed angles.
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1. INTRODUCTION

The directed or oriented angles (alongside with oriented segments) have
been introduced in analytical geometry by the great French mathematician
Michel Chasles, by the middle of the XIXth century (see his classical textbook
Traité de géométrie supériore, [2]).

Inspite of its usefulness for the simplifications of many proofs in elementary
geometry, by avoiding the necessity to investigate many particular cases, the
theory is still not wide-spread. The first exposition in English belongs, to our
knowledge, to Roger Johnson (see [3]). The theory was used in the two classical
American textbooks of the period between wars, that of R. Johnson (see [4])
and N. Court (see [1]). The directed angles were a constant part of French
highschool curriculum starting from the beginning of the XXth century until
the 1960th. The current exposition is, largely, based on two such textbooks
([5] and [6]). The examples are adapted mainly from the book of G. Papelier
([7]).

2. DIRECTED ANGLES AND THEIR PROPERTIES

In this paper we will assume that the plane is oriented. This, simply, means
that we choose a sense of rotation of a line around a point and we define it as
positive, while the opposite sense will be called negative. By convention, we
will choose the positive sense to be the counterclockwise one (see figure 1(a)).
Of course, this will automatically prescribe a sense for the traversation of an
arbitrary simple polygon (see figure 1(b)). Thus, in particular, we can speak,
for instance, about a positively oriented triangle.

What we want, in the end, is to give a definition of the directed angle
between two lines in the plane. There are several approaches to this definition,
the one we shall follow is taken from [5] (see, also, [6]). It starts by defining first
the directed angle for rays (which have an in-built orientation), for vectors,
oriented lines (axes) and, in the end, for arbitrary (non-oriented) lines.
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Definition. Let [OA and [OB be two rays with the same origin. We define
the directed angle between the rays [OA and [OB (in this order!) as being one
of the angles through which a ray [OX, with the same origin as the first ones
must be rotated around O, in a sense or the other (positive or negative) in
order that initially it coincides to [OA and, after the rotation, to [OB. This
angle will be denoted by ]

(
[OA, [OB

)
.1

We shall assign to the rotation angle a “+” sign if the rotation has been
made in the positive sense and a “−” sign if the rotation has been made
in the negative sense. We obtain, thus, an algebraic measure of the directed
angle. This algebraic measure is, also, called a determination. On the drawing
(figure 2) we marked the rays with an arrow to make clear that they have a
built-in orientation (“away from the origin”).
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There are, as it may be seen easily, infinitely many determinations of the
same directed angle ]

(
[OA, [OB

)
, so it might seem unpractical to work with

1The two rays form, actually, two (unoriented angle). The rotation is made on the
“shortest path” (smallest unoriented angle).
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such a notion, at least when one needs to make computations. Fortunately, it
is easy to see that all the determinations have something in common, namely
they differ through an integer multiple of 2π2.

Theorem 1. Let α be an arbitrary determination of the directed angle
]
(
[OA, [OB

)
. Then all the determinations of the angle are given by

]
(
[OA, [OB

)
= α+ 2kπ, k ∈ Z.

Let’s rotate, first, the ray [OX around O in the counterclockwise (positive)
sense and let us denote by θ the angle of rotation corresponding to the first
superposition between [OX and [OB. Clearly, θ < 2π. For the next superpo-
sition we shall have rotation angles of θ + 2π, θ + 4π, . . . . For the (n + 1)th
superposition, we shall have a rotation angle of θ+ 2nπ. Thus, all the positive
values of the directed angle ]

(
[OA, [OB

)
will be of the form

θ + 2nπ, n ∈ N.

Now, let’s rotate the ray [OX in the clockwise (negative) sense, around
O, starting again from [OA. Clearly, to the first superposition with [OB
correspond a rotation angle of 2π − θ, to the second – a rotation angle of
4π − θ and so on. To the (n+ 1)th superposition correspond a rotation angle
of 2nπ − θ. To all this angles should be assigned a “−” sign, because the
rotation is made in the negative sense, therefore all the negative values of the
directed angle ]

(
[OA, [OB

)
will be of the form

θ − 2nπ, n ∈ N.

To sum up, all the determinations of the directed angle ]
(
[OA, [OB

)
will

be of the form

]
(
[OA, [OB

)
= θ + 2λπ, λ ∈ Z.

If we consider an arbitrary determination, of the form α = θ+2hπ, with h ∈ Z,
then we can write

θ + 2λπ = θ + 2hπ + 2(λ− h)π

or

θ + 2λπ = α+ 2kπ,

where we put k = λ− h.
As λ is arbitrary, so is k and, as such, we can say that any determination

of the directed angle ]
(
[OA, [OB

)
is of the form

α+ 2kπ,

where α is an arbitrary determination of the angle, while k is an arbitrary
integer.

Among all the determinations of a given directed angle of rays there is one
which is special:

2We measure the angles in radians.
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Definition. The principal determination of the directed angle ]
(
[OA, [OB

)
is the algebraic measure ϕ of this angle lying in the interval [−π, π).

While the directed angle ]
(
[OA, [OB

)
is defined only up to an integer

multiple of 2π, its principal determination is a well defined real number, that
can be positive or negative.

Our next step would be to define the directed angle of a pair of oriented
lines or axes.

Definition. An axis or an oriented line is a pair formed by a line ∆ and
a non-vanishing vector v, parallel to the line. This actually means that we
choose a sense of traversing the line. We define as positive the sense of the
vector v and as negative the sense opposite to the sense of v. An axis ∆ of

vector v will be denoted by (∆,v) or, more often, if v is understood, by
−→
∆.

Definition. Let
−→
∆1 ≡ (∆1,v1) and

−→
∆2 ≡ (∆2,v2) be two axes. If the axes

are parallel (or equal), we shall define

]
(−→

∆1,
−→
∆2

)
=

{
2kπ, with k ∈ Z, if v1 and v2 have the same sense;

(2k + 1)π, with k ∈ Z, if v1 and v2 have opposite senses.

If the two axes are concurrent, let O be their intersection point. We choose

A ∈ ∆1, such as
−→
OA and v1 have the same sense and B ∈ ∆2, such as

−−→
OB

and v2 have the same sense. We define the directed angle of the two axes as

]
(−→

∆1,
−→
∆2

)
= ]

(
[OA, [OB

)
.
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We shall prove a very simple property of directed angles, credited to Michel
Chasles, which has important applications:

Theorem 2 (Chasles). For any three oriented lines
−→
OA,
−−→
OB,

−−→
OC, we have

(1) ]
(−→
OA,
−−→
OB

)
+ ]

(−−→
OB,

−−→
OC
)

= ]
(−→
OA,
−−→
OC
)

+ 2kπ, k ∈ Z.
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Proof. We shall take an axis
−−→
OX and rotate it, in the positive sense, around

O, starting from
−→
OA, such that it coincides, succesively, for the first time, to−−→

OB and
−−→
OC (paying attention, of course, to the fact that at each coincidence,

the axis
−−→
OX has to coincide to the current oriented line both in direction

and sense). Let us denote the principal determinations of the directed angles

]
(−→
OA,
−−→
OB

)
, ]
(−−→
OB,

−−→
OB

)
and ]

(−→
OA,
−−→
OC
)

by α, β and γ, respectively. We

have to take into account the different relative positions of the three oriented
axes. There are, in fact, two cases, which are pictured in the figures 4 and 5.

In the first case (when
−−→
OB is between

−→
OA and

−−→
OC, in the counterclockwise

order) we have

γ = α+ β,

while in the second case (when
−−→
OC is between

−→
OA and

−−→
OB, in the counter-

clockwise order) we have

γ = α+ β + 2π,

so, in both cases, the equation (1) is verified. �

Remark 1. (i) The equation (1) can be, also, written as

(2) ]
(−→
OA,
−−→
OB

)
+ ]

(−−→
OB,

−−→
OC
)

+ ]
(−−→
OC,

−→
OA
)

= 2kπ, k ∈ Z.

(ii) The Chasles’ formula can be extended to an arbitrary number of points:

]
(−−→
OA1,

−−→
OA2

)
+ ]

(−−→
OA2,

−→
O3

)
+ · · ·+ ]

(−−−−→
OAn−1,

−−→
OAn

)
=

= ]
(−−→
OA1,

−−→
OAn

)
+ 2kπ, k ∈ Z,

(3)

where n is a natural number, at least equal to three.
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Indeed, we can prove it by induction. For n = 3, this formula is nothing
but the formula of Chasles. Let us assume it holds for a certain value of n and
prove that it follows, also, for n+ 1. Thus, we asume that

]
(−−→
OA1,

−−→
OA2

)
+ ]

(−−→
OA2,

−→
O3

)
+ · · ·+ ]

(−−−−→
OAn−2,

−−−−→
OAn−1

)
=

= ]
(−−→
OA1,

−−−−→
OAn−1

)
+ 2kπ, k ∈ Z.

Then

]
(−−→
OA1,

−−→
OA2

)
+ ]

(−−→
OA2,

−→
O3

)
+ · · ·+ ]

(−−−−→
OAn−1,

−−→
OAn

)
=

= ]
(−−→
OA1,

−−−−→
OAn−1

)
+ ]

(−−−−→
OAn−1,

−−→
OAn

)
+ 2kπ =

= ]
(−−→
OA1,

−−→
OAn

)
+ 2kπ, k ∈ Z.

Theorem 3. If we change the sense of one of the axes, their directed angle
is modified by π.

Indeed,

]
(−−→
AB,

−−→
DC

)
= ]

(−−→
AB,

−−→
CD

)
+ ]

(−−→
CD,

−−→
DC

)
= ]

(−−→
AB,

−−→
CD

)
+ π + 2kπ.

We are, now, ready to define the directed angle of two unoriented lines.

Definition. LetD1 andD2 be two lines. The directed angle of the two lines
is, by definition, the directed angles between either of the two axis associated
to D1 and either of the two axes associated to D2. This directed angle will be
denoted by ](D1, D2). If D1 = OA and D2 = OB, we shall, also, write

](OA,OB) = ]AOB.

Now, let’s see how well defined is the directed angle of unoriented lines. We
have
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Theorem 4. Let AB and CD be two lines. Then the angle ](AB,CD) is
defined up to an integer multiple of π.

Indeed, the directed angle of AB and CD corresponds to two directed angle

of axes: ]
(−−→
AB,

−−→
CD

)
and ]

(−−→
AB,

−−→
DC

)
. Let α be an arbitrary determination

of ]
(−−→
AB,

−−→
CD

)
. Thus, we have

]
(−−→
AB,

−−→
CD

)
≡ ]

(−−→
BA,

−−→
DC

)
= α+ 2mπ, m ∈ Z,

while

]
(−−→
AB,

−−→
DC

)
≡ ]

(−−→
BA,

−−→
CD

)
= α+ π + 2nπ, n ∈ Z.

As such, each angle can be written in the form α + kπ, k ∈ Z, therefore, we
can write

](AB,CD) = α+ kπ, k ∈ Z.

Remark 2. As it happens with the directed angles between axes, in the
case of unoriented lines we also have a special value of the algebraic measure
of a directed angle, that lies in the interval [0, π). This would, also, be called
the principal determination of the directed angle.

Remark 3. As from now on we shall work only with directed angles of
unoriented lines (if not specified otherwise) we prefer not to write anymore
the arbitrary multiple of π and to consider that all the equalities between
directed angles are thought of mod π.

We shall prove, now, a series of properties of the directed angles, on which
relies, actually, the usefulness of these objects in the plane Euclidean geometry.

Property 1. If D1 and D2 are two lines in the plane, then

(4) ](D1, D2) + ](D2, D1) = 0.

Proof. There isn’t, actually, anything to proof, only to interpret. The rela-
tion (4) simply says that the two angles are supplementary (mod π), which is
obvious. �

Remark 4. The relation (4) can be, also, written under the form

(5) ](D1, D2) = −](D2, D1).

If we denote by ϕ the principal determination of the directed angle ](D1, D2),
then

](D1, D2) = ϕ+ kπ, k ∈ Z.
We want to find the principal determination of the directed angle ](D2, D1).
Sticking with the rule of rotating the lines in the positive direction, we have
that

](D2, D1) = 2π − ϕ− kπ
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or, if we want to find the principal determination, between 0 and π,

](D2, D1) = π − ϕ+ (1− k)π = π − ϕ+ lπ, k, l ∈ Z,
i.e. the principal determination of ](D2, D1) is π − ϕ. Thus, the principal
determinations of the directed angle and its opposite (mod π) are supplemen-
tary.

Property 2 (Chasles). Let D1, D2, D3 be three lines in the plane. Then

(6) ](D1, D2) + ](D2, D3) = ](D1, D3).

Proof. If two of the lines are parallel or coincide, the property reduces to
the previous one. As such, we assume that the lines are in general position,
in other words, they form a triangle.

For the proof, we choose, first, an arbitrary point O and take three lines
d1, d2, d3 through O, such that d1 ‖ D1, d2 ‖ D2 and d3 ‖ D3. Then, obviously,

](d1, d2) = ](D1, D2), ](d2, d3) = ](D2, D3), ](d1, d3) = ](D1, D3).

Thus, we are left with the proof of the relation

(7) ](d1, d2) + ](d2, d3) = ](d1, d3).

We rotate d1 around O, in the counterclockwise sense, until it coincide for the
first time with d2. Let θ1 be the rotation angle. We continue the rotation
until it coincide for the first time with d3 and we denote by θ2 this second
rotation angle. Now we rotate d1, still in the counterclockwise sense, until it
first coincides to d3 and we denote by θ3. Now, clearly, θ1 + θ2 = θ3. �

As an application of the second property, let us consider a triangle ABC, in
which the vertices are listed in the counterclockwise manner. Then, we have

]BAC = “A, ]CBA = “B, ]ACB = “C.
We apply the Property 2 for the lines D1 = BC, D2 = AB and D3 = CA.
Then the formula

](D1, D2) + ](D2, D3) = ](D1, D3)

becomes
](BC,AB) + ](AB,AC) = ](BC,AC)

or
]CBA+ ]BAC = ]BCA

or, in the language of classical Euclidean geometry,“B + “A = π − “C,
which is nothing but the Theorem of the exterior angle in the triangle ABC.

The Property 2 can be easily extended to an arbitrary number of lines:

Property 3. Let D1, D2, . . . , Dn be n lines in the plane. Then we have

(8) ](D1, D2) + ](D2, D3) + · · ·+ ](Dn−1, Dn) = ](D1, Dn).
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Proof. We prove by induction. For n = 3, the property reduces to Property
2. Let us assume it is true for n− 1, i.e.

](D1, D2) + ](D2, D3) + · · ·+ ](Dn−2, Dn−1) = ](D1, Dn−1).

Then
](D1, D2) + · · ·+ ](Dn−2, Dn−1) + ](Dn−1, Dn) =

= ](D1, Dn−1) + ](Dn−1, Dn) = ](D1, Dn). �

Property 4. Three points A,B,C are colinear iff for any other point D
from the plane we have

]ABD = ]CBD.

Proof. There is not much to prove, actually. Clearly, the three points are
colinear iff the lines AB and CB coincide. The property simply says that the
two lines coincide iff they are equally inclined to BD, which is obvious. �

Property 5. Let D1 and D2 be two lines in the plane. Then D1 is parallel
to D2 iff for any secant D we have

(9) ](D1, D) = ](D2, D),

or, which is the same,

(10) ](D,D1) = ](D,D2).

Proof. Let us assume, first, that D1 ‖ D2. This means, as we saw before,
that

](D1, D2) = 0.

But, from Property 2 it follows that

0 = ](D1, D2) = ](D1, D) + ](D,D2) = ](D1, D)− ](D2, D),

hence
](D1, D) = ](D2, D).

Assume, now, conversely, that the lined D1, D2, D verify the relation (9).
This means that

](D1, D) = −](D,D2),

hence
](D1, D) + ](D,D2) = 0.

But
](D1, D) + ](D,D2) = ](D1, D2),

whence ](D1, D2) = 0, i.e. D1 ‖ D2. �

After establishing a parallelism criterion in terms of directed angles, we
shall find a criterion of perpendicularity.

Property 6. Two concurent lines D1 and D2 are perpendicular iff

(11) ](D1, D2) = ](D2, D1).
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Proof. Clearly, if the two lines are perpendicular, the two angles are equal.
Conversely, if

](D1, D2) = ](D2, D1),

then we have the system of equations{
](D1, D2)− ](D2, D1) = 0,

](D1, D2) + ](D2, D1) = 0.

If we add up the two equations, we get

2](D1, D2) = 0.

We need to remind, again, that all the equalities should be understood
mod π. As such, 2](D1, D2) = 0 doesn’t necessarily mean that ](D1, D2) =
0. In fact, in this particular case, the angle cannot be zero, because the
lines are concurrent. As the double of the angle is zero (or π) it follows that
](D1, D2) = π/2. �

Finally, we shall give a condition of concyclicity of four points in terms of
directed angles.

Property 7. Four points A,B,C,D from the plane are concyclic iff

(12) ]ACB = ]ADB.

Proof. Is left to the reader. �

A

B
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D

Fig. 6
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3. ANTIPARALLEL LINES

Definition. Two pairs of lines, D,D′ and ∆,∆′ are called antiparallel if
we have

](D,∆) = ](∆′, D′).

More specifically, we shall say that the line ∆′ (for instance) is antiparallel to
the line ∆ with respect to the pair D,D′.

Theorem 5. The two pairs of opposite sides of the fourpoint ABCD are
antiparallel iff the quadrangle is cyclic (in other words, iff the points A,B,C,D
are concyclic).

Indeed, let D = AB, D′ = CD, ∆ = AD and ∆′ = BC. According to the
definition, the two pairs are antiparallel iff

](AB,AD) = ](BC,CD)

or
]BAD = ]BCD.

But, as we saw before, this is nothing but the necessary and sufficient condition
of concyclicity of the points A,B,C,D.

Theorem 6. Let ∆,∆′,∆′′, D,D′ be five lines in the plane. If ∆′ and ∆′′

are both antiparallel to ∆ with respect to the pair D,D′, then ∆′ is parallel to
∆′.

Indeed, ∆′ is antiparallel to ∆ with respect to D,D′ iff

(*) ](D,∆) = ](∆′, D′),

while ∆′′ is antiparallel to ∆ with respect to D,D′ iff

(**) ](D,∆) = ](∆′′, D′).

Let us compute the directed angle ](∆′,∆′′). We have

](∆′,∆′′) = ](∆′, D′) + ](D′,∆′′) = ](D,∆)− ](D,∆) = 0,

which means that the two lines are parallel.

Theorem 7. If the lines D,D′,∆,∆′ are concurrent at a point O, then the
pairs of lines D,D′ and ∆,∆′ are antiparallel iff the bisectors of the angles
formed by D and D′ coincide to the bisectors of the angles formed by the lines
∆ and ∆′.

Let us assume, first, that the two pairs of lines have the same bisectors and
let H be one of them. Then, we have the equalities{

](D,H) = ](H,D′),

](∆, H) = ](H,∆′).

Subtracting the previous equations side by side, we get

](D,H)− ](∆, H) = ](H,D′)− ](H,∆′)
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or
](D,H) + ](H,∆) = ](∆, H) + ](H,D′),

whence
](D,∆) = ](∆′, D′),

i.e. the two pairs of lines are antiparallel.
Conversely, let us assume that the pairs of lines are antiparallel and le H

be one of the bisectors of the lines D and D′. We intend to prove that H is
also a bisector for the lines ∆ and ∆′.

As the lines are antiparallel, we have

](D,∆) = ](∆′, D′),

which, because of the formula of Chasles, can be written as

](D,H) + ](H,∆) = ](∆′, H) + ](H,D′).

AsH is one of the bisectors of the angle made byD andD′, we have ](D,H) =
](H,D′), so the previous relation reduces to

](H,∆) = ](∆′, H)

or
](∆, H) = ](H,∆′),

which means that H is, also, a bisector of the angle made by ∆ and ∆′.
It is easy to check, also, the more general result.

Theorem 8. Two pairs of lines D,D′ and ∆,∆′ are antiparallel iff the
bisectors of the angles formed by D and D′ are parallel to the bisectors of the
angles formed by the lines ∆ and ∆′.

A final property of antiparallel lines is the following:
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Theorem 9. If two pairs of lines, D,D′ and D1, D
′
1 are, separately, an-

tiparallel to the same pair of lines, ∆,∆′, then they are antiparallel to each
other.

Proof. From the antiparallelism of the first two pairs of lines to the third
pair, we get the equations:{

](D,∆) = ](∆′, D′),

](D1,∆) = ](∆′, D′1).

Subtracting these equations side by side, we get

](D,∆)− ](D1,∆) = ](∆′, D′)− ](∆′, D′1)

or

](D,∆) + ](∆, D1) = ](D′1,∆
′) + ](∆′, D′),

whence, using the formula of Chasles,

](D,D1) = ](D′1, D
′),

i.e. the pair D,D′ is antiparallel to the pair D1, D
′
1. �

4. OTHER APPLICATIONS OF DIRECTED ANGLES

We can provide now proofs for some interesting results, using, in an essential
manner, the notion of directed angle of lines.

Theorem 10. Let ABC a triangle, which we assume positively oriented.
On the sides BC,CA,AB, respectively, we choose the points P,Q,R, different
from the vertices of the triangle ABC. If U is the second intersection point
of the circumcircles of the triangles PRB and PCQ, then the quadrilateral
ARUQ is cyclic.
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Proof. We notice, first of all, that the quadrilaterals PUQC and PURB are
cyclic. From the first quadrilater, we deduce, then, that

]PUQ = ]PCQ

or

A

B C
P

U

Q
R

Fig. 9

(*) ]PUQ+ ]QCP = 0.

Similarly, from the cyclicity of PURB we get

(**) ]RUP + ]PBR = 0.

If we add up the equations (∗) and (∗∗), we get

]PUQ+ ]QCP + ]RUP + ]PBR = 0

or

(***) ]PUQ+ ]RUP + ]QCP + ]PBR = 0.

We notice, immediately, that, as lines, we have QC=AC,CP=PB=BC and
BR=AB. Therefore,

]QCP ≡ ](QC,CP ) = ](AC,BC) ≡ ]ACB and

]PBR ≡ ](PB,BR)](BC,AB) ≡ ]CBA,
therefore

]QCP + ]PBR = ]ACB + ]CBA ≡ ](AC,BC) + ](BC,AB) =

= ](AC,AB) ≡ ]CAB = ]QAR.
(****)

On the other hand,

]RUP + ]PUQ ≡ ](RU,PU) + ](PU,UQ) =

= ](RU,UQ) ≡ ]RUQ.
(*****)
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Substituting (∗ ∗ ∗∗) and (∗ ∗ ∗ ∗ ∗) in (∗ ∗ ∗), we get

]QAR+ ]RUQ = 0

or

]QAR = ]QUR,

which shows that the quadrilateral ARUQ is cyclic. �

Theorem 11 (Generalized Simson’s theorem.). Let ABC be a given triangle
and M – a point in the plane. The points P,Q,R are taken on BC,CA,AB,
respectively, so that , for angles measured in the counterclockwise sense, the
angles between BC and MP ; between CA and MQ; between AB and MR
are equal. Than M lies on the circumcircle of the triangle ABC iff the points
P,Q,R are collinear.

Proof. We are given the following directed angle equalities

(13) ](BC,MP ) = ](CA,MQ) = ](AB,MR).

But, since BC = CP and CA = CQ (as lines) the first equality of (13) can
be written as

](CP,MP ) = ](CQ,MQ)

or

(14) ]CPM = ]CQM

i.e. the points P,Q,M,C are concyclic.



40 Cristina Blaga şi Paul A. Blaga

Consider, now, the second equality from (13). This time, we have R ∈ AB,
hence AB = BR = AR. As such, this equality is equivalent to

](AQ,MQ) = ](AR,MR)

or

(15) ]AQM = ]ARM,

which is the same with saying that the points R,Q,A,M are concyclic.
As we saw previously, the points P,Q,R are collinear iff

(16) ]PQM = ]RQM,

for any point in the plane. Now, from the cyclic quadrilateral PQCM we get

(17) ]PQM = ]PCM = ](CP,CM) = ](CB,CM) ≡ ]BCM.

On the other hand, from the cyclic quadrilater QRAM , we get

(18) ]RQM = ]RAM = ](RA,AM) = ](AB,AM) ≡ ]BAM.

Thus, from the relations (16), (17) and (18) it follows that

(19) ]PQM = ]RQM iff ]BCM = ]BAM

or, in other words, the points P,Q,R are collinear iff the points A,B,C,M are
concyclic or, to put it another way, iff M lies on the circumcircle of ABC. �
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