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Abstract. An element a in a ring R is called unipotent-regular if there is a
unipotent u such that a = aua. A ring is unipotent-regular if so are all its
elements. We show that a ring is unipotent-regular iff it is Boolean. Addition-
ally, we characterize the unipotent-regular 2×2 matrices over Prüfer domains.
Not all unipotent-regular matrices are idempotent.

1. Introduction

To the best of our knowledge, so far there is no characterization of unit-regular
matrices (over commutative rings), not even for 2× 2 matrices.

Therefore we introduce and characterize a naturally defined subset of unit-regular
matrices.

Definition. An element a ∈ R is called unipotent-regular if there exists a
unipotent unit u such that a = aua. Equivalently, a is unipotent-regular if there
exists a nilpotent t such that a = a(1 + t)a. A ring is called unipotent-regular if so
are all its elements.

Obviously, unipotent-regular elements are unit-regular and unit-regular elements
are regular.

As in case of unit-regular elements, it is easy to see that an element is unipotent-
regular iff it is a product of an idempotent and a unipotent element (in either order).

In this short note we first show that unipotent-regular rings are scarce: these
are precisely the Boolean rings.

Secondly, we characterize the unipotent-regular 2 × 2 matrices over Prüfer do-
mains.

The rings we consider are associative with identity. By U(R) we denote the set
of all units of R and by N(R) we denote the set of all nilpotents of R. The ”regular”
word for elements or rings means Von Neumann regular.

2. Unipotent-regular rings and 2× 2 matrices

The so-called UU-rings (rings with only unipotent units) were defined and stud-
ied in [1]. Their study was further developed in [3].

Thus, a ring R is UU iff U(R) = 1 + N(R). For the sake of completeness we
recall (see [5]) the following

Definitions. An element r of a ring R is called clean if r = e+u with e2 = e and
u ∈ U(R). An element x of a ring R is called left exchange (initially left ”suitable”)
if there exists e2 = e ∈ Rx such that 1− e ∈ R(1−x). Right exchange elements are
defined similarly and it is proved that the exchange property is left-right symmetric
(see [5] Theorem 2.1). A ring is called Abelian if all its idempotents are central.

Keywords: unipotent-regular, matrix, Prüfer domain. MSC 2020 Classification: 16U10, 16U30,
16U40, 16S50. Orcid: 0000-0002-3353-6958; 0000-0003-2777-7541.

1
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As already mentioned in the Introduction we have the following result. For
reader’s convenience we supply (almost) all the details.

Theorem 1. A ring is unipotent-regular iff it is Boolean.

Proof. First observe that a unit is unipotent-regular iff it is unipotent. Indeed,
as inverses of unipotents are unipotent, one way is obvious. Conversely, suppose
u ∈ U(R) and u = e(1 + t) for an idempotent e and a nilpotent t. Then eu = u

and so e = 1. Hence u = 1 + t, as claimed.
As a consequence, every unipotent-regular ring is UU. Secondly, we show that R

is a regular UU-ring iff R is a Boolean ring. Again, one way is obvious, so assume
R is a regular UU-ring. We first show that R is reduced. The only existing proof
goes like this. Assume R is not reduced, i.e., there exists a nonzero nilpotent in R.
Then there exists e2 = e in R such that the corner eRe is isomorphic to Mn(S) for
some S (by Levitzki, [4], Th. 2.1), but eRe is UU while Mn(S) is not UU (see [1]),
a contradiction.

Since R is reduced, it is easy to see R is Abelian (we just show (er − ere)2 =
0 = (re − ere)2).

Next, recall that every regular element is exchange. Indeed, if a = axa, write
f = xa = f2. Then take e = f +(1− f)xf = e2 ∈ Rx and so 1− e = (1− f)(1−x)
(see [5] Proposition 1.6). Hence regular rings are exchange.

Further, we show that any Abelian exchange ring is clean. As R is exchange for
any x ∈ R we choose e2 = e ∈ Rx with 1− e ∈ R(1− x). If e = ax we may assume
ea = a so that axa = a. Since idempotents are central xa = ax. Similarly we write
1−e = b(1−x) where (1−e)b = b and b(1−x) = (1−x)b. Then an easy calculation
shows that a− b is the inverse of x− (1− e) (see [5] Proposition 1.8).

Finally, as R is clean and U(R) = {1}, start with any element r ∈ R. Since r+1
is clean, r + 1 = e + u with e2 = e and u ∈ U(R) and so r = e, all elements of R
are idempotents. �

The second part of the proof appeared in [3] as Theorem 4.1, (5) ⇒ (6) ⇒ (3).
It would be nice to have a direct (somewhat elementary) proof for the statement:
”any regular UU ring is reduced”. For the time being, the one mentioned above
(via Levitzky’s result) is the only one known.

As for matrix rings, since for any ring R 6= 0 and any integer n ≥ 2, Mn(R) is
not a UU-ring (see [1]), we have the following result

Proposition 2. For any ring R 6= 0 and any integer n ≥ 2, Mn(R) is not
unipotent-regular.

In what follows we determine the 2× 2 unipotent-regular matrices over a Prüfer
domain.

First notice that only zero determinant 2× 2 matrices can be unipotent-regular.
Indeed, this follows at once since det(E(I2 + T )) = det(E) det(I2 + T ) = 0 · 1 = 0,
for any idempotent E and nilpotent T .

Next, since in our characterization we use Prüfer domains, recall that a Prüfer

domain is a semihereditary integral domain. Equivalently, an integral domain R is
a Prüfer domain if every nonzero finitely generated ideal of R is invertible. Fields,
PIDs and Bézout domains are Prüfer domains but UFDs may not be Prüfer.
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In the next theorem we intend to use the Kronecker (Rouché) - Capelli theorem
for compatible linear systems. As early as 1971 we recall from [2] the following
characterization. In this characterization, the ideal Dt(A) generated by the t × t

minors of the matrix A is called the t-th determinantal ideal of A and we put
D0 = 1. As customarily, [A,b] denotes the augmented matrix.

Theorem 3. Let R be an integral domain, A a matrix of rank r over R and x

and b column vectors over R. The condition Dr(A) = Dr[A,b] is necessary and
sufficient for the system Ax = b to be solvable iff R is a Prüfer domain.

Our characterization follows.

Theorem 4. A (zero determinant) matrix A = [aij ]1≤i,j≤2 over a Prüfer domain is
unipotent-regular iff there exist a, c with c | a(1−a) such that crow1(A) = arow2(A)
and if bc = a(1− a) then (a11 − a)2, (a12 − b)2 and (a11 − a)(a12 − b) are divisible
by ba11 − aa12. The divisibilities are equivalent with (a21 − c)2, (a22 + a− 1)2 and
(a21 − c)(a22 + a− 1) being divisible by (1− a)a21 − ca22.

We discuss separately the cases a ∈ {0, 1}, so below we assume a, b, c 6= 0 and
a 6= 1.

Proof. As noticed in the Introduction, an element is unipotent-regular iff it is a
product of an idempotent and a unipotent element (in either order). Therefore,
over any integral domain a unipotent-regular 2× 2 matrix is of form E(I2 + T ) =
[

a b

c 1− a

] [

1 + x y

z 1− x

]

with a(1 − a) = bc and x2 + yz = 0. Denoting

A =

[

a11 a12
a21 a22

]

, the equality A = E(I2 + T ) amounts to the system

a(1 + x) + bz = a11
b(1− x) + ay = a12

c(1 + x) + (1− a)z = a21
−(1− a)(1 − x) + cy = a22

We write the linear system as follows

ax+ bz = a11 − a

−bx+ ay = a12 − b

cx+ (1 − a)z = a21 − c

−− (1− a)x+ cy = a22 + a− 1

.

The four equations form a linear system with 3 unknowns and 4 equations whose
augmented matrix is









a 0 b a11 − a

−b a 0 a12 − b

c 0 1− a a21 − c

a− 1 c 0 a22 + a− 1









.

An easy computation shows that the system matrix









a 0 b

−b a 0
c 0 1− a

a− 1 c 0









has

rank 2, as a(1 − a) = bc.
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Since the 3 × 3 minors of the system matrix are zero, so is the determinant of
the augmented matrix.

Another easy computation shows that the remaining twelve 3× 3 minors of the
augmented matrix are zero iff crow1(A) = arow2(A).

Thus, in order to find a solution we select (say) the first two equations i.e.,

ax + bz = a11 − a, −bx + ay = a12 − b. Then x =
a11 − a− bz

a
− 1 and

y =
b(a11 − a− bz) + a(a12 − b)

a2
and by replacing in x2 + yz = 0 we obtain

x = −
(a11 − a)(a12 − b)

ba11 − aa12
, y = −

(a12 − b)2

ba11 − aa12
and z =

(a11 − a)2

ba11 − aa12
. Hence, the

existence of this solution requires the divisibilities in the statement. �

The case a = 1. As a(1 − a) = bc, at least one of b, c must be zero and (say)

E =

[

1 b

0 0

]

. Then a21 = a22 = 0 are necessary conditions for a matrix A =

[aij ]1≤i,j≤2 to be unipotent-regular. As in the previous proof, x = a11− bz− 1, y =

a12−b+bx = a12−b+b(a11−bz−1) and x2+yz = 0 gives x = −
(a11 − 1)(a12 − b)

ba11 − a12
,

y = −
(a12 − b)2

ba11 − a12
and z =

(a11 − 1)2

ba11 − a12
with (a11−1)2, (a12−b)2 and (a11−1)(a12−b)

divisible by ba11 − a12.
The case b = 0 follows by transpose.

The case a = 0. Again at least one of b, c must be zero and (say) E =

[

0 b

0 1

]

.

The first two equations of the linear system are bz = a11, b(1−x) = a12. Therefore

if both a11, a12 are divisible by b,we get x = 1−
a12

b
, z =

a11

b
and arbitrary y.

Remark. If R is not an integral domain, we don’t have a known form for 2× 2
idempotent or nilpotent matrices and so the above proof is not suitable.

Same for n× n matrices with n ≥ 3.

In view of Theorem 1, we could wonder whether there exist unipotent-regular
matrices which are not idempotent. Such matrices do exist.

Example. The zero determinant integral matrix A =

[

1 2
2 4

]

is not idempo-

tent but is unipotent-regular.
The rows are dependent so we can take a = k, c = 2k for any k. To choose b,

from k(1− k) = 2kb we need 2b = 1− k.
For k = 1, that is a = 1, c = 2, c divides a(1 − a) = 0. Then b = 0 and

02, 22 and 0 · 2 are divisible by a12 = 2. Indeed, A =

[

1 0
2 0

] [

1 2
0 1

]

is an

idempotent-unipotent product.
The decomposition is unique. Since 2b = 1 − k, k must be odd, say k = 2l − 1.

Then b − 2a = 3 − 5l should divide 2(1 − l)2, (1 − l)2 and 4(1 − l)2. Over Z, this
amounts to a quadratic Diophantine equation l2+5lm− 2l− 3m+1 = 0 which has
only one solution: (l,m) = (1, 0). Hence k = 1.

[The details. Solving the first two equations of the corresponding linear system

and replacing in x2 + yz = 0, we get x = −
(1− a)(2− b)

b− 2a
, y = −

(2− b)2

b− 2a
and
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z =
(1− a)2

b− 2a
. For a = 1, we obtain x = z = 0, y = 2−b. Finally, as a(1−a) = 0 = bc

we have b = 0].
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