On products of stable range one elements

Grigore Călugăreanu

April 24, 2023

Abstract

1 Introduction

All the rings we consider are associative and have an identity $1 \neq 0$. For a ring R, U(R) denotes the set of all the units of R and N(R) denotes the set of all the nilpotents of R.

An element $a \in R$ has left stable range 1 (lsr1, for short) if whenever Ra + Rb = R for some $b \in R$, there exists a $y \in R$ such that a + yb is a unit. Equivalently, if xa + b = 1 implies the existence of an element $y \in R$ such that a + yb is a unit. Removing b, equivalently again, if for every $x \in R$ there exists $y \in R$ such that $a + y(1 - xa) \in U(R)$. In this case we also write lsr(a) = 1. A symmetric definition can be given on the right (rsr1, for short).

In the sequel, y will be called a *unitizer* for a with respect to x, denoted $y_x^{(a)}$.

It is now well-known (see [1], Lemma 17) that any finite product of left (or right) stable range 1 elements has left (or right) stable range 1.

In this short note we give a formula for the unitizer of a product of left stable range 1 elements and make some applications of it.

2 The formula

The proof goes along the lines of the proof of Lemma 17 in [1].

Theorem 1 If lsr(a') = 1, for every $x \in R$ there exists a unitizer $y_{xa}^{(a')}$ such that $u := a' + y_{xa}^{(a')}(1 - xaa') \in U(R)$. If also lsr(a) = 1, a unitizer for the product aa' is given by the formula

$$y_x^{(aa')} = ay_{xa}^{(a')} + y_{ux}^{(a)}u(1 - xay_{xa}^{(a')}).$$

Proof. Since lsr(a') = 1, a unitizer $y_{xa}^{(a')}$ and a unit $u =: a' + y_{xa}^{(a')}(1 - xaa')$, both exist. We start with x(aa') + b = 1 in R, that is, b = 1 - xaa'. Then

 $1 = xa(u - y_{xa}^{(a')}b) + b = xau - cb \text{ with } c = xay_{xa}^{(a')} - 1. \text{ Conjugation by } u \text{ gives } 1 = uxa - ucbu^{-1}, \text{ while } a - y_{ux}^{(a)}ucbu^{-1} =: v \in U(R). \text{ Hence } au - y_{ux}^{(a)}ucb = vu \in U(R) \text{ and finally, since } u = a' + y_{xa}^{(a')}b, aa' + (ay_{xa}^{(a')} - y_{ux}^{(a)}uc)b = aa' + [ay_{xa}^{(a')} + y_{ux}^{(a)}u(1 - xay_{xa}^{(a')})] \in U(R), \text{ as stated.} \blacksquare$

Notice that if a is a unit, a unitizer (independent of x) is $y_x^{(a)} = 0$. Therefore

Corollary 2 Let $u \in U(R)$. Then $y_x^{(au)} = y_{ux}^{(a)}u$ and $y_x^{(ua)} = uy_{xu}^{(a)}$.

Corollary 3 If lsr(a) = 1 then lsr(-a) = 1.

Proof. Just take u = -1 in the previous corollary: $y_x^{(-a)} = -y_{-x}^{(a)}$.

Corollary 4 Left sr1 elements are invariant to equivalences. If $u, v \in U(R)$ then

$$y_x^{(uav)} = uy_{xu}^{(av)} = uy_{vx}^{(a)}v$$

Proof. As above, this follows choosing zero the unitizers of units.

Recall that unit-regular elements (in particular, idempotents) have sr1. With respect to unitizers we provide the following

Proposition 5 If a = aua for $a \in R$ and $u \in U(R)$ then a unitizer for a (independent of x) is $u^{-1} - a$. If $e = e^2$, a unitizer for e (independent of x) is the complementary idempotent 1 - e.

Proof. Suppose a = aua with $u \in U(R)$ and x arbitrary in R. We show that $a + (u^{-1} - a)(1 - xa) \in U(R)$, that is, a unitizer for a (independent of x) is $y_x^{(a)} = u^{-1} - a$. It suffices to replace a with auu^{-1} :

 $a + (u^{-1} - a)(1 - xa) = auu^{-1} + (u^{-1} - auu^{-1})(1 - xauu^{-1}) = auu^{-1} + (1 - au)u^{-1}(1 - xauu^{-1}) = u^{-1} - (1 - au)u^{-1}xauu^{-1} =$

 $= [1 - (1 - au)u^{-1}x(au)]u^{-1} \in U(R), \text{ since } au \text{ is idempotent and } (1 - au)u^{-1}x(au)$ = $[1 - (1 - au)u^{-1}x(au)]u^{-1} \in U(R), \text{ since } au \text{ is idempotent and } (1 - au)u^{-1}x(au)$ is square-zero.

Just taking u = 1 in the previous proof shows that 1 - e is a unitizer for an idempotent e.

References

 Huanyin Chen, W.K.Nicholson Stable modules and a theorem of Camillo and Yu. J. of Pure and Applied Algebra 218 (2014), 1431-1442.