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1 Introduction

It is well-known that the elements a of a (unital associative) ring R may be
identified with the scalar matrices aIn ∈ Mn(R) and these matrices commute
with all the eij . The converse also holds (see [2] or [5]): Let R be a ring
containing n2 elements eij satisfying eijers = δjreis [the δ’s equations] and
∑n

i=1 eii = 1 [also called a full set of matrix units]. Then R ∼= Mn(C) where the
ring C is the centralizer of the eij in R.

Sketch of the proof. Define C as in the statement and for a ∈ R put aij =
n
∑

r=1
eriaejr. Then aij ∈ C and we have

n
∑

i,j=1

aijeij = a. Hence the bijection

needed is a←→ [aij ], and this is verified to be an isomorphism.
Note that according to the δ’s equations, this characterization of (full) matrix

rings uses n idempotents and n2 − n zerosquare elements, that is, n2 elements
satisfying some conditions.

In the last decade of the past century, the ”recognition” of (full) matrix
rings, has seen a new impetus, mainly by diminishing the number of elements
needed for a characterization.

In [7], a characterization was given using only n+1 elements (one nilpotent
together with all its powers and another n elements) and in [1] (see also [5]),
a characterization of matrix rings was given using only 3 elements (only two
powers of a nilpotent and another two elements).

More precisely, these characterizations follow.
Robson: A ring is a complete n × n matrix ring if and only if it contains

elements a1, ..., an, f such that fn = 0 and

1 = a1f
n−1 + fa2f

n−2 + f2a3f
n−3 + ...+ fn−1an.

Agnarrson et altri: Let R be a ring and p, q ≥ 1 be fixed integers. Then
R ∼= Mp+q(S) for some ring S iff there exist elements a, b, f ∈ R such that
fp+q = 0 and afp + f qb = 1.
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In both characterizations, one nilpotent of index n (or p+q) is given together
with some other elements which permit the reconstruction of the idempotents.

In the second characterization (see also [5], the ”only if” part of (17.10)), a
(strictly) lower triangular matrix (the sum of the elements on the subdiagonal)
is taken

f = E21 + E32 + · · ·+ Ep+q,p+q−1,

for which fp+q = 0, and another a, b two (strictly) upper triangular matrices
(with identity superdiagonal) are needed.

Notice that here it was essential to use both lower and upper triangular
matrices.

We proceed with the subject of this exposition, that is, the recognition of
the upper triagular matrix rings.

A result of the same genre (the base ring of the ring of upper triangular
matrices is the centralizer of the eij ’s) is a special case (Theorem 2.9) in [8].
The characterization of rings of (upper) triangular matrices was given using
n(n+1)

2 matrix units (i.e. all the upper triangular matrix units) together with
some conditions.

More precisely, we recall this special case (for which the natural quasi-order
on {1, 2, ..., n} is considered).

Theorem 1 Let R be a ring with a set {eij : i ≤ j} of matrix units, that is,
e11 + ...+ enn = 1 and eijekl = δjkeil.

R is isomorphic with a ring of upper triangular matrices Tn(S) if and only
if R has a subring S with 1 ∈ S and the following properties.

(i) S ⊆ C({eij : i ≤ j});
(ii) eiiRejj = Seij for i ≤ j;
(iii) ejjReii = {0} for i < j;
(iv) If seij = 0 for some s ∈ S (and i ≤ j), then s = 0.

Moreover, the isomorphism φ : Tn(S) −→ R is given: φ([aij ]) =
∑

i≤j aijeij .
The goal of this exposition is to perform the explicit inverse of φ, which is

not an easy task even for n = 2.

2 The n = 2 case

To simplify the writing denote e := e11, t := e12 and so e = e22.

2.1 Prerequisites

Lemma 2 Let e = e2 and r ∈ R. The following conditions are equivalent.
(i) ere = re;
(ii) ere = 0;
(iii) ere = er.
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Proof. (i) ⇒ (ii) e(re) = (ee)re = 0.
(ii) ⇒ (iii) ere = er(1 − e) = er.
(iii) ⇒ (i) ere = (1 − e)r(1 − e) = r − er − re + ere = r − re = re.
Definition. An idempotent e is called left semicentral if eRe = {0}. Equiv-

alently, re = ere for every r ∈ R and also equivalently, eR ⊳ R.

Lemma 3 If e is left semicentral, and t ∈ R satisfies et = t, te = 0 then
(iv) trt = 0,
(v) tre = 0, (v’) tre = tr ,
(vi) ert = 0; (vi’) ert = rt,
(vii) et = t equivalent to et = 0;
(viii) te = t equivalent to te = 0.

Proof. Just notice that in any ring and for any two elements a, b from ab = b,
ba = 0 follows b2 = 0. Then t2 = 0 and the rest is easy.

In what follows, (i)-(viii) will be used only with respect to this previous
lemma.

Remark. Note that t 6= 0 implies e /∈ {0, 1} (from et = t resp te = 0).
However all equalities hold also for t = 0.

We also mention ere = er(1− e)
(i)
= er− re (so a left semicentral idempotent

may not be central).

In the sequel we suppose e2 = e, et = t and te = 0 (so t2 = 0). Notice that
eRe = e11Re22 = e12S = Se12.

Lemma 4 Let S = C(t). If eRe = St = tS then for every r ∈ R there exist
s, s′, s′′ ∈ S such that rt = ts, tr = s′t and ere = s′′t.

Proof. The existence follows from the hypothesis and the following equalities

rt
(vi)
= ert

(viii)
= e(rt)e = ts, tr

(v′)
= tre

(vii)
= etre = s′t resp. ere = s′′t.

2.2 Direct characterization for triangular 2×2 matrix rings

To simplify the wording, we say that t has the cancellation property if s = 0
whenever s ∈ S and st = 0.

Theorem 5 Let e be a left semicentral idempotent in a ring R, t ∈ R is such
that et = t, te = 0 and for S = C(e, t) assume that t has the cancellation
property (with respect to S) and eRe = St = tS. Then the map ϕ : R→ T2(S)

given by ϕ(r) =

[

re + es s′′

0 er + s′e

]

where rt = ts, tr = s′t and ere = s′′t is

a ring isomorphism.

The inverse is given by ϕ−1

([

x y
0 w

])

= xe + yt+ we.
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Proof. We have already mentioned that from et = t, te = 0 follows t2 = 0. The
existence of the elements s, s′, s′′ follows from Lemma 4. Notice that, by the
cancellation property of t, these elements are unique with respect to rt = ts,
tr = s′t and ere = s′′t, respectively.

The entries of ϕ(r) belong to S, the centralizer C(e, t) = C(t, e).

Indeed, e(re + es) = ere
(i)
= re

(ii)
= (re + es)e, and t(re + es)

{v),(viii)
= ts,

(re + es)t
(vi)
= rt, and

e(er + s′e) = er + es′e
(ii)
= er

(iii)
= ere = (er + s′e)e, and t(er + s′e)t

(viii),(v)
=

tr
(v′)
= tre

(vii)
= etre = s′t

(vi)
= (er + s′e)t

ϕ is unital, i.e., ϕ(1) = I2: indeed, for r = 1 we get s = s′ = 1 and s′′ = 0
[using the cancellation property of elements of S with respect to t and e+e = 1].

ϕ is additive: we have r1t = ts1, r2t = ts2, tr1 = s′1t, tr2 = s′2t and
er1e = s′′1 t, er2e = s′′2 t.

Then ϕ(r1) =

[

r1e+ es1 s′′1
0 er1 + s′1e

]

, ϕ(r2) =

[

r2e+ es2 s′′2
0 er2 + s′2e

]

and so ϕ(r1) + ϕ(r2) =

[

(r1 + r2)e+ e(s1 + s2) s′′1 + s′′2
0 e(r1 + r2) + (s′1 + s′2)e

]

=

ϕ(r1 + r2). Indeed, (r1 + r2)t = ts1 + ts2 = t(s1 + s2), t(r1 + r2) = s′1t+ s′2t =
(s′1 + s′2)t and e(r1 + r2)e = s′′1t+ s′′2 t = (s′′1 + s′′2)t.

ϕ is multiplicative amounts to [comparing the corresponding entries of
both upper triangular matrices]:

(1,1): (r1e + es1)(r2e + es2) = r1r2e + es1s2 [indeed e(s1r2)e
(ii)
= 0 and

r1(er2e)
(i)
= r1r2e, (es1e)s2

(iii)
= es1s2]

(1,2): (r1e + es1)s
′′
2 + s′′1 (er2 + s′2e) = s′′1,2 where e(r1r2)e = s′′1,2t [here we

have to check [(r1e+ es1)s
′′
2 + s′′1 (er2 + s′2e)]t = e(r1r2)e = er1r2 − r1r2e;

indeed [(r1e+ es1)s
′′
2 + s′′1 (er2 + s′2e)]t = (r1e+ es1)er2e+ s′′1er2t+ s′′1tr2

(ii)
=

= r1er2e+ er1er2 = r1er2 − r1r2e + er1r2 − r1er2
(i)
= −r1r2e+ er1r2]

(2,2): (er1 + s′1e)(er2 + s′2e) = er1r2 + s′1s
′
2e [indeed e(r1s

′
2)e

(ii)
= 0 and

er1er2
(iii)
= er1r2, s

′
1es

′
2e

(i)
= s′1s

′
2e].

ϕ is injective: assume ϕ(r) =

[

re + es s′′

0 er + s′e

]

= 02, that is, re+es =

er + s′e = s′′ = 0 with rt = ts, tr = s′t and ere = s′′t.
As s′′ = 0 we have ere = 0 and (using (ii)) er = ere = re. Right multipli-

cation by e of re + es = 0 gives (by (iii)) re = 0. Left multiplication by e of
er + s′e = 0 gives (also by (iii)) er = 0, and so 0 = r − er = r − re = r, as
desired.

ϕ is surjective: xe+ yt+we = (re+ es)e+ ere+ (er+ s′e)e = re+ er(1−
e) + (1− e)r(1 − e) = r, as desired.
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3 The 3× 3 case

Here we start with the δ’s relations for three orthogonal idempotents e11, e22, e33,
two zerosquare e12, e23 and we define e13 := e12e23.

The additional δ’s relations hold: e213 = e12 (e23e12) e23 = 0, e11e13 =
e11e12e23 = e12e23 = e13, e13e11 = e12 (e23e11) = 0, e13e22 = e12 (e23e22) = 0,
e22e13 = (e22e12) e23 = 0.

Notice that e11 + e22 + e33 = 1 implies e11 = e22 + e33 and other two
permutations.

We gather here some obvious equivalences, consequences of the assumed δ’s
relations.

Lemma 6 (vii) e11e12 = e12 equivalent to e11e12 = 0;
(viii) e12e11 = e12 equivalent to e12e11 = 0.
(xii) e11e13 = e13 equivalent to e11e13 = 0.
(xiii) e13e11 = e13 equivalent to e13e11 = 0.
e12e22 = e12 equivalent to e12e22 = 0.
e22e12 = e12 equivalent to e22e12 = 0.
e22e23 = e23 equivalent to e22e23 = 0.
e23e22 = e23 equivalent to e23e22 = 0.
(xxi) e23e33 = e23 equivalent to e23e33 = 0.
(xxii) e33e23 = e23 equivalent to e33e23 = 0.
(xxv) e13e33 = e13 equivalent to e13e33 = 0.
e33e13 = e13 equivalent to e33e13 = 0.

Summarizing, for any idempotent e and element a,
ea = a is equivalent to ea = 0
ae = a is equivalent to ae = 0
ae = 0 is equivalent to ae = a, and
ea = 0 is equivalent to ea = a.

As e33 = e11+e22, we also have e33e22 = e22e33 = e22 and similarly e33e11 =
e11e33 = e11, e22e11 = e11e22 = e11.

We still suppose e11 is left semicentral (i.e., e11Re11 = {0}). Hence all
properties in Lemma 3 hold but we can add many new ones (related to e11)
corresponding to the zerosquares e23, e13. However, here e11 = e22 fails ! We
now have e11 = e22 + e33 (from e11 + e22 + e33 = 1).

Lemma 7 (i) e11re11 = re11;
(ii) e11re11 = 0;
(iii) e11re11 = e11r.
(iv) e12re12 = 0,
(v) e12re11 = 0, (v’) e12re11 = e12r ,
(vi) e11re12 = 0; (vi’) e11re12 = re12,
(ix) e13re13 = 0,
(x) e13re11 = 0, (x’) e13re11 = e13r ,
(xi) e11re13 = 0; (xi’) e11re13 = re13,

5



However e22 may not be left nor right semicentral but e33 is right semicentral.
Assuming e33re33 = 0 leads to another (similar and symmetric properties):

Lemma 8 (xiv) e33re33 = e33r,
(xv) e33re33 = 0,
(xvi) e33re33 = re33,
(xvii) e33re23 = 0, (xvii’) e33re23 = re23 ,
(xviii) e23re23 = 0
(xx) e23re33 = 0; (xx’) e23re33 = e23r,
(ix) e13re13 = 0,
(xxiii) e33re13 = 0, (xxiii’) e33re13 = re13,
(xxiv) e13re33 = 0, (xxiv’) e13re33 = e13r.

We start with

r = x11e11 + x12e12 + x13e13 + x22e22 + x23e23 + x33e33 (2)

and are looking to xij ∈ C(e11, e22, e12, e23) = C(e12, e23, e22, e33) =
= C(e11, e12, e13, e22, e23, e33).
The 12 relations obtained by left and right multiplication of (2) with the six

eij . The xij ’s are supposed to belong to the centralizer.
e11r = x11e11 + x12e12 + x13e13, re11 = x11e11
e22r = x22e22 + x23e23, re22 = x12e12 + x22e22
e33r = x33e33, re33 = x13e13 + x23e23 + x33e33
e12r = x22e12 + x23e13, re12 = x11e12
e13r = x33e13, re13 = x11e13
e23r = x33e23, re23 = x12e13 + x22e23.
11. For x11, by left and right multiplication with e11 we get (x11 − r)e11 =

0 = (x11 − r)e12 [actually also (x11 − r)e13 = 0] and the continuation is (almost
!) identical to the n = 2 case.

Since (x11 − r)e11 = (x11 − r)e12 = 0 we are searching for x11 = r + α,
commuting with e11 and e12, where αe11 = αe12 = 0.

e11x11 = x11e11 is equivalent to e11α = re11 − e11r
(i)
= e11re11 − e11r =

−e11re11 whence e11(α+ re11) = 0, α+ re11 ∈ r(e11) ∋ e11

and so we choose α + re11 = e11β. This way e11x11 = e11re11
(i)
= re11 =

x11e11 and we have to choose β for e12x11 = x11e12.

We have e12x11 = e12re11 + e12e11β
(v),(viii)

= e12β and x11e12 = re11e12 +

e11βe12
(vi)
= re12, so we need β such that re12 = e12β.

As re12
(vi′)
= e11re12

(viii)
= e11re12e11 ∈ e11Re11 = e11R(e22+e33) ⊆ e11Re22+

e11Re33 = e12S + e13S = e12S + e12e23S = e12S.
For n = 3, e11 6= e22. It is now e11 = e22 + e33.
Hence

x11 = re11 + e11s

with re12 = e12s.
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The commutation with e13: x11e13
(xi)
= re13 = re12e23 = e12se23 and

e13x11
(x),(xiii)

= e13s = e12e23s = e12se23 since eij commute with elements in
S.

The commutation with e22: x11e22 = e11se22 = e11e22s = e22s and e22x11 =
e22re11 + e22e11s = e22s since e22Re11 = {0}[was already checked]

The commutation with e23: x11e23 = e11se23 = e11e23s = e23s and e23x11 =
e23re11 + e23e11s = e23s since e23re11 = e22 (e23r) e11 = 0 (as above).

Checking x11 = re11 + e11s with re12 = e12s.

re11 = (re11 + e11s)e11
(ii)
= re11, ok, re13 = (re11 + e11s)e13

(xi)
= re13, ok

re12 = (re11 + e11s)e12
(vi)
= re12 ok, and

e11r = (re11 + e11s)e11 + x12e12 + x13e13
(ii)
= re11 + x12e12 + x13e13, that is,

x12e12 + x13e13 = e11r − re11 (3)

remains to be checked. That x11 belongs to the centralizer was checked above.

33. Now x33 will be similar to x11. We start with [e13(x33 − r) =]e23(x33 −
r) = e33(x33 − r) = 0 that is x33 = r + α with [e13α =]e23α = e33α = 0.

e33x33 = x33e33 is equivalent to αe33 = e33r − re33
(xiv)
= e33re33 − re33 =

−e33re33 whence (α + e33r)e33 = 0, α + e33r ∈ l(e33) ∋ e33 and so we choose
α+ e33r = βe33. Thus x33 = e33r + βe33 and we choose β for e23x33 = x33e23.

This (using (xx) resp. (xxii), (xvii)) gives e23r = βe23. Since e23r
(xx′)
= e23re33 =

e22e23re33 ∈ e22Re33 = e23S so there is s3 such that e23r = s3e23 and

x33 = e33r + s3e33.

The commutation with e13: x33e13 = e33re13 + s3e33e13
(xviii′),(xviii)

= = s3e13

and e13(e33r + s3e33)
(xiv)
= e13r, which holds, left multiplying e23r = s3e23 by

e12, since eij commute with elements in S.
The commutation with e22: x33e22 = (e33r+s3e33)e22 = s3e22 and e22x33 =

e22(e33r + s3e33) = s3e22 since e22e33 = e33e22 = e22.
The commutation with e12: x33e12 = (e33r+s3e33)e12 = s3e12 and e12x11 =

e12(e33r + s3e33) = s3e12 since e12e33 = e33e12 = e12.

It remains to verify re33 = x13e13 + x23e23 + x33e33, which amounts to
x13e13 + x23e23 = re33 − (e33r + s3e33)e33 = re33 − e33r.

12+22. The relations are e11r = x11e11 + x12e12 + x13e13, re22 = x12e12 +
x22e22 and re23 = x12e13 + x22e23.

Replacement in the first e11r = (re11+e11s)e11+x12e12+x13e13 gives (again)
(3): x12e12 + x13e13 = e11r − re11.

We can write the other two (r−x22)e22 = x12e12 and (r−x22)e23 = x12e13 =
x12e12e23 [the later follows from previous by right multiplication with e23).
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So r − x22 − x12e12 ∈ l(e23) = {e11, e13, e23, e33}.

We write also the other x22 relations: e22r = x22e22+x23e23, e12r = x22e12+
x23e13. Hence

e22(r−x22) = x23e23 and e12(r−x22) = x23e13 [the x’s are in the centralizer].
Both include x23.

The later can be written r − x22 − x23e23 ∈ r(e12) = {e11, e12, e13, e33} and
so (1− e22)(r − x22) ∈ r(e12) = {e11, e12, e13, e33}.

Here 1− e22 = e11 + e33.

Too complicated, so I give up !
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