
Schreier lattices

1 Introduction

Because of the fundamental use of normal (and composition) series, most of the
Group Theory (text)books present three well-known strongly connected results:
the Zassenhaus Lemma (1934), the Schreier Refinement Theorem (1928) and
Jordan-Hölder Theorem (1868, 1889).

Some Lattice Theory (text)books present the corresponding generalizations,
mainly because of the use of lattices of finite length. Despite the fact that
[Zassenhaus] ⇒ [Schreier] and [Schreier] ⇒ [Jordan-Hölder], none of them does
mention Zassenhaus (but in the sequel justice is made!). All these generaliza-
tions are proved for modular lattices and so, can be also used for modules.

The purpose of this note is to show that Zassenhaus Lemma holds in more
general conditions. Therefore, since automatically Schreier Theorem and its
Corollary, Jordan-Hölder Theorem also hold, we finally extend the definition of
finite length far beyond modularity.

2 Preliminaries

Definition. A lattice L has condition (C) if for every 4 elements a, b, c, d ∈ L,
a ≤ b and c ≤ d imply (b ∧ d) ∧ ((a ∧ d) ∨ c) = (b ∧ d) ∧ ((c ∧ b) ∨ a).

Exercise 1 Condition (C) is equivalent to modularity.

Proof. If the lattice is modular then (b∧d)∧((a∧d)∨c)
mo
= (b∧d)∧((d∧(a∨c)) =

(b∧d)∧(a∨c) = (b∧d)∧(b∧(a∨c))
mo
= (b∧d)∧((c∧b)∨a). Conversely, suppose

a ≤ b and take d = b∨c. Then b = b∧d, a = a∧d and also (c∧b)∨a ≤ b, such that
b∧(a∨c) = (b∧d)∧((a∧d)∨c) = (b∧d)∧((c∧b)∨a) = b∧(b∧c)∨a = (b∧c)∨a.

Definitions. Let x/y and s/t be intervals in a lattice L. We say (see [1])
that x/y is upper transpose of s/t if there are elements a, b ∈ L such that
x/y = (a ∨ b)/b and s/t = a/(a ∧ b). We use the notation x/y ∼ s/t for upper

transpose and
−1
∼ for the inverse relation: lower transpose. Notice that x/y is

upper transpose of s/t iff y ∨ s = x and y ∧ s = t. It is readily seen that upper
(or lower) transpose relation is a partial order relation (reflexive, transitive and
antisymmetric) on the set of all intervals
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Two intervals are transpose if one of them is upper transpose for the sec-
ond, and, projective if they can be included in a finite sequence of intervals,
each successive intervals being transpose. Owing to the transitivity previously
mentioned, in such a sequence of transpose intervals, superfluous intervals will
be deleted.

Two chains

a = a0 ≤ a1 ≤ ... ≤ am = b
a = b0 ≤ b1 ≤ ... ≤ bn = b

are equivalent ifm = n and there is a permutation σ ∈ Sn such that the intervals
ai/ai−1 and bσ(i)/bσ(i)−1 are projective.

Exercise 2 1) x/y ∼ x/t ⇒ y = t.

2) A lattice L is distributive iff for every intervals in L, x/y ∼ s/t
−1
∼ x/v

⇒ y = v.

Proof. 1) Obvious: y = y ∧ x = t.

2) If x/y ∼ s/t
−1
∼ x/v then y ∨ s = v ∨ s = x and y ∧ s = v ∧ s = t. Hence

y = v by a well-known characterization of distributivity. Conversely, suppose

a∨ c = b∨ c and a∧ c = b∧ c. Then (a∨ c)/a ∼ c/(a∧ c) = c/(b∧ c)
−1
∼ (b∨ c)/b

and a = b.
Remark. Notice that x/y projective with x/z does generally not imply

y = z. However, in a distributive lattice the implication holds. Indeed, this
follows from

Proposition 3 ([1]) If in a distributive lattice L two intervals a/b and c/d are
projective, then there exists an interval x/y that is transpose of both a/b and
c/d.

Common refinements for finite chains.

For two finite chains in an arbitrary lattice
a = a0 ≤ a1 ≤ ... ≤ am = b (1) and
a = b0 ≤ b1 ≤ ... ≤ bn = b (2)

denote by aij = (ai ∧ bj) ∨ bj−1 respectively bji = (bj ∧ ai) ∨ ai−1 for each
i ∈ {1, 2, ...,m}, j ∈ {1, 2, ..., n}.

Observe that these elements refine the given chains.
Indeed, if a ≤ c, for every b, a ≤ (b∧c)∨a ≤ c holds. Hence, ai−1 ≤ bji ≤ ai

respectively bj−1 ≤ aij ≤ bj, that is

ai−1 = bn,i−1 ≤ b1i ≤ b2i ≤ ... ≤ bni = ai
bj−1 = am,j−1 ≤ a1j ≤ a2j ≤ ... ≤ amj = bj.

Globally, from the chains (1) and (2) we obtain the chains

a = b0 = a01 ≤ a11 ≤ a21 ≤ ... ≤ am1 = b1 ≤ a12 ≤ ... ≤ amn = bn = b (3)
a = a0 = b01 ≤ b11 ≤ b21 ≤ ... ≤ bn1 = a1 ≤ b12 ≤ ... ≤ bnm = am = b (4)

.

Since ai = bni and bj = amj, (4) is a refinement of (1) and (3) is a refinement
of (2). The refinements have the same number of elements.
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3 The pattern

Lemma 4 (Zassenhaus) If a ≤ b and c ≤ d then a ≤ a∨ (b∧c) ≤ a∨ (b∧d) ≤ b
and c ≤ c∨(d∧a) ≤ c∨(d∧b) ≤ d. Then (a∨(b∧d))/(a∨(b∧c)) ∼ (b∧d)/((a∨
(b∧ c))∧ (b∧ d)) and (c∨ (d∧ b))/(c∨ (d∧ a)) ∼ (b∧ d)/((c∨ (d∧ a))∧ (b∧ d)).
If the lattice is modular these intervals are projective.

Proof. First for the transpose intervals: indeed, denoting x = a ∨ (b ∧ d),
y = a∨(b∧c), s = b∧d and t = (a∨(b∧c))∧(b∧d), y∨s = (a∨(b∧c))∧(b∧d) =
a∨ (b∧d) = x is obvious, respectively y∧ s = t according to our notations. The
second verification is covered by a double symmetry a ↔ c, b ↔ d.

If the lattice is modular, by Exercise 1, the denominators of the right intervals
intervals are equal, so the left ones are projective, i.e.,

(a∨(b∧d))/(a∨(b∧c))
transp
∼ s/(x∧s) = s/(x′∧s)

transp
∼ (c∨(d∧b))/(c∨(d∧a)),

where x′ = c ∨ (d ∧ b).
Remark. As it is easily seen in the display of the Zassenhaus Lemma’s

proof, s/(x∧ s) and s/(x′ ∧ s) projective (instead of equal) would suffice for the
above (classical) proof. This simple observation was the starting point of our
considerations.

Theorem 5 (Schreier) In any modular lattice, two chains with the same top
and the same bottom elements have equivalent refinements.

Proof. Since the lattice is modular, by Zassenhaus Lemma, the intervals
aij/ai−1,j and bji/bj−1,i are projective (one takes bj−1 ≤ bj and ai−1 ≤ ai
instead of a ≤ b resp. c ≤ d): more precisely

(a ∨ (b ∧ d))/(a ∨ (b ∧ c)) projective to (c ∨ (d ∧ b))/(c ∨ (d ∧ a))

becomes

bji/bj−1,i = (ai−1 ∨ (ai ∧ bj))/(ai−1 ∨ (ai ∧ bj−1))

≈ (bj−1 ∨ (bj ∧ ai))/(bj−1 ∨ (bj ∧ ai−1)) = aij/ai−1,j.

Definition.- A chain between two elements a and b is called a composition
chain if

a = a0 < a1 < ... < an = b

has no refinements (i.e. successive intervals are simple ak/ak−1 = {ak−1, ak} for
every 1 ≤ k ≤ n). The number n is called the length of the composition chain.

An immediate consequence of Schreier theorem is now

Theorem 6 (Jordan-Hölder) In a modular lattice, any two composition chains
between the same two elements are equivalent.
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Therefore in the above definition, n is the length of the interval b/a, denoted
by l (b/a) . As a special case, in a lattice L with 0 and 1 the length l(L) of the
lattice L is l (1/0), if at least one such finite chain between 0 and 1 exists (in
this case we say that L has finite length).

4 Schreier lattices

A lattice is Schreier if every two chains between the same two elements have
equivalent refinements.

Problem 7 Is every Schreier lattice modular? If not, what must be added in
order to recover the modularity ?

Easy example for negative answer of the first question:

v

u

b

d
a

c

Something similar is the following well-known situation:
[Second isomorphism theorem] If a and b are elements in a modular lattice

L then transposed intervals a ∨ b/a and b/a ∧ b are isomorphic (in a canonic
way).

The converse fails. However, in [1], it was proved:
If a compactly generated lattice L has the property that a ∨ b/a ∼= b/a ∧ b

for every a, b ∈ L, then L is modular.

Definitions. Let {a, b, c, u, v} be a pentagon in a lattice L (see below).

a

c

b

u

v
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The pentagon is small if a ≺ c and is very small if all the elements cover
each other (i.e., the above diagram has no refinements).

Since there are nonequivalent chains from v to u, clearly, a very small pen-
tagon is not Schreier.

The existence of a pentagon does not imply the existence of a small pen-
tagon, nor of a very small pentagon.

Proposition 8 In a weakly atomic lattice, if there is a pentagon, there exists
also a small pentagon.

Proof. Indeed, there are elements a ≤ p ≺ q ≤ c which give the small pentagon

p

q

a

c

u

b

v

We still have q‖b (otherwise b ≤ q implies b ≤ c respectively q ≤ b implies
a ≤ b) and similarly p‖b.

Example. ”finite” ⇒ ”compactly generated” ⇒ ”weakly atomic”.

Question. How to connect the existence of a small pentagon to a very small
pentagon ?

Is this continuable ?
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