UNIPOTENT-REGULAR MATRICES AND RINGS
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ABSTRACT. An element a in a ring R is called unipotent-regular if there is a
unipotent w such that a = aua. A ring is unipotent-regular if so are all its
elements. We show that a ring is unipotent-regular iff it is Boolean. Addition-
ally, we characterize the unipotent-regular 2 x 2 matrices over Priifer domains.
Not all unipotent-regular matrices are idempotent.

1. INTRODUCTION

To the best of our knowledge, so far there is no characterization of unit-regular
matrices (over commutative rings), not even for 2 x 2 matrices.

Therefore we introduce and characterize a naturally defined subset of unit-regular
matrices.

Definition. An element a € R is called unipotent-regular if there exists a
unipotent unit u such that a = aua. Equivalently, a is unipotent-regular if there
exists a nilpotent ¢ such that a = a(1 4 t)a. A ring is called unipotent-regular if so
are all its elements.

Obviously, unipotent-regular elements are unit-regular and unit-regular elements
are regular.

As in case of unit-regular elements, it is easy to see that an element is unipotent-
regular iff it is a product of an idempotent and a unipotent element (in either order).

In this short note we first show that unipotent-regular rings are scarce: these
are precisely the Boolean rings.

Secondly, we characterize the unipotent-regular 2 x 2 matrices over Priifer do-
mains.

The rings we consider are associative with identity. By U(R) we denote the set
of all units of R and by N(R) we denote the set of all nilpotents of R. The "regular”
word for elements or rings means Von Neumann regular.

2. UNIPOTENT-REGULAR RINGS AND 2 X 2 MATRICES

The so-called UU-rings (rings with only unipotent units) were defined and stud-
ied in [1]. Their study was further developed in [3].

Thus, a ring R is UU iff U(R) = 1 + N(R). For the sake of completeness we
recall (see [5]) the following

Definitions. An element r of a ring R is called clean if r = e+u with e? = e and
u € U(R). An element z of a ring R is called left exchange (initially left ”suitable”)
if there exists e? = e € Rz such that 1 —e € R(1 —z). Right exchange elements are
defined similarly and it is proved that the exchange property is left-right symmetric
(see [5] Theorem 2.1). A ring is called Abelian if all its idempotents are central.
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As already mentioned in the Introduction we have the following result. For
reader’s convenience we supply (almost) all the details.

Theorem 1. A ring is unipotent-reqular iff it is Boolean.

Proof. First observe that a unit is unipotent-regular iff it is unipotent. Indeed,
as inverses of unipotents are unipotent, one way is obvious. Conversely, suppose
u € U(R) and u = e(1 + t) for an idempotent e and a nilpotent ¢. Then eu = u
and so e = 1. Hence u = 1 + ¢, as claimed.

As a consequence, every unipotent-regular ring is UU. Secondly, we show that R
is a regular UU-ring iff R is a Boolean ring. Again, one way is obvious, so assume
R is a regular UU-ring. We first show that R is reduced. The only existing proof
goes like this. Assume R is not reduced, i.e., there exists a nonzero nilpotent in R.
Then there exists €2 = e in R such that the corner eRe is isomorphic to M, (S) for
some S (by Levitzki, [4], Th. 2.1), but eRe is UU while M,,(.S) is not UU (see [1]),
a contradiction.

Since R is reduced, it is easy to see R is Abelian (we just show (er — ere)? =
0 = (re — ere)?).

Next, recall that every regular element is exchange. Indeed, if a = aza, write
f=mza=f? Thentakee= f+(1— f)zf =e? € Rrandso 1 —e = (1— f)(1 —x)
(see [5] Proposition 1.6). Hence regular rings are exchange.

Further, we show that any Abelian exchange ring is clean. As R is exchange for
any x € R we choose ¢? = ¢ € Rr with 1 —e € R(1 —z). If e = az we may assume
ea = a so that axa = a. Since idempotents are central xa = ax. Similarly we write
1—e=b(1—2z) where (1—e)b =band b(1—x) = (1—x)b. Then an easy calculation
shows that a — b is the inverse of z — (1 — e) (see [5] Proposition 1.8).

Finally, as R is clean and U(R) = {1}, start with any element r € R. Since r+1
is clean, 7 + 1 = e + u with €? = e and u € U(R) and so 7 = e, all elements of R
are idempotents. (I

The second part of the proof appeared in [3] as Theorem 4.1, (5) = (6) = (3).
It would be nice to have a direct (somewhat elementary) proof for the statement:
”any regular UU ring is reduced”. For the time being, the one mentioned above
(via Levitzky’s result) is the only one known.

As for matrix rings, since for any ring R # 0 and any integer n > 2, M, (R) is
not a UU-ring (see [1]), we have the following result

Proposition 2. For any ring R # 0 and any integer n > 2, M, (R) is not
unipotent-regular.

In what follows we determine the 2 x 2 unipotent-regular matrices over a Priifer
domain.

First notice that only zero determinant 2 X 2 matrices can be unipotent-regular.
Indeed, this follows at once since det(E(lz + 1)) = det(E)det(I; +T) =0-1=0,
for any idempotent E and nilpotent 7.

Next, since in our characterization we use Priifer domains, recall that a Priifer
domain is a semihereditary integral domain. Equivalently, an integral domain R is
a Priifer domain if every nonzero finitely generated ideal of R is invertible. Fields,
PIDs and Bézout domains are Priifer domains but UFDs may not be Priifer.
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In the next theorem we intend to use the Kronecker (Rouché) - Capelli theorem
for compatible linear systems. As early as 1971 we recall from [2] the following
characterization. In this characterization, the ideal D;(A) generated by the t x ¢
minors of the matrix A is called the t-th determinantal ideal of A and we put
Dy = 1. As customarily, [A, b] denotes the augmented matrix.

Theorem 3. Let R be an integral domain, A a matrixz of rank r over R and x
and b column vectors over R. The condition D,(A) = D,[A,b] is necessary and
sufficient for the system Ax = b to be solvable iff R is a Priifer domain.

Our characterization follows.

Theorem 4. A (zero determinant) matriz A = [a;j]1<i j<2 over a Prifer domain is
unipotent-reqular iff there exist a,c with ¢ | a(l1—a) such that crow;(A) = arows(A)
and if be = a(1 — a) then (a11 — a)?, (a12 — b)? and (a11 — a)(a12 — b) are divisible
by bai1 — aar2. The divisibilities are equivalent with (az1 — ¢)?, (a2 +a — 1)* and
(a21 — ¢)(age + a — 1) being divisible by (1 — a)asr — casa.

We discuss separately the cases a € {0, 1}, so below we assume a,b,c # 0 and

a# 1.

Proof. As noticed in the Introduction, an element is unipotent-regular iff it is a
product of an idempotent and a unipotent element (in either order). Therefore,
over any integral domain a unipotent-regular 2 x 2 matrix is of form E(Is +T) =

a b 1+z Y . B _ ) - _
[c la][ . 150} with a(l — a) = bec and z* + yz = 0. Denoting

= | G a2 , the equality A = E(Is + T') amounts to the system
Q21 Q22
a(l+z) + bz = an
b(l —z) + ay = anp
c(l+z)+(1—a)z = an
—(I-a)l-2)+cy = a2
We write the linear system as follows
ax + bz = a1 —a
—bx + ay = ajo — b
cx+ (1 —a)z =  ag—¢
——(1-a)z+ecy = axpt+a-—1

The four equations form a linear system with 3 unknowns and 4 equations whose
augmented matrix is

a 0 b a1 —a
—b a 0 a2 — b
c 0 1—a a1 —C
a—1 ¢ 0 aze+a—1
a 0 b
An easy computation shows that the system matrix _cb 8 1 9 a has
a—1 ¢ 0

rank 2, as a(1 — a) = be.
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Since the 3 x 3 minors of the system matrix are zero, so is the determinant of
the augmented matrix.

Another easy computation shows that the remaining twelve 3 x 3 minors of the
augmented matrix are zero iff crow;(A4) = arowy(A).

Thus, in order to find a solution we select (say) the first two equations i.e.,
a1 —a— bz

ar + bz = a;1 —a, —br+ay = a2 —b. Then r = —  — 1 and
a
b —a—"» —-b
y = (an —a Znga(alQ ) and by replacing in z? + yz = 0 we obtain
a
ajp —a)(ag —b ais — b)? aj; —a)?
x:_(ll )(a12 )7y:_(12 )_ andz=7( 1 ) . Hence, the
ba11 — aal? ba11 — aal? ba11 — aal?
existence of this solution requires the divisibilities in the statement. (I

The case a = 1. As a(l — a) = be, at least one of b, ¢ must be zero and (say)

1 o . .
B = [ 0 8 } Then as; = age = 0 are necessary conditions for a matrix A =

[aij]1<i,j<2 to be unipotent-regular. As in the previous proof, z = a11 —bz—1, y =
(a11 —1)(a12 — b)

baii — a2

with (au —1)2, (a12—5)2 and (au —1)(@12—[))

a12—b+bxr = aj2—b+b(a11 —bz—1) and 22 +yz = 0 gives v = —

—b)? —1)?
Yy = —7((112 ) and z = 7((111 )

bai1 — a2 baii — a1z
divisible by ba11 — ag.

The case b = 0 follows by transpose.

The case a = 0. Again at least one of b, c must be zero and (say) £ = { 00 ] .

0 1
The first two equations of the linear system are bz = a11, b(1 —x) = a12. Therefore
a a
if both a11,a12 are divisible by b,we get x =1 — ﬁ, = and arbitrary y.

Remark. If R is not an integral domain, we don’t have a known form for 2 x 2
idempotent or nilpotent matrices and so the above proof is not suitable.
Same for n X n matrices with n > 3.

In view of Theorem 1, we could wonder whether there exist unipotent-regular
matrices which are not idempotent. Such matrices do exist.

1 2. .
9 4 } is not idempo-

Example. The zero determinant integral matrix A = [
tent but is unipotent-regular.

The rows are dependent so we can take a = k, ¢ = 2k for any k. To choose b,
from k(1 — k) = 2kb we need 2b =1 — k.

For k = 1, that is a = 1, ¢ = 2, ¢ divides a(l —a) = 0. Then b = 0 and
02,22 and 0 - 2 are divisible by a;3 = 2. Indeed, A = { ; 8 ] { é % ] is an
idempotent-unipotent product.

The decomposition is unique. Since 2b = 1 — k, k must be odd, say k = 2] — 1.
Then b — 2a = 3 — 51 should divide 2(1 — )2, (1 —1)? and 4(1 — 1)%2. Over Z, this
amounts to a quadratic Diophantine equation {2 4 5lm — 2] — 3m + 1 = 0 which has
only one solution: (I, m) = (1,0). Hence k = 1.

[The details. Solving the first two equations of the corresponding linear system

1—a)(2—-0 2—b)?
and replacing in 22 + yz = 0, we get x = fw, Yy = _@-b7 and
b—2a b—2a
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1— 2
z= (bi;l). Fora =1, weobtainx = z = 0, y = 2—b. Finally, asa(l—a) =0 = bc
—2a
we have b = 0].
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