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Abstract. In M2(Z[i
√

5]), we show that the idempotent

[

3 α

−α −2

]

with

α = 1 + i
√

5 is not similar to its complementary idempotent.

1. Introduction

Clearly, searching for examples of idempotents as in the title, makes sense only
for nontrivial idempotents, that is e2 = e /∈ {0, 1}.

We also mention that in any nonzero ring, every idempotent is different from its
complementary idempotent.

The example we provide is a 2× 2 matrix over a domain.
Recall that a domain D is GCD if greatest common divisors exist for every pair

of elements of D. Over many types of rings, the nontrivial idempotent 2 × 2 ma-
trices are all similar to E11 (here Eij denotes the matrix units, that is, matrices
with all entries zero excepting the (i, j)-entry which is 1). The binary relation of
similarity being transitive and symmetric, it follows that in such matrix rings actu-
ally all nontrivial idempotents are similar, and so are in particular, every nontrivial
idempotent and its complementary idempotent.

Therefore examples as in the title should be possibly found in matrix rings over
domains that are not GCD.

This will be our case for Z[i
√
5].

In Section 2 we present matrix rings which should be avoided when searching
for an example and in Section 3 we provide the example of nontrivial idempotent

which is not similar to its complementary idempotent, namely E =

[

3 α
−α −2

]

where α = 1 + i
√
5 (here α denotes the (complex) conjugate of α).

2. 2× 2 matrices

The following result is known. For readers convenience, we supply a proof.

Proposition 1. Any non-trivial 2 × 2 idempotent matrix over a GCD domain is
similar to E11.

Proof. Let D be a GCD domain and let E =

[

a b
c 1− a

]

∈ M2(D) be a nontrivial

idempotent, i.e. bc = a(1− a).
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First, for a = 0, at least one of b, c is zero, say b = 0 (the c = 0 case is analogous).

Then E =

[

0 0
c 1

]

and for U =

[

0 1
1 −c

]

one checks that E11 = U−1EU .

Next, assume a 6= 0 and let x = gcd(a, c). If a = xy and c = xx′ it follows
that gcd(y, x′) = 1. By cancellation with x we get bx′ = y(1 − a), and so, by our
last hypothesis, y divides b, say b = yy′. We also have x′y′ = 1 − a. Now take

P =

[

x y′

−x′ y

]

. One can check that det(P ) = 1 and PE = E11P . Hence E is

similar to E11. �

Corollary 2. Over a GCD domain any two nontrivial 2×2 idempotent matrices are
similar. In particular, any nontrivial idempotent is similar to its complementary
idempotent.

This result can be further generalized.
Following Steger [1], we say that a ring R is an ID ring if every idempotent

matrix over R is similar to a diagonal one.
Examples of ID rings include: division rings, local rings, principal ideal domains,

elementary divisor rings, unit-regular rings and serial rings.
A ring is called connected if it has only trivial idempotents. Then we obtain

Proposition 3. Over any ID connected ring, any two nontrivial 2× 2 idempotent
matrices are similar.

3. Example in Z[i
√
5]

The commutative domain Z[i
√
5] is mostly known as an example of not UFD

(unique factorization domain), due for example to the non associate decompositions

3 · 2 = (1 + i
√
5)(1 − i

√
5).

Recall, as a useful tool, the so called norm of elements in Z[i
√
5], a multiplicative

function N : Z[i
√
5] −→ N. Thus if a | b also N(a) | N(b) and using the norm it

also follows that the units of Z[i
√
5] are ±1.

Also recall that Z[i
√
5] is not a GCD domain. For example, gcd(6, 2(1 + i

√
5))

does not exist.

Lemma 4. (i) Over Z[i
√
5], the equation yz = 2 has only integer solutions, i.e.,

y, z ∈ {±1,±2}.
(ii) Excepting 1 · 6 = 6 · 1, the only product decompositions of 6 in Z[i

√
5] are

3 · 2 = 2 · 3 = (1 + i
√
5)(1− i

√
5) = (1 − i

√
5)(1 + i

√
5).

Proof. (i) Using the norm, 4 = N(2) = N(yz) = N(y)N(z) = (a2 + 5b2)(c2 + 5d2)
for integers a, b, c, d is possible only if b = d = 0.

(ii) Any decomposition of 6 = xy gives a decomposition of N(6) = 36 =
N(x)N(y) as product of norms. Assuming N(x) ≤ 6 ≤ N(y), as N(x) cannot be 2
and 3, it follows that N(x) is 1 or 4 or 6, and the conclusion follows as the equations

N(x) = 1, N(x) = 4 and N(x) = 6 can be easily solved, and y =
6

x
. �

Taking into account Proposition 1, we may ask whether the idempotent matrix

E =

[

3 1 + i
√
5

−1 + i
√
5 −2

]

over Z[i
√
5], is similar E11 and/or is similar to its
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complementary idempotent. We answer both questions in the negative below, so
that this is the desired example.

To simplify the writing in the sequel we denote α = 1 + i
√
5 so that E =

[

3 α
−α −2

]

.

Theorem 5. Over Z[i
√
5], E is not similar to I2 − E.

Proof. For U =

[

x y
z w

]

with xw−yz = ±1 and EU = UE11, we reduce (two out

of four equations are dependent) to only x + w = 0 and 5x+ αz = αy. Therefore
it remains (we eliminate w) to show that the system

5x+ αz = αy, x2 + yz = ±1

has no solutions in Z[i
√
5].

We can assume xw − yz = −1 (otherwise, we just replace, say, x, z by −x,−z).
Multiplying the linear equation by α we get 5αx + α2z = 6y. Replacement in
6x2 + 6yz = 6 leads to (2x+ αz)(3x + αz) = 6 (the discriminant of the quadratic
equation is a square, namely α2). So an equivalent system is now

5x+ αz = αy, (2x+ αz)(3x+ αz) = 6.

Since (see Lemma 4, (ii)) the only decompositions of 6 are 2 ·3 = 3 ·2 = αα = αα
(excepting 1 · 6 = 6 · 1 which give units, not our case), we have to solve four linear
systems.

The first one is

2x+ αz = 2, 3x+ αz = 3, 5x+ αz = αy.

From the first two equations we get x = 1, z = 0 which implies αy = 5, that is α
would divide 5. As α | 6 and α is not a unit, we have a contradiction.

The second is

2x+ αz = 3, 3x+ αz = 2, 5x+ αz = αy.

From the first two equations we get x = −1 which implies αz = 5. As α | 6 we
obtain a contradiction as in the previous case.

The third one is

2x+ αz = α, 3x+ αz = α, 5x+ αz = αy.

From the first two equations we get x = α− α = −2i
√
5 which implies α(z − 1) =

4i
√
5, a contradiction as α does not divide 4i

√
5 (this can be seen using the norms:

if u | v in Z[i
√
5] then N(u) | N(v) in Z).

Finally the fourth is

2x+ αz = α, 3x+ αz = α, 5x+ αz = αy.

From the first two equations we get x = α − α = 2i
√
5 and we continue as in the

previous case. This completes our proof. �

Corollary 6. Over Z[i
√
5], E is not similar to E11.

We provide two proofs for this consequence.
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Proof. It is easy to see that for any (nontrivial) idempotent E, if EU = UE11 then
(I2−E)U = UE22. Since E22 = (E12+E21)E11(E12+E21) it follows by transitivity
that if E is similar to E11, so is also its complementary I2 − E. Now, would our
idempotent E be similar to E11, its complementary should also be similar to E11

and so by transitivity and symmetry we contradict the previous theorem. �

Proof. A direct proof, not consequence of the previous theorem.

For U =

[

x y
z w

]

with xw − yz = 1 and EU = UE11, we reduce (two out of

four equations are dependent) to only 2x = −(1 + i
√
5)z and 2w = (−1 + i

√
5)y.

By multiplication, 4xw = 6yz and so from 4xw − 4yz = 4 we get yz = 2, xw = 3.
If z ∈ {±1} we get 2 | 1 + i

√
5, a contradiction. If z ∈ {±2} then y ∈ {±1} and

we get 2 | −1 + i
√
5, again a contradiction. Hence the three equations system has

no solutions in Z[i
√
5]. �
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