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A 3× 3 NILPOTENT MATRIX OF INDEX 3 WHICH HAS UNIT

STABLE RANGE ONE

GRIGORE CĂLUGĂREANU AND HORIA F. POP

Abstract. The main goal of this paper is to show which are the problems we
face when trying to check that a 3×3 nilpotent matrix has (unit) stable range
one. Actually we focus on the 3 × 3 matrix with 2 on the superdiagonal and
zeros elsewhere.

We first show that over Bézout domains nilpotent 2× 2 and 3× 3 matrices
of index 2, have (unit) stable range one. Then, preparing the proof in the
last section, over any commutative elementary divisor ring, we characterize
some completions of matrices to invertible matrices by using their diagonal
reductions. Finally, using these, we prove the statement in the title.

1. Introduction

All rings we consider are associative with identity. For a ring R, we denote by
U(R), N(R) and J(R) the set of all units of a ring R, the set of all nilpotents of
R and the Jacobson radical of R, respectively. By Eij we denote the n× n matrix
having all entries equal to zero, excepting the (i, j) entry which is 1. For a square
matrix T over any commutative ring, Tr(T ) denotes the trace of T and det(T )
denotes the determinant of T .

An element a of a ring R has left stable range one (sr1, for short) if for any x ∈ R
satisfying Ra+Rx = R, there exists y ∈ R such that a+yx is a unit. Equivalently,
a has left sr1 if for every x ∈ R there exists y ∈ R such that a + y(xa − 1) is a
unit. If we can choose y ∈ U(R) then a has unit sr1. Symmetrically, (unit) right
stable range one elements are defined. A ring has left (or right) stable range one
if all its elements have left (or right) sr1. It is known that the sr1 condition is
left-right symmetric for rings but may not be left-right symmetric for elements of
a ring. Therefore in the sequel (and specifically for matrices) we refer to the left
sr1 condition.

Since units, idempotents and elements in the Jacobson radical have stable range
one in any ring, it is natural to ask whether there is a nilpotent element of a ring,
which has not stable range one. To the best of our knowledge such an example was
not found so far.

When writing this paper, our initial goal was to find such an example, and, as
customarily, one starts by searching among 2×2 or 3×3 matrices over as general as
possible (commutative) rings. Notice that, if R is an exchange ring (i.e., for every
x ∈ R there exists an idempotent e ∈ R such that e ∈ Rx and 1 − e ∈ (1 − x)R,
a very large class of rings) and N(R) is a subring of R then N(R) ⊆ J(R), so
nilpotents have sr1.

To check that some given matrix has (unit) sr1 is a difficult task.

Keywords: nilpotent, unit stable range one, invertible completion, elementary divisor ring,
Bézout domain. MSC 2010 Classification: 16U99, 16U10,16D99, 16S50, 15B33, 15B36.
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2 GRIGORE CĂLUGĂREANU AND HORIA F. POP

For 2× 2 matrices, sr1 can be characterized (and checked) using some quadratic
Diophantine like equations (see [3]) which for integral matrices can be solved using
suitable (existing on Internet) software.

To check whether a 3 × 3 matrix has (unit) sr1, over some integral domain or
even over the integers, is harder.

In section 2 we give some general results on n × n zero-square matrices and in
section 3 we show that over Bézout domains, 2× 2 and 3× 3 zero-square matrices
are similar to multiples of E12 or E13, respectively, so have (unit) sr1, since any
multiple rEij ∈ Mn(R) has it (over any ring with identity). Therefore, an example
of nilpotent that has not (unit) sr1 does not exist in M2(Z) and does not exist in
M3(Z) for index 2 nilpotents. Hence, in searching for such an example in M3(Z),
we should consider index 3 nilpotents.

In the last section we focus on the nilpotent matrix of index 3,





0 2 0
0 0 2
0 0 0



.

It turned out that to prove this simple nilpotent 3 × 3 matrix has unit sr1, is not
easy and we had to prepare (in section 4) results on some specific completions of
arbitrary n× n matrices to invertible (n+ 1)× (n+ 1) matrices over commutative
(Henriksen) elementary divisor rings. In the sequel, the word ”completion” will be
used only in this sense.

This way, we changed the initial goal and all the results in our paper first motivate
the choice of this nilpotent matrix and finally contribute to prove, in the last section,
that this nilpotent matrix has unit stable range 1.

Therefore, finding a nilpotent 3 × 3 matrix (if any) which has not sr1, remains
an open problem.

2. Zero-square n× n matrices

For a zero-square n × n matrix T over a commutative (unital) ring, denote by
T cd
ab the 2 × 2 minor on the rows a and b and on the columns c and d. A simple

computation of rowi(T ) · colj(T ) for i 6= j or i = j gives

Proposition 1. Let T = [tij ]1≤i,j≤n be an n× n matrix over a commutative ring

R and let t
(2)
ij be the entries of T 2. Then

t
(2)
ij = tijTr(T ) +

∑

k∈{1,...,n}−{i,j} T
kj
ik i 6= j

t
(2)
ii = tiiTr(T ) + T 1i

i1 + ...+ T i−1,i
i,i−1 + T i+1,i

i,i+1 + ...+ T ni
in i = j

.

First recall that the rank of a (not necessarily square) matrix A (denoted rk(A))
can be defined over any commutative ring R, using the annihilators of the ideals
It(A) generated by the t × t minors of A (see e. g. [1]). In particular, rk(A) = 1
if all 2 × 2 minors are zero and these two conditions are equivalent over integral
domains. Then it can be shown that equivalent matrices (in particular, similar
matrices) have the same rank (see [1], 4.11).

Therefore

Corollary 2. Let T be an n × n matrix over any commutative ring. If all 2 × 2
minors of T are zero and Tr(T ) = 0 then T 2 = 0n.

Remark. Over integral domains a (well-known) converse also holds: If T 2 = 0n
then det(T ) = Tr(T ) = 0.
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Over integral domains, in order to have a characterization of form

T 2 = 0n if and only if rk(T ) = 1 and Tr(T ) = 0,

the only remaining implication is that T 2 = 0n and Tr(T ) = 0 imply rk(T ) = 1
(i.e. all 2× 2 minors of T equal zero).

In what follows we show that this implication holds over any commutative ring
for n = 3 if 2 is not a zero divisor, but fails for any n ≥ 4.

Theorem 3. Let R be a commutative ring such that 2 is not a zero divisor and
let T ∈ M3(R) with Tr(T ) = 0. Then T 2 = 03 if and only if all 2× 2 minors of T
equal zero.

Proof. To avoid too many indexes and emphasize the diagonal elements (i.e. the

zero trace) we write T =





x a c
b y e
d f −x− y



.

If Tr(T ) = 0, the condition T 2 = 03 is equivalent to the following nine LHS
equalities

x2 + ab+ cd = 0 (1)
a(x+ y) + cf = 0 (2) T 23

13 = 0
ae = cy (3) T 23

12 = 0
b(x+ y) + de = 0 (4) T 13

23 = 0
y2 + ab+ ef = 0 (5)

bc = ex (6) T 13
12 = 0

bf = dy (7) T 12
23 = 0

ad = fx (8) T 12
13 = 0

(x+ y)2 + cd+ ef = 0 (9)

.

The two terms equalities (i.e., (3), (6), (7), (8)) are equivalent to the vanishing of
four 2×2 minors (see the RHS column of zero minors). Further, two other equalities,
namely, (2) and (4), are equivalent to the vanishing of another two minors.

Thus, this equivalently covers the six off diagonal 2× 2 minors. What remains
are the vanishing of the three 2× 2 diagonal minors.

From x2 + ab+ cd = 0, y2+ ab+ ef = 0 and (x+ y)2+ cd+ ef = 0 we get (since
2 is not a zero divisor) xy = ab, and so another zero 2 × 2 minor. Finally using
x2 + ab + cd = 0, y2 + ab + ef = 0 and xy = ab, we get the last two zero 2 × 2
diagonal minors: x(x+ y) + cd = 0 and y(x+ y) + ef = 0.

The converse was settled in the general n× n case (see Corollary 2). �

Remark. The hypothesis ”2 is not a zero divisor” is essential for the van-
ishing of the three diagonal 2 × 2 minors (over any commutative ring). Con-
sider R = Z2[X,Y ]/I for I := (X2, Y 2) and the diagonal matrix over R, T =




X + I 0 0
0 Y + I 0
0 0 X + Y + I



. Then T 2 = 03, Tr(T ) = 0, but the diagonal

minors are not zero. Clearly, 2 is a zero divisor in R.

Before dealing with the 3×3 matrices case, here is an example of 4×4 zero-square
matrix (over any commutative ring) with zero trace and rank 2.
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Example. C4 =









0 0 1 1
0 0 1 1
−1 1 0 0
1 −1 0 0









2

= 04, has zero trace but many not zero

2× 2 minors (e.g.

[

0 1
1 0

]

, in the center).

Hence T 2 = 04 does not generally imply rk(T ) = 1. Adding to this example
as many zero rows and zero columns as necessary, we see that T 2 = 0n does not
generally imply rk(T ) = 1, for any n ≥ 5.

Since nonzero multiples of E1n have rank 1, and similar matrices have the same
rank, we obtain

Theorem 4. Over any commutative ring and for every n ≥ 4, there are n × n
zero-square matrices which are not similar to any multiple of E1n.

3. The zero-square 3× 3 case

A ring R is called a GCD ring if every pair a, b of nonzero elements has a
greatest common divisor, denoted by gcd(a, b). A GCD ring R is Bézout if whenever
δ = gcd(a, b), there exist s, t ∈ R such that sa+ tb = δ. If δ = 1, the elements a, b
are called coprime.

Notice that since our main results are proved over Bézout rings, in the sequel
equalities are written (as customarily) modulo association (in divisibility). A row
[

a1 · · · an
]

of elements in a ring R is called unimodular if a1R+. . .+anR = R.
When convenient, a unimodular row will be identified with (a1, ..., an) ∈ Rn.

We just mention that over Bézout domains, any zero-square 2 × 2 matrix is
similar to a multiple of E12 (for a proof, see Proposition 4.3, [4]). Hence it has
unit sr1, since, more generally, any multiple rEij ∈ Mn(R) has unit sr1 (see [4]).
This section is devoted to prove an analogous result for 3× 3 matrices over Bézout
domains.

Before proving the main result of this section, we prove a useful lemma and
proposition.

Lemma 5. Let a, b, c, a′, b′, c′ be elements in a GCD domain R. If ab′ = a′b, ac′ =
a′c, bc′ = b′c and the rows

[

a b c
]

and
[

a′ b′ c′
]

are unimodular then the
pairs a, a′, b, b′ and c, c′ are (respectively) associated (in divisibility). Moreover,
there exists a unit u ∈ U(R) such that

[

a′ b′ c′
]

=
[

a b c
]

u.

Proof. Denote δ = gcd(a, b) with a = δa1, b = δb1 and δ′ = gcd(a′, b′) and a′ = δ′a′1,
b′ = δ′b′1. From ab′ = a′b cancelling δδ′ we obtain a1b

′
1 = a′1b1. Since a1, b1 are

coprime, it follows a1 | a′1. Symmetrically, since a′1, b
′
1 are coprime, it follows a′1 | a1,

so that a1, a
′
1 are associates. Hence there is a unit u ∈ U(R) such that a1 = a′1u.

Further, notice that gcd(δ, c) = gcd(gcd(a, b), c) = 1 and so δ, c are coprime.
Now we use ac′ = a′c, that is, δ(a′1u)c

′ = δa1c
′ = δ′a′1c. Cancelling a′1 we get

δuc′ = δ′c and since δ, c are coprime, δ | δ′. Symmetrically, δ′ | δ and so δ, δ′ are
also associates. Therefore a = δa1 and a′ = δ′a′1 are associates.

In a similar way, it follows that b, b′ and c, c′ are associates, respectively.
Finally, suppose a′ = au, b′ = bv and c′ = cw for some u, v, w ∈ U(R). From

ab′ = a′b we get abv = aub, so v = u. Analogously, w = v and so w = v = u, as
claimed. �
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Remark. We can state as rk

[

a b c
a′ b′ c′

]

= 1, the second hypothesis of this

lemma.

Proposition 6. Let R be a GCD domain and let a, b, c, a′, b′, c′ be elements of R.

If rk

[

a b c
a′ b′ c′

]

= 1 (i.e., ab′ = a′b, ac′ = a′c, bc′ = b′c), δ = gcd(a, b, c),

λ = gcd(a′, b′, c′) and a = δa1, b = δb1, c = δc1, a
′ = λa′1, b′ = λb′1, c

′ = λc′1,
then a1, b1, c1 and a′1, b

′
1, c

′
1 are (respectively) associated (in divisibility). Moreover,

[

a′1 b′1 c′1
]

=
[

a1 b1 c1
]

u for some u ∈ U(R).

Proof. We just use the previous lemma. �

In the sequel, for 3-vectors we use the well-known operations of dot product,
cross product and scalar triple product.

Definition. The 3-vector a = (a1, a2, a3) ∈ R3 is unimodular iff the ideal
generated by its components is the whole ring, i.e. I = (a1, a2, a3) = Ra1 +Ra2 +
Ra3 = R. Equivalently, there exists b = (b1, b2, b3) ∈ R3 such that a · b = 1.

More detailed, for 3 elements of a ring a1, a2, a3 ∈ R, the ideal generated by
these I = (a1, a2, a3) = Ra1 + Ra2 + Ra3 can be the whole ring R, case when
{a1, a2, a3} (ideal) generates R, or else, it is not the whole ring. Since by Zorn’s
Lemma, every proper ideal is included in a maximal ideal, the second case can be
characterized as follows: the system {a1, a2, a3} is not an (ideal) generating system
if and only if these elements (and so is the ideal these generate) are included in a
maximal ideal.

This way, a 3-vector a = (a1, a2, a3) ∈ R3 is unimodular if and only if {a1, a2, a3}
is not included in any maximal ideal M of R. Equivalently, for every maximal ideal
M of R, at least one of the ai /∈ M , or else, at least one of a1+M,a2+M,a3+M ∈
R/M is 6= M (i.e. is not zero in R/M).

To simplify the writing, we denote a +M = (a1 +M,a2 +M,a3 + M), which
can be viewed as a 3-vector in (R/M)3. Moreover, we extend accordingly the dot
product (a+M) · (b+M) = a · b+M ∈ R/M .

Proposition 7. Suppose a = (a1, a2, a3), b = (b1, b2, b3), c = (c1, c2, c3) are
unimodular 3-vectors such that a · b = 1, a · c = 0. Then the cross product b × c

is also a unimodular row.

Proof. As mentioned above, it suffices to show that the 3-vector b×c (as customar-
ily identified with the (ideal) generating system {b2c3−b3c2, b3c1−b1c3, b1c2−b2c1})
is nonzero, modulo any maximal ideal. Since R is a commutative (unital) ring,
modulo any maximal ideal M of R, R/M is a field and (with the above notation)
b+M , c +M are nonzero 3-vectors in (R/M)3 (otherwise these are not unimod-
ular). It is easy to see that these two vectors are linearly independent (indeed, if
(a+M)·(b+M) = 1+M , (a+M)·(c+M) = M and b+M = k(c+M) for some
k ∈ R, then 1 +M = M , impossible). Hence their cross product is (well-known to
be) nonzero and the proof is complete. �

Proposition 8. Let R be a commutative ring and let a, b, c be unimodular 3-
vectors such that a ·b = 1 and a · c = 0. There exists a unimodular 3-vector x, also
orthogonal on a, such that b · (x× c) = 1.
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Proof. By the above proposition, since b× c (which is just the three 2× 2 minors

of the matrix [bc] =

[

b1 b2 b3
c1 c2 c3

]

) is also unimodular, there exists a unimodular

3-vector x such that (b× c) · x = 1, that is, det[bcx] = 1.
Hence b · (x × c) = 1. If a · x = s, replace x by x − sb and then this vector is

also orthogonal on a (indeed, a · (x − sb) = a · x− s(a · b) = s− s = 0). �

We are now ready to prove our main result

Theorem 9. Zero-square 3 × 3 matrices over any Bézout domain, are similar to
multiples of E13.

Proof. Again consider T =





x a c
b y e
d f −x− y



 with T 2 = 03 (by Theorem 3,

rank(T ) = 1, that is, all 2× 2 minors are zero).
Denote δ = gcd(x, a, c), λ = gcd(b, y, e) and γ = gcd(d, f, x+ y) so that x = δx1,

a = δa1, c = δc1, b = λb1, y = λy1, e = λe1, d = γd1, f = γf1 and x+y = γ(x2+y2).
According to Proposition 6, there are units u, v such that

[

b1 y1 e1
]

=
[

x1 a1 c1
]

u and
[

d1 f1 −x2 − y2
]

=
[

x1 a1 c1
]

v.

Hence T =





δx1 δa1 δc1
λux1 λua1 λuc1
γvx1 γva1 γvc1



 and since
[

x1 a1 c1
]

is unimodular,

there are s, t, z ∈ R and sx1 + ta1 + zc1 = 1.
Note that Tr(T ) = δx1 + λua1 + γvc1 = 0.
Denote r = gcd(δ, λ, γ) = gcd(T ) and δ = rδ1, λ = rλ1, γ = rγ1. We are looking

for an invertible matrix U such that TU = U(rE13) =





0 0 ru11

0 0 ru21

0 0 ru31



.

Our choice for r is necessary: indeed, writing T = rUE13U
−1, we see that r

must divide all the entries of T . Also note that, if det(U) = 1, every row and every
column of U must be unimodular.

We choose col3(U) =





s
t
z



. By computation

ru11 = row1(T ) · col3(U) = δ(x1u13 + a1u23 + c1u33) = δ,
ru21 = row2(T ) · col3(U) = λu(x1u13 + a1u23 + c1u33) = λu,
ru31 = row3(T ) · col3(U) = γv(x1u13 + a1u23 + c1u33) = γv, and,

[

x1 a1 c1
]





u11

u21

u31



 =
[

x1 a1 c1
]





u12

u22

u32



 = 0 and so

[

x1 a1 c1
]

U =
[

0 0 1
]

.

Hence, the first column of U must be col1(U) =





u11

u21

u31



 =













δ

r
λ

r
u

γ

r
v













. These

fractions exist since r = gcd(δ, λ, γ).
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We indeed have
[

x1 a1 c1
]













δ

r
λ

r
u

γ

r
v













=
1

r
(δx1 + λua1 + γvc1) =

1

r
(x + y −

(x+ y)) = 0 (because Tr(T ) = 0).

Finally, we need a suitable column col2(U) such that U =





δ1 u12 s
λ1u u22 t
γ1v u32 z



 is

invertible and
[

x1 a1 c1
]

U =
[

0 0 1
]

.
Taking a = [x1 a1 c1], b = [s t z] and c = [δ1 λ1u γ1v] the existence of x =

[u12 u22 u32] follows (by transpose) from the previous proposition. �

Example. Take x1 = 6, a1 = 10, c1 = 15, so that no two of these are coprime

and T =





−180 −300 −450
90 150 225
12 20 30



, δ = −30, λ = 15, γ = 2 and so r = 1.

In order to find the third column of U , we first we solve the linear Diophantine
equation, 6s+10t+15z = 1. We denote w = 3s+5t and solve 2w+15z = 1. This
gives w = −7 + 15n, z = 1− 2n.

We choose w = −7 (for n = 0) and solve 3s+ 5t = −7. This gives for instance

s = −14, t = 7, so we choose also z = 1 and U =





−30 u12 −14
15 u22 7
2 u32 1



.

As for the second column of U , we have the equation

−u12 det

[

15 7
2 1

]

+ u22 det

[

−30 −14
2 1

]

− u32 det

[

−30 −14
15 7

]

= 1,

that is, −u12 − 2u22 = 1.
Hence 2u22 = −1− u12 and so 6u12 − 5 − 5u12 + 15u32 = 0 or u12 + 15u32 = 5.

We can choose u12 = 5, u32 = 0 and so u22 = −3.

Indeed TU =





−180 −300 −450
90 150 225
12 20 30









−30 5 −14
15 −3 7
2 0 1



 =





0 0 −30
0 0 15
0 0 2





= UE13, so T is similar to E13.

4. Completions over elementary divisor rings

The rings we consider in this section are commutative with identity. We use the
terminology from [6].

Definition. A ring R is called a (Henriksen) elementary divisor ring if for every
n × n matrix A there exist invertible n × n matrices P , Q such that PAQ is a
diagonal matrix (called its diagonal reduction). Briefly, in such rings every n × n
matrix is equivalent to a diagonal matrix.

A ring is called a Hermite ring if every square matrix admits a triangular reduc-

tion (i.e. is equivalent to an upper triangular matrix). Thus (Henriksen) elementary
divisor rings are Hermite and Hermite rings are Bézout.

Following [7], we just mention (but not use) that among these, a ring is called
(classical) elementary divisor ring (in the sense of Kaplansky) if in the diagonal
matrix PAQ each element divides the element below. Such reductions are called
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canonical diagonal reductions. Principal ideal rings are (classical and so also Hen-
riksen) elementary divisor rings, and unit-regular rings, semichain rings, separative
(Von Neumann) regular rings are (Henriksen) elementary divisor rings.

For an n × n matrix A = [aij ]1≤i,j≤n
we use the notation gcd(A) = gcd{aij :

1 ≤ i, j ≤ n}. If gcd(A) = 1 we say that the entries of A are (collectively) coprime.
We use the block notation: if A = [aij ]1≤i,j≤n

is an n × n matrix over a ring

R then U =

[

A α
β t

]

is its completion to an (n + 1) × (n + 1) matrix, with an

n-column α, an n-row β and t ∈ R. The matrix A is said to be completable if it
has an invertible completion.

Before proving our characterizations, some prerequisites are gathered in the fol-
lowing

Lemma 10. (i) A is completable iff the transpose AT is completable.
(ii) If A is completable and B is equivalent to A, then B is also completable.
(iii) Let B be equivalent to A. Then gcd(A) = 1iff gcd(B) = 1.
(iv) A is completable only if its entries are (collectively) coprime.

Proof. (i) It suffices to transpose the completion U .
(ii) For two n × n matrices A, B, suppose B = PAQ for some n × n units P ,

Q, and let U =

[

A α
β t

]

be an (n + 1) × (n + 1) completion of A. Consider the

(n+1)×(n+1) (block-written) invertible matrices

[

P 0
0 1

]

and

[

Q 0
0 1

]

. Then

U ′ =

[

P 0
0 1

] [

A α
β t

] [

Q 0
0 1

]

=

[

PAQ Pα
βQ t

]

=

[

B Pα
βQ t

]

is a completion for B.
(iii) Suppose gcd(A) 6= 1 and so gcd(A) = d /∈ U(R). Then A = dA1 and so

B = dPA1Q, that is, d | gcd(B). Hence also gcd(B) 6= 1.
(iv) Straightforward, by determinant expansion. �

By diag(a1, ..., an) we denote a diagonal n×n matrix with the (diagonal) entries

a1, ..., an. Denote by π the product of all the diagonal entries and by αi =
π

ai
,

1 ≤ i ≤ n, the products of n− 1 of these.
We can now prove the following

Theorem 11. A diagonal n × n matrix diag(a1, ..., an) over a Bézout ring R is
completable iff all the products αi, 1 ≤ i ≤ n, are (collectively) coprime.

Proof. If gcd(α1, α2, ..., αn) = 1, a completion for diag(a1, ...an) is of form U =














a1 0 · · · 0 c1
0 a2 · · · 0 c2
...

...
. . .

...
...

0 0 · · · an cn
b1 b2 · · · bn 0















. Expanding det(U) along the last row gives

(−1)n det(U) = b1c1α1 − b2c2α2 + ...+ (−1)nbncnαn.

Since the αi’s are (collectively) coprime there exist elements βi, 1 ≤ i ≤ n such

that
n
∑

i=1

βiαi = 1. It suffices to choose randomly bi, ci such that βi = (−1)i+1bici.
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Conversely, if det(U) = 1 then the n− 1 products αi, 1 ≤ i ≤ n, are (collectively)
coprime. �

Corollary 12. Let R be a (Henriksen) elementary divisor ring. An n× n matrix
A over R has an invertible (n+ 1)× (n+ 1) completion iff in a diagonal reduction
of A, all the products of n− 1 diagonal entries are (collectively) coprime.

Examples. 1) For n = 2, if gr + hs = 1 (i.e. r and s are coprime) then




r 0 −1
0 s −1
h g 0



 and





r s 0
0 0 1
h −g ∗



 are completions over any ring.

2) It is well-known that every nontrivial 2×2 idempotent matrix over any Bézout
domain is similar to E11. Hence, every nontrivial 2× 2 idempotent matrix over any
Bézout domain is completable, since E11 is obviously completable.

In detail, if E =

[

x y
z 1− x

]

is a nontrivial idempotent, the similarity PE =

E11P is given by P =

[

d y′

−z′ x′

]

where d = gcd(x, z), x = dx′, z = dz′and

y = x′y′ (because yz′ = x′(1 − x) and gcd(x′, z′) = 1 imply x′ | y). Therefore,

for a completion of E we start with a completion of E11 (say) U =





1 0 0
0 0 1
0 −1 0





and compute U ′ =

[

P−1 0
0 1

]

U

[

P 0
0 1

]

for the P above. The completion is

U ′ =





x y −y′

z 1− x d
z′ −x′ 0



 =





dx′ x′y′ −y′

dz′ y′z′ d
z′ −x′ 0



 since det(U ′) = (dx′ + y′z′)2 =

12 = 1.

3) Since over any integral domain, 2×2 nilpotent matrices are of form

[

x y
z −x

]

with x2 + yz = 0, the only matrix completions are





x ±1 0
∓x2 −x ∓1
−1 0 0



 and trans-

poses.
Remark. A product of two completable matrices may not be completable:

just take

[

1 2
0 0

] [

2 0
0 1

]

=

[

2 2
0 0

]

.

Question. Can we prove the same completion theorems over a Hermite, or over
a Bézout ring ?

5. Unit stable range one for a 3× 3 nilpotent matrix

In this section, for any elementary divisor ring R, we show that the 3×3 nilpotent

matrix T =:





0 2 0
0 0 2
0 0 0



 has unit stable range one in M3(R).

First notice that T is equivalent to 2E =: 2(E11 + E22) =





2 0 0
0 2 0
0 0 0



, so it

suffices to check the unit sr1 condition for 2E.



10 GRIGORE CĂLUGĂREANU AND HORIA F. POP

Next, notice that for unit sr1 elements, the sr1 condition may be simplified as
follows: for every x there is a unit y such that (y + x)a− 1 ∈ U(R).

Also recall that unit sr1 is invariant to equivalences and any multiple of Eij has
unit sr1 in any Mn(R) (e.g. reconsider the proof from [2]).

Hence 2E11, 2E22 have unit sr1 in Mn(Z). However 2I3 has not (even) sr1 in
M3(Z).

Actually we can prove more

Proposition 13. An integral scalar matrix A = nI3 has sr1 iff n ∈ {−1, 0, 1}.

Proof. Using equivalences, it is easy to see that diag(r, s, t) has sr1 iff diag(t, s, r)
has sr1, and, diag(r, s, t) has sr1 iff diag(r,−s, t) has sr1. Therefore, when dealing
with integral diagonal matrices diag(n,m, l), with respect to sr1, we can suppose
0 ≤ n,m, l.

Suppose 1 ≤ n. For every multiple of I3, we have to indicate an X for which no
Y exists such that A+ Y (XA− I3) has ±1 determinant.

Since for n = 1, I3 is a unit, we take A = nI3 for n ≥ 2 and consider X =
−(n2 + 1)I3. Then Y (XA − I3) = −(1 + n + n3)Y and we can compute the
determinant in the factor ring Z/(1 + n + n3)Z. The characterization becomes n3

congruent to ±1 mod (1+n+n3), which is impossible since n ≥ 2. Hence multiples
nI3 with n ≥ 2 have not sr1. �

We are now ready to prove the main result of this section

Proposition 14. Let R be an elementary divisor ring. The matrix A = 2E has
unit sr1 in M3(R).

Proof. As mentioned above, for every 3 × 3 matrix X we will find a 3 × 3 matrix
Y such that if S = X + Y , we have det(SA− I3) ∈ {±1}.

Since SA− I3 =





2s11 − 1 2s12 0
2s21 2s22 − 1 0
2s31 2s32 −1



 we get

− det(SA−I3) = det

[

2s11 − 1 2s12
2s21 2s22 − 1

]

= 4(s11s22−s12s21)−2(s11+s22)+1.

Hence, for every 2 × 2 matrix X we will find a 2 × 2 matrix Y (not necessarily
invertible, but with coprime entries) such that 4 det(Y +X)−2Tr(Y +X)+1 ∈ {±1}.

This suffices because, if with coprime entries, Y can be completed to an invertible
3× 3 matrix, using the result in the previous section.

For any X =

[

x11 x12

x21 x22

]

we choose Y =

[

−x11 1
−x21 −x22

]

, which clearly has

coprime entries. Then det(X+Y ) = 0 = Tr(X+Y ) and so 4 det(X+Y )−2Tr(X+
Y ) + 1 = 1. �
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