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Abstract

A unit u in a ring R is called exceptional if 1− u is also a unit. Such
units were studied from the Number Theory point of view. In this paper,
these are studied from Ring Theory point of view with special empha-
sis to matrix rings, where several characterizations are given. Replacing
units by exceptional units, a special class of clean elements (called ex-
clean) is defined. Among other things, ex-clean 2×2 integral matrices are
characterized.

1 Introduction

There are three especially important sets of elements in Ring Theory: Idem(R),
the idempotents, N(R), the nilpotents and U(R), the units in a ring R.

For some element a in any of these sets we may wonder if 1 − a belongs to
the same set.

The answer is affirmative for idempotents (1−a is the complementary idem-
potent), is negative for nilpotents (1− a is a unit) and for units gives rise of the
following

Definition. A unit u ∈ U(R) is called exceptional (exunit, for short) if
1 − u ∈ U(R). In the sequel we denote by Ue(R) the subset of exunits in R.
Equivalently, there is a unit v such that u+ v = 1.

Note that such questions were already addressed in Ring Theory for some
other type of elements. The answer is affirmative for nil-clean or clean or ex-
change elements but may fail for (unit) regular or weakly clean (see [13]) ele-
ments.

Considering two units u, v of sum 1 (or the equation 1+u+v = 0) is not new.
This equation was considered by Nagell in a series of papers (1959, 1960, 1964,
1968, 1969) where the solvability of this equation in an algebraic extension of
the rationals is studied. The solvability is proved (for instance) in the cases of a
quadratic extension, a cubic extension with negative discriminant, or a quartic
extension satisfying certain conditions. It is also proved (1964, but also proved
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independently in 1961 by S. Chowla) that for an arbitrary algebraic extension,
the equation has only finitely many solutions in units u, v.

Thus, Nagell studied exunits from Number Theory point of view.
After a 45 years break, recently, exunits were studied in Zn and (as a small

generalization) in finite commutative rings (see [12], [16], [6]) again from Number
Theory point of view. In [12] for instance, Sander determines the number of
representations of an arbitrary element of Zn as the sum of two exunits, that
is, the sumset Ue(Zn) + Ue(Zn) is obtained.

In this paper we study exunits from Ring Theory point of view, with a special
emphasis to matrix rings.

In Section 2, general facts about exunits in arbitrary (unital) rings are given,
while in Section 3 several characterizations of exunits in matrix rings are given.
In Section 4, replacing the units in the definition of clean elements in rings, by
exunits we define the ex-clean elements, give numerous examples and charac-
terize the 2× 2 integral ex-clean matrices.

In order not to further lengthen this paper (and somehow keep the subject
essentially about matrices), in the last section some comments and research
directions (for rings) are given. These will be addressed in a subsequent study.

All the rings we consider are (associative) with identity. By a triangular
matrix we mean an upper triangular one. A unit of type 1 + t with t ∈ N(R)
is called unipotent. Whenever it is more convenient, we will use the widely
accepted shorthand “iff” for “if and only if” in the text.

2 General facts

As already mentioned in the introduction, u ∈ U(R) is exceptional iff there is
v ∈ U(R) such that u + v = 1, and so clearly v is also exceptional. So actually
this definition gives pairs of exunits. In the sequel we use the wording ”pair of
exunits” only with this meaning.

For a ring R, U(R) is generally not closed under addition. However, exunits
appear precisely when a sum of units is a unit. Indeed, if u + v = w with
u, v, w ∈ U(R) then uw−1 + vw−1 = 1.

A ring was termed 2-good (see [15]) if every element is a sum of two units. As
above, in such rings (in particular fine rings 6= F2 - see [5]) every unit provides
(at least) one pair of exunits.

In any nonzero ring 1 ∈ U(R) is not exceptional and more general, unipotents
are not exunits.

Recall that a ring was called UU in [2] if U(R) = 1 + N(R), i.e., all units
are unipotent. Hence, UU rings have no exunits. In particular Boolean rings or
the field F2, have no exunits. Actually, this is the only field without exunits.

All units, excepting 1, are obviously exceptional in any division ring D, that
is Ue(D) = D − {0, 1}.

”Exceptional” is invariant to conjugations: for u ∈ Ue(R) and v ∈ U(R),
v−1uv ∈ Ue(R) (indeed, 1− v−1uv = v−1(1− u)v ∈ U(R)).
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For u, v ∈ Ue(R), examples will show that both −u ∈ Ue(R) or uv ∈ Ue(R)
may fail.

Simple properties are gathered (for easy reference) in the next proposition
and some examples follow.

Proposition 1 (a) In any ring R, the only possible order 2 exunit is −1. This
is the case iff 2 ∈ U(R).

(b) All possible (order n) exunits are roots of the polynomial 1 +X +X2 +
...+Xn−1, that is, are roots of unity 6= 1.

(c) The number of exunits in Zn is n
∏

p|n

(1− 2
p
) with prime p.

(d) Any pair of exunits u, v determines another two pairs of exunits. These
three pairs are different if u, v are not roots of the polynomial X2−X+1 ∈ R[X ].

(e) For any pair of exunits u−1v = vu−1 resp. (equivalently) uv−1 = v−1u
(each exunit commutes with the inverse of its pair). More, exunits in a pair are
mutually conjugate.

(f) Inverses of exunits are also exunits.
(g) Products of exunits may not be exunits. Even u(1−u) /∈ U(R) is possible.

Proof. (a) Suppose u2 = 1 is an exunit. Then by left multiplying (1−u)(1+u) =
1 − u2 = 0 with (1 − u)−1 we get 1 + u = 0, i.e. u = −1. However, −1 is
exceptional iff 1 − (−1) = 2 is a unit. Actually whenever 2 is a unit, it is also
an exunit.

(b) If an = 1 in any (unital) ring R, then a ∈ U(R) and if a ∈ Ue(R), by
left multiplying (1− a)(1 + a+ a2 + ...+ an−1) = 1− an = 0 with (1− a)−1 we
obtain 1 + a+ a2 + ...+ an−1 = 0.

(c) See [12], but very likely far earlier.
(d) Multiplying u + v = 1, both sides with u−1 resp. v−1 gives 1 = u−1 +

(−u−1v) = u−1 + (−vu−1) and 1 = v−1 + (−uv−1) = v−1 + (−v−1u).
For the second statement, suppose u+v = 1, 1−u+u2 = 0 = 1+v+v2. Then

v = −u2, u = −v2 and since u3 = v3 = −1 (by multiplying with 1+u resp. 1+v),
u−1 = −u2 = v (and v−1 = −v2 = u), so 1 = u−1 + (−u−1v) = v−1 + (−uv−1)
are the same pair.

(e) Follows from the proof of (d). It is easy to check v = uvu−1 and u =
v−1uv.

(f) If u, 1− u ∈ U(R) then 1− u−1 = −(1− u)u−1 ∈ U(R).
(g) Examples are given in the next section.

Examples. 1) 4 and 11 are order 2 units in Z15, but none is exceptional.
The exunits in Z15 are 2, 8, 14.

2) For each idempotent e ∈ R, 2e − 1 is an order 2 unit. By the above
proposition, it is an exunit iff 2e− 1 = −1, i.e. iff 2e = 0 (e.g. 3 in Z6).

3) Among other characterizations, a ring R is local iff for any a ∈ R, a ∈
U(R) or 1− a ∈ U(R). Since the disjuction ”or” has not an exclusive meaning,
local rings may have exunits. Indeed, 2 is a unit (so forms a pair of exunits with
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−1) in the ring of integers localized at the prime ideal pZ: Z(p) = {m
n

∈ Q :

gcd(p, n) = 1}, for any odd prime p. Clearly 2 · 1
2 = 1 with p not dividing 2.

Other properties are given in the next

Theorem 2 (a) An element is an exunit in a direct product (sum) of rings iff
all its components are exunits.

(b) Let u be an exunit in R, e2 = e ∈ R and e + u ∈ eRe. Then eue is an
exunit in eRe.

(c) Let A be a proper ideal in R. If u is an exunit in R then u + A is an
exunit in R/A. However, exunits may not lift in a factor ring R modulo a proper
ideal.

Proof. (a) Obvious.
(b) Recall that the units in a corner ring are given by the equality U(eRe) =

(eRe) ∩ (e + U(R)). Equivalently, a = e + u is a unit in eRe iff a ∈ eRe. Also
note that in this case, a = eae = eue, and so eu−1e is the inverse of a = eue
(both in eRe).

So every unit a of eRe is determined by a unit u of R. If u is an exunit, we
just multiply u+ v = 1 both sides with e: eue+ eve = e.

(c) First part is obvious. As seen above 2, 8, 14 are exunits in Z/15Z, but
do not lift since Z has no exunits.

Remark. The property (b) does not imply that corners of rings with ex-
units have exunits : Z is a corner for M2(Z), which has plenty of exunits (see
Proposition 11, next section).

3 Exunits in matrix rings

We (mainly) address this over commutative rings in order to benefit of deter-
minants, Cayley-Hamilton theorem and other ingredients.

We note that a matrix U ∈ Mn(R) is an exunit iff so is its transpose UT .
It is easy to characterize exceptional invertible matrices via the characteristic

polynomial.

Proposition 3 Let R be a commutative ring, U ∈ GLn(R) and let pU (X) =
det(XIn − U) be the characteristic polynomial of U . Then U is exceptional iff
pU (1) ∈ U(R).

Proof. Obvious: pU (1) = det(In − U).

Corollary 4 (i) A 2 × 2 matrix U over a commutative ring R is an exunit iff
det(U) ∈ U(R) and 1− Tr(U) + det(U) ∈ U(R).

(ii) A 3 × 3 matrix U over a commutative ring R is an exunit iff det(U) ∈
U(R) and 1− Tr(U) + 1

2 (Tr(U)2 − Tr(U2))− det(U) ∈ U(R).
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Proof. (i) Indeed det(I2 − U) = 1− Tr(U) + det(U).
(ii) Indeed pU (X) = X3−Tr(U)X2+ 1

2 [Tr(U)2 −Tr(U2)]X −det(U) and so
det(I3 − U) = 1− Tr(U) + 1

2 [Tr(U)2 − Tr(U2)]− det(U).

Remarks. 1) If the characteristic of R is zero, pU (X) = det(X.In − U) =

n
∑

k=0

Xn−k(−1)k 1
k!Tk where Tk =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Tr(U) k − 1 0 ...
Tr(U2) Tr(U) k − 2 ...

...
...

. . .
...

Tr(Uk−1) Tr(Uk−2) ... 1
Tr(Uk) Tr(Uk−1) ... Tr(U)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Therefore U ∈ GLn(R) is exceptional iff det(In − U) =
n
∑

k=0

(−1)k 1
k!Tk ∈

U(R).
2) For 3 × 3 matrices we get 1

2 [Tr(U)2 − Tr(U2)] = (u11u22 − u12u21) +
(u11u33 − u13u31) + (u22u33 − u23u32), that is, the sum of the diagonal 2 × 2
minors of U (i.e. the cofactors of the diagonal entries): A33 + A22 + A11 =
∣

∣

∣

∣

u11 u12

u21 u22

∣

∣

∣

∣

+

∣

∣

∣

∣

u11 u13

u31 u33

∣

∣

∣

∣

+

∣

∣

∣

∣

u22 u23

u32 u33

∣

∣

∣

∣

.

3) Obviously, all invertible 2× 2 matrices with Tr(U) = 1 (over any commu-
tative ring) are exceptional since in this case det(I2 − U) = det(U).

We can easily discard the triangular case over any (not necessarily commu-
tative) ring.

Proposition 5 Let U be a triangular invertible n× n matrix over any ring R.
Then U is exceptional iff the diagonal entries are exceptional. If 2 ∈ U(R) then
2In is exceptional.

Proof. A triangular matrix U is invertible iff its diagonal entries are units, that
is u11, ..., unn ∈ U(R). Same for In − U , i.e. 1− u11, ..., 1− unn ∈ U(R). So all
diagonal entries must be exunits.

Since U(Z) = {±1} and none is exceptional we obtain at once

Corollary 6 There are no triangular exceptional integral invertible matrices.

However, there exist 2× 2 and 3× 3 triangular exunits. Moreover, these can
be diagonal.

Example. Over Z3, for any a, the matrices

[

2 a
0 2

]

are exunits (in par-

ticular U = 2I2 is diagonal). Similarly U = 2I3 is a diagonal 3× 3 exunit.
More general, since in any division ring D, Ue(D) = D − {0, 1}

Proposition 7 A triangular matrix U over any division ring D is an exunit
iff no diagonal entry is 0 or 1.
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Having clarified the case of 2×2 matrices with (at least) one zero off diagonal
entry (i.e. triangular matrices), we proceed with the matrices which have (at
least) one zero diagonal entry.

Proposition 8 Let A =

[

a b
c 0

]

∈ M2(R) with b, c ∈ U(R). Then

(i) A is invertible.
(ii) A is an exunit iff a− 1 + bc ∈ U(R).

(iii) Same conclusions for matrices of form

[

0 b
c d

]

(here cb+d−1 ∈ U(R)

gives the exunits).

Proof. (i) It is readily checked that A−1 =

[

0 c−1

b−1 −b−1ac−1

]

.

(ii) By writing (A− I2)W = I2 with W =

[

x y
z t

]

we get









(a− 1)x+ bz = 1
(a− 1)y + bt = 0

cx− z = 0
cy − t = 1









,

system with solutions iff a − 1 + bc ∈ U(R) (we replace z = cx in the first

equation). If so, we get (A−I2)
−1 =

[

(a− 1 + bc)−1 (a− 1 + bc)−1b
c(a− 1 + bc)−1 c(a− 1 + bc)−1b− 1

]

,

i.e., the right inverse turns out to be also left inverse.
(iii) These matrices are obtained from the ones in the statement, conjugating

with

[

0 1
1 0

]

.

Remarks. 1) If R is a division ring, the conditions are b 6= 0 6= c and
a− 1 + bc 6= 0, respectively.

2) Actually a−1+bc = −(1−Tr(U)+det(U)) if det(U) = ad−bc for a matrix
over a not necessarily commutative ring, so same condition as in Corollary 4, in
the commutative case.

3) Matrices of this shape do not form a subring of M2(R) (as triangular do).

A 3× 3 version also holds

Proposition 9 Let A =





a b c
d e 0
f 0 0



 ∈ M3(R) with c, e, f ∈ U(R). Then

(i) A is invertible.
(ii) A is an exunit iff b − (a+ cf − 1)d−1(e − 1) ∈ U(R).

Proof. (i) As in the previous proposition we search for a 3× 3 matrix X such
that AX = I3 and check that also XA = I3 holds. The suitable (unique) matrix

is A−1 =





0 0 f−1

0 e−1 −e−1df−1

c−1 −c−1be−1 −c−1af−1 + c−1be−1df−1



.
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(ii) Analogously, for (A − I3)Y = I3 we replace a and d by a − 1, d −
1 respectively and the SE corner by −1. The system is solvable if b − (a −
1 + cf)d−1(e − 1) has a right inverse. However, since we have to check also
Y (A − I3) = I3 we need this to be a (two-sided) unit. If we denote α =
[b − (a − 1 + cf)d−1(e − 1)]−1 and β = (a − 1 + cf)d−1 we get (A − I3)

−1 =




−d−1(e − 1)α d−1[1 + (e− 1)αβ] −d−1(e− 1)αc
α −αβ αc

−fd−1(e− 1)α fd−1[1 + (e− 1)αβ] −fd−1(e − 1)αc− 1



 (just note b−

β(e− 1) = α−1).

As for the general 2 × 2 case, if M2(R) is Dedekind finite, we have the
following

Proposition 10 Let U =

[

a b
c d

]

be a matrix, a, d ∈ U(R) and suppose

M2(R) is Dedekind finite. Then U is an unit iff a − bd−1c, d − ca−1b ∈ U(R)
and an exunit iff also a− 1− bd−1c, d− 1− ca−1b ∈ U(R).

Proof. Let W =

[

x y
z t

]

be such that UW = I2. This amounts to the system

ax+ bz = 1
ay + bt = 0
cx+ dz = 0
cy + dt = 1

and the middle equations can be solved as y = −a−1bt and z = −d−1cx. By
replacement we get (a − bd−1c)x = 1 and (d − ca−1b)t = 1 so W exists iff
a− bd−1c, d− ca−1b ∈ U(R). In order to have an exunit we also need a matrix
P such that (U − I2)P = I2, that is the same as above, replacing a by a − 1
and d by d − 1 (this explains why we prefer U − I2 instead of I2 − U). So
a− 1− bd−1c, d− 1− ca−1b ∈ U(R).

Remarks. 1) Over a division ring the conditions become a− bd−1c 6= 0, 1 6=
d− ca−1b.

2) There are another three propositions which analogously give 2 exunits:
a, a− 1, c ∈ U(R) (so a is exunit) together with b−ac−1d, d− ca−1b ∈ U(R)

and b− (a− 1)c−1(d− 1), (d− 1)− c(a− 1)−1b ∈ U(R),
b, c ∈ U(R) together with b−ac−1d, c−db−1a ∈ U(R) and b−(a−1)c−1(d−1),

c− (d− 1)b−1(a− 1) ∈ U(R),
b, d, d− 1 ∈ U(R) (so d is exunit) together with a− bd−1c, c−db−1a ∈ U(R)

and a− 1− b(d− 1)−1c, c− (d− 1)b−1(a− 1) ∈ U(R).
The remaining possibilities a, b ∈ U(R) or c, d ∈ U(R) are also covered by

transpose.
3) For b, c ∈ U(R) and d = 0 we need b+ (a− 1)c−1, c+ b−1(a− 1) ∈ U(R),

both equivalent to bc+ a− 1 ∈ U(R), as in the previous proposition.

For integral matrices more details are given in the following characterization
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Proposition 11 A 2 × 2 integral matrix U is an exunit iff det(U) = 1 and
Tr(U) ∈ {1, 3} or else det(U) = −1 and Tr(U) ∈ {−1, 1}.

Proof. Immediate from Corollary 4.

Corollary 12 A matrix ring over a ring without exunits may have exunits.

Corollary 13 For 2×2 integral exunit U , −U is also an exunit iff det(U) = −1.

Proof. Just note that Tr(−U) = −Tr(U) and det(−U) = det(U).

Example. U =

[

−1 5
−1 4

]

is an integral exunit but −U =

[

1 −5
1 −4

]

is

not (the trace is −3).
This example shows that the opposite of an exunit may not be an exunit.

Moreover, U and I2 − U are exunits but U(I2 − U) =

[

3 −10
2 −7

]

is not:

the trace is −4 (or directly: I2 −

[

3 −10
2 −7

]

=

[

−2 10
−2 8

]

is not invertible).

Hence, products of exunits may not be exunits.

It is considerably harder to determine the 3×3 invertible integral exceptional
matrices. We analyze some special cases.

In an invertible integral matrix, since the determinant must be ±1, the
(three) entries in any row or in any column must be coprime. More precisely

Proposition 14 Let a, b, c be entries in any row (or any column) of an invert-
ible integral 3 × 3 matrix U and let a be the diagonal entry. Two necessary
conditions for U to be an exunit are: a, b, c are coprime and so are 1− a, b, c.

So if a, b, c are entries in a row (or column) and a is the diagonal entry, we
should have gcd(a; gcd(b; c)) = 1 = gcd(1 − a; gcd(b; c)).

As a special case

Proposition 15 Let U be a 3× 3 invertible integral matrix.
(i) If U has two not diagonal even entries in the same row or in the same

column, then U is not exceptional.
(ii) There are infinitely many exceptional invertible matrices with two even

entries in the same row or in the same column, one being diagonal.

Proof. (i) If two not diagonal entries in the same row (or column) are even the
corresponding diagonal entry must be odd. Then in I3 − U , the entries in the
same row (or column) are even and so det(I3 − U) ∈ 2Z. Hence U is not an
exunit.

(ii) We discuss the case u11 = u31 = 0 and (since det(U) = ±1) so u21 = ±1
case.
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If det(U) = 1 and u21 = 1, then for u33 = u13 = u32 = 1, u12 = 0 and

u23 = −2, we have infinitely many exunits: U =





0 0 1
1 a −2
0 1 1



. The case

u21 = −1 is analogous.
If det(U) = −1 and u21 = 1, then for u33 = u13 = 1, u32 = −1, u12 = 0 and

u23 = −2, we have infinitely many exunits: U =





0 0 1
1 a −2
0 −1 1



. The case

u21 = −1 is analogous.

Example. U =





0 1 1
1 0 0
0 1 0



 with U2 =





1 1 0
0 1 1
1 0 0



 and det(U) = 1,

det(I3 − U) = −1 covers several cases addressed in the previous proof.

4 Ex-clean

In a ring R with exunits an element a is (strongly) ex-clean if a = e + u with
e2 = e ∈ R and u ∈ Ue(R) (and e, u commute).

As previously noticed, if u ∈ Ue(R), −u may not be exceptional. Hence
1− a = (1 − e)− u is clean but may not be ex-clean.

If u+ v = 1 then a− 1 = e− v is also clean (and may not be ex-clean).
We start this section with some easy observations on such elements in arbi-

trary (unital) rings.
In any (unital) ring, units, nilpotents and idempotents are known to be clean.

More precisely, for u ∈ U(R), u = 0 + u is a (trivial) clean decomposition, for
t ∈ N(R), t = 1 − (1 − t) is a (trivial) clean decomposition and for e = e2,
e = (1− e) + (2e− 1) is a clean decomposition.

As for ex-clean elements, since u = 0 + u, exunits u ∈ Ue(R), still are
(trivial) ex-clean, but these have also the other trivial clean decomposition u =
1 − (1 − u) = 1 − v if u + v = 1 and v = 1 − u ∈ Ue(R). However, as already
noticed, if v ∈ Ue(R), −v may not be an exunit, so the last decomposition is
clean but may not be ex-clean.

Rephrasing, a unit has both trivial clean decompositions (u = 0 + u = 1 −
(1− u)) iff it is an exunit.

The above given clean decomposition of the idempotents, is an ex-clean de-
composition iff 2e = 0 (see Proposition 1, (a)).

As for the trivial idempotents, we mention the following.
In any ring R, 0 = e + u implies e = −u ∈ U(R) so e = 1 and 0 = 1 + (−1)

is ex-clean iff 2 = 0. Hence, 0 is ex-clean only in rings of characteristic 2.
In any ring R, 1 = e+ u implies 1− e = u ∈ U(R) so e = 0 and 1 = 0+ 1 is

not ex-clean. Hence, 1 is not ex-clean in any ring.
In any ring R, a nontrivial idempotent cannot be trivial ex-clean. Indeed,

e = 0 + u implies e = 1 and e = 1 + u implies e = 0.
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In the sequel ex-clean matrices in M2(Z) are discussed and finally charac-
terized.

4.1 Exunits

Note that for any pair of exunits U, V ∈ M2(Z) (i.e. U + V = I2) we have
Tr(V ) = 2− Tr(U) and det(V ) = det(U)− Tr(U) + 1.

The 2 × 2 exunits over Z were characterized in Proposition 11 (these are
trivial ex-clean 02 + U).

Proposition 16 There are no uniquely clean exunits in M2(Z).

Proof. We use the main result in [1]: an invertible 2 × 2 integral matrix is

uniquely clean iff it is similar to

[

1 0
0 −1

]

. Since exunit is a similarity invari-

ant, it suffices to check that

[

1 0
0 −1

]

is not exunit. Indeed, I2−

[

1 0
0 −1

]

=
[

0 0
0 2

]

is not invertible.

Examples. 1) U =

[

−1 1
−1 2

]

is an exunit over Z, so is (its pair) V =

I2 − U =

[

2 −1
1 −1

]

and, by Corollary 13, so is −V . Therefore, U has both

trivial ex-clean decompositions U = 02 + U = I2 +

[

−2 1
−1 1

]

.

2) U =

[

−1 3
−1 2

]

is an integral exunit, so is its pair V = I2 − U =
[

2 −3
1 −1

]

and U = I2 +

[

−2 3
−1 1

]

is a clean but not ex-clean decomposi-

tion. Indeed, here −V is not an exunit.
3) Exunits may have clean decompositions which are not ex-clean.
[

0 1
−1 3

]

= 02 +

[

0 1
−1 3

]

= I2 +

[

−1 1
−1 2

]

are the trivial ex-clean

decompositions but
[

0 1
−1 3

]

=

[

1 0
3 0

]

+

[

−1 1
−4 3

]

=

[

−1 1
−2 2

]

+

[

1 0
1 1

]

(and the

computer gives other infinitely many clean decompositions) are clean but not

ex-clean since I2 −

[

−1 1
−4 3

]

=

[

2 −1
4 −2

]

and I2 −

[

1 0
1 1

]

=

[

0 0
−1 0

]

,

none is a unit.
3) Since det(I2 + U) = det(U) + Tr(U) + 1 and Tr(I2 + U) = 2 + Tr(U),

the other trivial ex-clean matrices, i.e., A = I2 + U with exunit U are also
characterized by Proposition 11: det(A) = 3 = Tr(A) or det(A) = 5 = Tr(A) or
det(A) = −1 with Tr(A) = 1 or det(A) = 1 and Tr(A) = 3.
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4) The exunits have at most two ex-clean decompositions : the trivial ones.
Indeed, any nontrivial idempotent E has trace 1. Hence, Tr(E + U) = 1 +
Tr(U) ∈ {0, 2, 4} and the claim follows from Proposition 11,

4.2 Nilpotents

The above given clean decomposition of the nilpotents, is not ex-clean since 1−t
is an unipotent.

However

Proposition 17 A nilpotent 2 × 2 integral matrix T is ex-clean iff there exist
integers x, y, x, a, b, c such that x2 + x + yz = 0, a2 + a + bc − 1 = 0 and

(2a+ 1)x+ cy + bz = −a− 2. In this case T =

[

a+ x+ 1 y + b
z + c −a− x− 1

]

.

Proof. Suppose T = E + U with exunit U . Since Tr(E) ∈ {0, 1, 2}, Tr(U) ∈
{−1, 1, 3} and Tr(T ) = 0 the only possible combination is Tr(E) = 1 (i.e.
nontrivial idempotent) with det(E) = 0, and Tr(U) = −1 (i.e. exunit) with

det(U) = −1. Thus E =

[

x+ 1 y
z −x

]

with x(x + 1) + yz = 0 and U =
[

a b
c −a− 1

]

with a2+a+bc = 1. Then det(E+U) = 0 iff (2a+1)x+cy+bz =

−a− 2.

Examples. With the exunit U =

[

−2 1
−1 1

]

(i.e. a = −2, b = 1, c = −1)

we get

[

−1 1
−1 1

]

=

[

1 0
0 0

]

+

[

−2 1
−1 1

]

, or

[

−2 1
−4 2

]

=

[

0 0
−3 1

]

+
[

−2 1
−1 1

]

or

[

0 0
1 0

]

=

[

2 −1
2 −1

]

+

[

−2 1
−1 1

]

since the Diophantine equa-

tion x2+3xy+y2+x = 0 (together with z = 3x+y; see Theorem 19 below) has
(among other infinitely many solutions) the solutions (0, 0), (−1, 0) and (1,−1).

4.3 Idempotents

Proposition 18 No idempotent matrix in M2(Z) is ex-clean.

Proof. As seen above we have to discuss only nontrivial ex-clean decomposi-
tions of nontrivial idempotents, that is E = E′ + U with Tr(E) = Tr(E′) = 1.
But this implies Tr(U) = 0 and Proposition 11 shows that such ex-clean integral
matrices do not exist.

4.4 The nontrivial ex-clean matrices.

We first recall (from [1]) the characterization of the nontrivial clean 2×2 integral
matrices

11



Theorem 19 A 2× 2 integral matrix A =

[

a b
c d

]

is nontrivial clean iff the

system
{

x2 + x+ yz = 0 (1)
(a− d)x + cy + bz + det(A) − d = ±1 (2)

with unknowns x, y, z, has at least one solution over Z. If b 6= 0 and (2) holds,
then (1) is equivalent to

bx2 − (a− d)xy − cy2 + bx+ (d− det(A) ± 1)y = 0 (3).

Proof. Any nontrivial idempotent is characterized by zero determinant and
trace = 1. The general matrix A is clean iff there is a nontrivial idempotent

E =

[

x+ 1 y
z −x

]

i.e., Tr(E) = 1 and − det(E) = x2 + x + yz = 0, that is

(1), such that det(A − E) = ±1. If (1) holds, the last condition amounts to
(a− d)x + cy + bz + det(A)− d = ±1, that is (2).

If b 6= 0 (the case c 6= 0 is symmetric), multiplying (1) by b and eliminating z,
we get the Diophantine equation bx2−(a−d)xy−cy2+bx+(d−det(A)±1)y = 0,
that is (3).

Corollary 20 A 2 × 2 integral matrix A =

[

a b
c d

]

is nontrivial ex-clean iff

at least one of the systems







x2 + x+ yz = 0 (1)
(a− d)x + cy + bz + det(A) − d = 1 (2)

a+ d ∈ {2, 4} (4)

or






x2 + x+ yz = 0 (1)
(a− d)x + cy + bz + det(A) − d = −1 (2′)

a+ d ∈ {0, 2} (4′)

with unknowns x, y, z, has at least one solution over Z. Accordingly (if b 6= 0)
we associate (3) or (3′):







bx2 − (a− d)xy − cy2 + bx+ (d− det(A) + 1)y = 0 (3′)
(a− d)x + cy + bz + det(A) − d = 1 (2′)

a+ d ∈ {2, 4} (4′)
.







bx2 − (a− d)xy − cy2 + bx+ (d− det(A)− 1)y = 0 (3′)
(a− d)x+ cy + bz + det(A)− d = −1 (2′)

a+ d ∈ {0, 2} (4′)
.

Proof. We just have to add the conditions given in Proposition 11, for the
exunit A− E.

Examples. 1)

[

0 6
−1 4

]

has precisely two clean decompositions:

12



[

1 1
0 0

]

+

[

−1 5
−1 4

]

=

[

0 5
0 1

]

+

[

0 1
−1 3

]

. Both are ex-clean decom-

positions.

2)

[

0 4
−1 4

]

has infinitely many clean decompositions: for any nonnegative

integer k,
[

−8k2 + 2k + 1 16k2 − 1
−4k2 + 2k 8k2 − 2k

]

+

[

8k2 − 2k − 1 −16k2 + 5
4k2 − 2k − 1 −8k2 + 2k + 4

]

=

=

[

−8k2 − 6k 16k2 + 16k + 3
−4k2 − 2k 8k2 + 6k + 1

]

+

[

8k2 + 6k −16k2 − 16k + 1
4k2 + 2k − 1 −8k2 − 6k + 3

]

.

All are ex-clean decompositions.
Remark. According to Corollary 6, there are no triangular exunits, that is,

the (ex)unit in any ex-clean decomposition cannot be triangular.

5 Comments and open questions

1) Examples of clean rings include semiperfect rings, unit-regular rings and
endomorphism rings of continuous modules.

Is there any relation between ex-clean and special classes of clean rings ?
(incl. strongly clean or uniquely clean).

Give examples of ex-clean rings.
2) The strongly property is preserved by the pair of any exunit: eu = ue

and u+ v = 1 imply ev = ve.
Determine the (strongly) ex-clean rings.
3) The proof given in [4] for: the class of clean rings is closed under exten-

sions (and in particular for matrix rings), cannot be adapted in the ex-clean
situation. Even the particular case of matrix rings seems unlikely.

Give an example of ex-clean ring R such that Mn(R) is not ex-clean (for
some n ≥ 2).

4) The proof given in [3] for: corners of strongly clean rings are strongly
clean, cannot be adapted in the ex-clean situation.

Give an example of ex-clean ring R and a (full) idempotent e ∈ R with not
ex-clean corner eRe.

5) In [14] it is proved that if R is a clean ring and I an ideal such that R/I
has only trivial idempotents, then units in R/I lift to units in R.

An analogous proof for exunits does not work: in the final case of this proof,
for u, v ∈ Ue(R) we need −uv−1 ∈ Ue(R). But products of exunits may not be
exunits, and opposites of exunits may not be exunits. Give an example.

6) Even if units lift in a factor ring R modulo a proper ideal, exunits may
not lift. Give an example.

7) A nonzero element a in a ring R is (strongly) ex-fine if a = u + t with
u ∈ Ue(R), t ∈ N(R) (and u, t commute).

If a is fine, so is −a, but not necessary 1 − a. If a is ex-fine then 1 − a =
(1− u)− t is (ex)fine.
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In [5] it is proved that the strongly fine elements (in a nonzero ring) are pre-
cisely the units. Analogously, strongly ex-fine elements are precisely the exunits.
(One way is clear. Conversely, if a ∈ R\(0) has a strongly ex-fine decomposition
u+ t, then a = u(1 + u−1t) ∈ U(R) (since ut = tu implies that u−1t ∈ N(R))).

Characterize the ex-fine rings.
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