ADDITIVE GROUPS OF RINGS WITH IDENTITY

SIMION BREAZ AND GRIGORE CALUGAREANU

ABSTRACT. A ring with identity exists on a torsion Abelian group exactly
when the group is bounded. The additive groups of torsion-free rings with
identity are studied. Results are also given for not reduced splitting mixed
rings with identity. The Abelian groups G such that, excepting the zero-ring,
every ring on G has identity are also determined.

1. INTRODUCTION

In the sequel, all the groups we consider are nonzero Abelian, and all the rings
are nonzero and associative. As customarily, for a ring R, we denote the additive
(Abelian) group by R, and for an Abelian group G, we say that R is a ring on G if
R*™ = G. Hereafter, a group will be called an identity-group (identity for short) if
there exists an associative ring with identity on G and strongly identity-group (S-
identity for short), if it is identity and, excepting the zero-ring, all associative rings
on G have identity. A group G is called nil if the only ring on G is the zero-ring.
Clearly nil groups are not identity nor S-identity.

Since unital rings embed in the endomorphism rings of their additive groups it
follows that identity-groups are isomorphic to additive groups of unital subrings of
endomorphism groups. As a special case, endo-groups (and among these, additive
groups of so-called E-rings) are identity-groups. Here an Abelian group G is called
an endo-group if there is a ring R over G such that R = End(G), a ring isomorphism.
However, a simple comparison (see 4.6.7-4.6.11, [1]) shows that endo-group is far
more restrictive than identity-group (e.g. any finitely generated group is identity,
but only cyclic groups are endo-groups).

It was known from long time that a torsion group is the additive group of a
ring with identity if and only if it is bounded, i.e., a bounded direct sum of finite
(co)cyclic groups. Consequently, it is not hard to show that the only S-identity
torsion groups are the simple groups Z(p), for any prime number p (for a proof,
see next Section). Moreover, the only torsion-free S-identity group is Q, the full
rational group, and there are no mixed S-identity groups.

Since there are no results on torsion-free or mixed identity-groups, this is what
we investigate in this note. In the torsion-free case we obtain results when the
typeset T(G) contains a minimum element which is idempotent and in the mixed
case significant results are found in the case of splitting mixed groups which are
not reduced.
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In the general case, the problem seems to be difficult (as many problems related
to torsion-free or mixed rings are). Thus, this note also intends to open a possible
new area of research.

For definitions, notations and results on Abelian groups we refer to L. Fuchs [2].
The largest divisible subgroup of an Abelian group G will be called the divisible
part of G, and a direct complement of the torsion part will be called a torsion-free
part. For results on additive groups of rings we refer to S. Feigelstock [1]. The left
annihilator of a ring R is ann;(R) = {a € R|aR = 0}. Similarly, the right and the
annihilator of a ring are defined. Obviously, any ring with identity must have zero
left (or right, or two-sided) annihilator. Since in any ring, disjoint ideals annihilate
each other, in the additive group of a ring, different primary components annihilate
each other, and any torsion-free ideal annihilates the torsion part. For a subgroup
H of R, (H) denotes the ideal generated by H in R.

2. STRONGLY IDENTITY GROUPS

Any ring multiplication may be extended from a direct summand, by taking the
ring direct sum with the zero-ring on a direct complement (also called a trivial ex-
tension). Since a finite direct (product) sum of rings has identity if and only if each
component has identity (the finite decomposition of 1 into central idempotents),
the ring obtained by any trivial extension has no identity. Hence S-identity groups
are indecomposable.

The strongly identity groups are rare phenomenon.

Theorem 1. A group is S-identity if and only if it is isomorphic to Z(p), for a
prime number p, or isomorphic to Q.

Proof. Since there are no mixed indecomposable groups, we expect to find only
torsion or torsion-free S-identity groups. Let G be an identity group with multi-
plication denoted x -y for =,y € G. For a prime p, consider the multiplication
(associative and both left and right distributive together with ) z oy = p(x - y).
Since this ring must be the zero ring or an unital ring, pG = 0 or pG = G for every
prime p. In the first case, since G is indecomposable (and so cocyclic) G = Z(p). In
the second case, G is indecomposable divisible and so G = Z(p™) (impossible, be-
cause not identity) or G 2 Q. Conversely, these two groups are S-identity. Indeed,
for every k = 1,...,p— 1 the multiplication by &k (on Z(p)) has identity: it is just the

multiplicative inverse E_l in the field Z(p). As for Q, recall that multiplications
on Q are determined by nonzero squares a? of rational numbers ([2], p. 291). That
is, for nonzero elements ¢, d € Q there are nonzero rationals 7, s such that ¢ = ra
and d = sa, and c¢-d = (rs)a®. Since a # 0, 1 = a~'a is the identity for this
(commutative, associative and without zero divisors) multiplication. (]

3. TORSION-FREE IDENTITY RINGS

It is readily checked that free groups and divisible torsion-free groups are identity
(more: a torsion-free group is a field-group if and only if it is divisible; see [1]).
Hence, if G = D(G) @ H, is a decomposition with the divisible part D(G) and a
reduced direct complement H, using the ring direct product, it follows at once that
G is an identity-group whenever H is so.

For easy reference we mention here ([2], 123.2) a generalization of the Dorroh
ring extension.
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Proposition 2. Let R be an A-algebra, with A a commutative ring with identity.
Then the ring Ra with Ry = A* @ R* and multiplication defined by (ai,r1) -
(ag,r2) = (a1 - ag,a1r2 + agry + r112) for all ay,a2 € A, r1,r2 € R, is a ring with
identity. The map R — R4 via v — (0,7) is an embedding of R in R4 as an
ideal, and Ry/R = A.

Corollary 3. For any group G, the direct product (sum) Zx G is an identity-group.
Proof. Tt suffices to take the trivial multiplication on G. O
In the torsion free case we have a converse for this corollary:

Proposition 4. Let X = {e, g;|i € I} be a mazimal independent system in G. The
following are equivalent:
(1) the partial operation defined by e-e =e,e-9;, =gi-e=¢i, gi - gx =0
extends to a (ring) multiplication with identity e on G;
(2) the characteristic x(e) is idempotent and minimum, and (e), is a direct
summand of G.

Proof. (1)=(2) (i) In order to define e - e = e, since x(ab) > x(a)x(b), we need
x(e) > x(e)?, and so (by definition of the characteristics product) x(e) = x(e)?,
i.e., e has idempotent characteristics. Further, since we need, e-a = a-e = a
for every a € G, x(a) > x(a)x(e) = x(e)x(a) > x(e) shows that e has minimum
characteristic.

(ii) Denote by N = (g;|i € I),. Then N - N = 0. Since (e), N N = 0, it remains
to prove that G = (e), + N.

Let € G be arbitrary. Since every element depends on a maximal independent
set, there are nonnegative integers n, k such that nx = ke + y, with y € N. If
d = (n,k), then d divides y and (1/d)y € N (because N is pure). Thus, dividing
nx = ke + y by d, we can suppose (n, k) = 1.

Multiplying the dependence relation by y yields nx -y = ky.

If uk +vn =1, then y = uky + vny = unx - y + vny, and so n divides y. Since
(n,k) =1, and n divides y, it also divides the identity e. Thus, G itself is n-divisible
(indeed, for every g € G, g = g - e and n|e imply n|g) and = (k/n)e + (1/n)y, so
x € (e), + N (again (1/n)y € N, because N is pure).

(2)=(1) Note that by (i) and (ii) it follows that N = (g;|i € I), is a direct
complement for (e),. Moreover, since the type of e is idempotent then (e), has a
natural multiplication such that it becomes a ring isomorphic to a unital subring
P~>°Z of Q generated (as subring) by all % with p € P, where P is the set of all
primes p with the property that (e), is p-divisible. Since N is a P~*°Z-module, we
can apply the previous proposition to obtain the conclusion. O

Remark. In the unital ring on G that occurs by this construction, 1 € P~1'Z
is the identity. Denoting it by e € G, the multiplication (with identity e) on G
is given by linearly extending (over P~'Z) e-e =e,e-h=h-e=h, h-h; =0
(h,h1 € H). Observe that the characteristic of x(e) is idempotent and minimum
in G.

This way, torsion-free identity-groups which admit a Dorroh-like ring multipli-
cation are characterized.

Remark. In a torsion-free group, the subgroup purely generated by an element
of idempotent and minimum characteristic might not be a direct summand. For
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instance, consider two rank 1 nil groups H, K with types t(H) = (0,1,0,1,...) and
t(K) = (1,0,1,0,...). Then the direct sum H @& K contains an element h + k of
(minimum and idempotent) characteristics (0,0, ...), with x(h) = (0,1,0,...) and
x(k) = (1,0,1,...). But the subgroup purely generated by h + k is not a direct
summand.

For the case of mixed groups (by a mixed group we mean a genuine mixed group,
ie. 0# T(G) # G), since there exist no nil mized groups (Szele, 120.3 [2]), when
finding identity-groups, no mixed groups have to be excepted.

Recall (4.6.3, [1]): let R be a ring with trivial left annihilator and R = A+ B
for subsets A, B of R. If A> = B?> =10 then R =0.

Hence, a (direct) sum of two (nonzero) nil groups is not identity and so, a mized
group with divisible torsion part and nil torsion-free complement is not identity.
But nil torsion-free groups are far of being known, so this covers only a few known
situations.

We first settle the case when the torsion-free part is divisible.

Proposition 5. A mized group with divisible torsion-free part is identity if and
only if the torsion part is bounded.

Proof. Such groups are splitting and so have the form G = T(G) ® (B Q) with
torsion part T'(G). If R is a ring on G, it is proved in [1] (4.3.15), that any ring
with trivial annihilator on the group direct sum above is also a ring direct sum
on the components (i.e., it is fissible). Since identity rings have trivial annihilator,
and ring direct sums have identity if and only if the components have identities,
T(G) must be bounded. Conversely, D(G) = @ Q is known to be identity and so,
if T(G) is bounded, G is identity. O

The second case we discuss is when the torsion part is not reduced.

Proposition 6. If the torsion part is not reduced, i.e., G = DT(G) ® H with
(mazximal) torsion divisible DT (G), and R is a ring with identity on G, then (a)
for any relevant prime relative to DT(G), H is not p-divisible and (b) hy(1) =0
(in both H or G).

Proof. (a) As intersection of two ideals (the torsion part and the divisible part are
fully invariant subgroups), DT(G) is also an ideal which, being torsion divisible,
must be nil (ideal), i.e., t- ' =t' -t = 0 for every ¢, € DT(G).

If H is p-divisible then G = Z(p*°) @ K and Z(p*°) annihilates R and so G
is not identity group. Indeed, let * € R, a € Z(p™) with ord(a) = p*. Since
G is p-divisible, there is y € G such that x = p*y and it is readily checked that
a-x=x-a=0.

(b) For any relevant prime p (relative to DT(G)) we show that 1 ¢ pG. Indeed,
otherwise 1 € pG implies pG = G, the left member being ideal in R, which is
impossible: pG = p(T(G) ® H) = pT(G) @ pH =T(G) ® pH < G. O

The third case is with a divisible torsion part, again splitting, so let R be a ring
on G =T(G)®V, with reduced torsion-free V. Here we must except the (already
discussed) identity case when V has a cyclic direct summand.

If for a relevant prime p, V' is p-divisible, then Z(p>°) annihilates all R and so G
is not identity.
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The remaining case is when pV # V for all relevant primes. Some groups of this
type are considered in [1](p. 8).

Suppose G = H @ Z(p) with torsion-free not p-divisible H. Choose b € H with
hp(b) = 0. For any positive integer n, choose a,, € Z(p>) with ord(a,) = p". The
map b® b+ a, can be extended to an epimorphism H @ H — Z(p").

Therefore a ring R with RT = G can be constructed so that (H) N Z(p*) is an
arbitrary proper subgroup of Z(p).

However, these are not unital rings. Indeed, denote by R a ring constructed as
above. Then

(H) +Z(p>) ., Z(p™)
R/(H) = o~ ~7 p°°
is a divisible p-group, which (not being bounded) is not identity. Hence so is G.

Finally, note that a consequence of Proposition 2 also gives mixed identity-
groups, using the Dorroh-like construction. That is

Corollary 7. Let P be a set of prime numbers and G a p-divisible group with zero
p-components for all p € P. Then the direct sum (P™'Z)" & G is an identity-
group with respect to the Dorroh-like multiplication defined by (q1,x1) - (g2, x2) =
(q1-2, 12 + qo1) for all q1,q2 € P7'Z, x1,25 € G.

Here, for a set of prime numbers P, @ C P C P, P~'Z denotes the unital
subring of Q generated (as subring) by all % with p € P. Obviously (P~1Z)" is
p-divisible for all p € P.

In closing this paper here are two results also related to our subject

Proposition 8. A group has only identity-subgroups if and only if it is a direct
sum of a bounded group and a torsion-free identity-group which has only identity-
subgroups.

Proof. Suppose G has only identity-subgroups. Since its torsion part must be
identity, T(G) (together with its subgroups) is bounded and so (Baer-Fomin) G
is splitting: G = T(G) @ V. Here V, but also all its subgroups, must be identity
and so, must have an element of minimum and idempotent type. The converse is
obvious. O

Despite the fact that, having only identity-subgroups seems a strong condition
on torsion-free groups, we were not able to give a useful characterization for such
groups. Since the subgroups purely generated by elements must have idempotent
type (otherwise these are nil and so not identity) such groups have only idem-
potent types in their typeset (more, these types have only finitely many nonzero
components). Among finite rank torsion-free Butler groups (a Butler group is a
homomorphic image of a completely decomposable group) the quotient divisible
groups are exactly those which have only idempotent types (see [3]), 8.6).

Proposition 9. A group has only identity quotient groups if and only if it is a
direct sum of a bounded group and a finite rank free group.

Proof. Suppose G has only identity quotient groups. If G has infinite rank, there
is an epimorphism G — Q/Z, a contradiction.

Thus G has finite rank. If we take a torsion-free quotient of rank 1, this has
idempotent type. If this is not free, again we can find a torsion divisible quotient, a
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contradiction. Therefore, every rank 1 torsion-free quotient is free and so G (having
finite rank) has the decomposition we claimed: G = T @ F with a finite rank free
F.
Finally, if some p-component is not bounded, again we can find an epimorphism
to a torsion divisible group, a contradiction.
Since bounded groups and free groups are identity-groups, the converse follows.
O
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